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Abstract

Background: Poly (ADP-ribose) polymerase 1 (PARP-1) plays pivotal roles in immune and inflam-

matory responses. Accumulating evidence suggests PARP-1 as a promising target for immunomodula-

tion in multiple sclerosis and natalizumab-associated progressive multifocal leukoencephalopathy.

Objective: This study explores expression of PARP-1 and downstream effectors in multiple sclerosis

and during natalizumab treatment.

Methods: Transcriptional expressions were studied by real-time reverse transcriptase polymerase chain

reaction on CD4þT/CD8þT/CD14þ/B cells and peripheral blood mononuclear cells from healthy vol-

unteers, untreated and natalizumab-treated non-progressive multifocal leukoencephalopathy and pro-

gressive multifocal leukoencephalopathy multiple sclerosis patients.

Results: PARP-1 expression was higher in CD4þT, CD8þT and B cells from untreated patients com-

pared to healthy volunteers. Natalizumab treatment restored deregulated PARP-1 expression in T cells

but not in B cells. Sustained upregulation of PARP-1 was associated with decreased expression of

downstream PARP-1 factors such as TGFBR1/TGFBR2/BCL6 in B cells. Notably, a higher expression

of PARP-1 was detected in progressive multifocal leukoencephalopathy patients.

Conclusions: Given the importance of PARP-1 in inflammatory processes, its upregulation in

multiple sclerosis lymphocyte populations suggests a potential role in the immune pathogenesis

of multiple sclerosis. Strikingly higher PARP-1 expression in progressive multifocal leukoencephalop-

athy cases suggests its involvement in progressive multifocal leukoencephalopathy disease pathome-

chanisms. These results further support the value of PARP-1 inhibitors as a potential novel

therapeutic strategy for multiple sclerosis and natalizumab-associated progressive multifocal

leukoencephalopathy.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory

disease of the central nervous system (CNS) result-

ing from an autoimmune attack targeting myelin

sheets in the CNS, leading to demyelination,

axonal and neuronal injury.1 Natalizumab (Tysabri,

Biogen), a recombinant humanised monoclonal anti-

body that targets a4b1 and a4b7 integrins on the sur-

face of leukocytes is regarded as an effective

disease-modifying therapy for relapsing–remitting

multiple sclerosis (RRMS) that prevents invasion

of the CNS through the blood–brain barrier, thus

reducing inflammation and preventing the formation

of new focal lesions. These effects translate into a

significant reduction of relapse rates and disability

progression.2 However, treatment with natalizumab

has been associated with the development of pro-

gressive multifocal leukoencephalopathy (PML), a

devastating opportunistic lytic infection of oligoden-

drocytes in the CNS that is caused by reactivation of

the latent human polyomavirus JC virus (JCV).3 JCV

seropositivity, longer treatment duration, especially
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beyond 2 years, and prior treatment with immuno-

suppressants has been identified as risk factors and

are used for clinical guidance.4

Poly (ADP-ribose) polymerase 1 (PARP-1) is the

most abundant and well-characterised member of

the PARP nuclear enzyme superfamily that catalyses

the transfer of ADP-ribose units from nicotinamide

adenine dinucleotide (NADþ) to a broad panel of

acceptor proteins such as histones and transcription

factors.5 PARP-1 is involved in a wide range of cel-

lular processes including DNA repair, cell prolifer-

ation and death signalling, transcriptional regulation

and inflammation.6,7 Diverse studies conducted in

the murine experimental autoimmune encephalomy-

elitis model of MS suggested a potential role for

PARP-1 in the pathogenesis of MS,8–11 triggering

the development of PARP-1 inhibitors as promising

approaches for immunomodulation in MS.12 Besides

their potential value for MS treatment, PARP-1

inhibitors have also been suggested as novel thera-

peutic drugs for PML.13

Here, we examined PARP-1 expression in various

lymphocyte subpopulations from untreated and

natalizumab-treated MS patients and in patients

with natalizumab-associated PML. We report the

differential expression of PARP-1 and downstream

effectors in T and B cells, together with deregulated

PARP-1 expression in patients with PML.

Methods

Subjects

Patient characteristics and cohorts are depicted in

Table 1. Samples were collected during visits of

the patients in the years 2008–2015 and for PML

cases in the years 2008–2012. Five different and

heterogenous cohorts (except monocyte and B cell

cohorts that were homogeneous) were used for the

study. Considering the duration of natalizumab treat-

ment as a risk factor for developing PML, we divid-

ed our cohorts of natalizumab-treated patients into

two groups: treatment duration of 3–24 months and

longer than 24 months. A group of 15 natalizumab-

treated patients who developed PML was also

included in the peripheral blood mononuclear cell

(PBMC) cohort. Samples were drawn after PML

diagnosis. The JCV serostatus was available from

57 out of 58 natalizumab-treated patients of the

PBMC cohort. PML patients were all JCV seropos-

itive (15/15); 10 short-term treated non-PML

patients (3–24 months, 10/21) and 10 long-term

treated non-PML patients (>24 months, 10/22)

were JCV seropositive. All untreated patients had

no immunomodulation in the 6months before or

during the study.

Standard protocol approvals, registrations and

patient consents

Written informed consent was obtained from all

patients and healthy donors spontaneously recruited.

The study was approved by the cantonal institutional

review board of Basel City and Basel Country.

Cell separation

PBMCs were isolated from ethylenediamine tetra-

acetic acid (EDTA) anticoagulated venous blood

by density gradient centrifugation (Lymphoprep;

Axon Lab, Switzerland). CD4þT/CD8þT/CD14þT
and B cell subpopulations were separated from

PBMCs using MACS technology (positive isolation

using CD4, CD8, and CD14 microbeads, human,

B-cell negative enrichment kit II; Miltenyi Biotec

GmbH, Bergisch Gladbach, Germany) according to

the manufacturer’s instructions. Purity of isolated

CD4þT (97.9%� 0.21), CD8þT (96.4%� 0.42),

CD14þ (95.9%� 0.6) and B cells (97.7%� 0.36)

was analysed with an Attune focusing flow cytome-

ter (Applied Biosystems, Darmstadt, Germany).

RNA isolation

QIAzol (QIAgen AG, Hombrechtikon, Switzerland)

was used to lyse PBMCs and isolated cell subpopu-

lations. Total RNA (including miRNA) was

extracted using an miRNeasy mini kit (QIAgen)

according to the manufacturer’s protocol.

Messenger RNA expression analysis

Total RNA was reverse-transcribed using qScript

XLT cDNA SuperMix (Quantabio) according to

the manufacturer’s protocol. cDNA was used as a

template for the real-time reverse transcriptase poly-

merase chain reaction (RT-PCR) based on the 50

nuclease chemistry with ABI PRISM 7500 sequence

detection system (Applied Biosystems, Switzerland),

using the following assay-on-demand reagents

(Applied Biosystems): PARP1 (Hs 00242302_m1);

TGFBR1 (Hs 00610318_m1); TGFBR2 (Hs

00234253_m1); BCL6 (Hs 00153368_m1). As pre-

viously reported,14 PUM1 (Hs 00472881_m1) was

used as a reference for normalisation and relative

expression analyses. The comparative cycle thresh-

old method (Applied Biosystems) was used for cal-

culations of relative quantitation of targets.

Data and statistical analysis

GraphPad Prism software (La Jolla, CA, USA) was

used for statistical analysis. For the various group
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comparisons the non-parametric Mann–Whitney test

was applied. P< 0.05 was considered significant.

Correlations between expressions were assessed

using Spearman’s non-parametric correlations.

Results

Natalizumab restores deregulated PARP-1 expres-

sion in T-cell subsets but not in B cells

PARP-1 mRNA expression was assessed in CD4þT,
CD8þT, B cells and CD14þ monocytes from differ-

ent cohorts of controls and study patients.

Interestingly, PARP-1 was significantly upregulated

in untreated RRMS patients compared to healthy

volunteers in all tested T and B-cell subsets

(Figure 1(a–c)). In contrast, PARP-1 expression

was downregulated in CD4þT (Figure 1(a)) and

CD8þT (Figure 1(b)) cells of natalizumab-treated

patients. Downregulation was observed already

after short-term treatment. In B cells, however, sus-

tained upregulation of PARP-1 was observed under

natalizumab therapy irrespective of treatment dura-

tion (Figure 1(c)). In monocytes, only a trend for

upregulation of PARP-1 expression in untreated

RRMS patients compared to healthy volunteers

was found (Figure 1(d)).

Deregulated TGFBR expression in CD4þT and

B cells

PARP-1 has been suggested to regulate TGFBR

expression negatively in T cells.15 We explored

TGFBR1 and TGFBR2 expression in the T and B-

cell subsets of our cohorts of patients and controls.

In CD4þT cells, no significant differences were

observed in TGFBR1 mRNA expression levels

between the four groups (Figure 2(a), left panel).

Interestingly, PARP-1 upregulation correlated with

Table 1. Characteristics of patients.

Group N

Gender

F/M

Age (years)

mean� SD

No. of natalizumab

infusions mean�SD

EDSS median

(IQR)

No. of relapses

in the past 6 months

mean�SEM

Cohort for B cell analysis

� Healthy volunteers 12 10/2 41.0� 4.09 NA NA NA

� Untreated RRMS 12 8/4 55.7� 3.13 NA 3.0 (2.5–3.8) 0.16� 0.11

� Nat 3–24 months 12 10/2 40.5� 3.64 14.0� 1.97 3.25 (1.6–3.8) 0.25� 0.17

� Nat >24 months 12 9/3 39.2� 2.32 66.7� 6.60 2.5 (2.0–3.5) 0

Cohort for CD4þT cell analysis

� Healthy volunteers 12 8/4 36.1� 2.78 NA NA NA

� Untreated RRMS 12 9/3 46.8� 2.81 NA 2.25 (1.5–3.8) 0.08� 0.08

� Nat 3–24 months 12 8/2 42.6� 3.93 12.8� 2.35 3.0 (2.0–4.3) 0.33� 0.14

� Nat >24 months 12 10/2 39.8� 2.23 39.6� 1.67 3.25 (3.0–3.8) 0

Cohort for CD8þT cell analysis

� Healthy volunteers 12 8/4 41.4� 2.93 NA NA NA

� Untreated RRMS 12 9/3 47.4� 2.98 NA 2.0 (1.5–3.2) 0.16� 0.11

� Nat 3–24 months 10 8/2 39.8� 3.73 8.7� 2.70 2.5 (1.3–4.0) 0.60� 0.26

� Nat >24 months 12 10/2 41.0� 2.80 51.1� 4.55 3.0 (2.1–4.5) 0.16� 0.16

Cohort for monocyte analysis

� Healthy volunteers 11 9/2 39.4� 4.12 NA NA NA

� Untreated RRMS 12 8/4 55.7� 3.13 NA 3.0 (2.5–3.8) 0.16� 0.11

� Nat 3–24 months 12 10/2 40.5� 3.64 14.0� 1.97 3.25 (1.6–3.8) 0.25� 0.17

� Nat >24 months 11 8/3 40.2� 2.29 69.0� 6.81 2.5 (2.0–3.5) 0

Cohort for PBMC analysis

� Healthy volunteers 14 8/6 46.0� 2.93 NA NA NA

� Untreated RRMS 20 14/6 52.1� 1.88 NA 2.0 (1.7–2.5) 0.05� 0.05

� Nat 3–24 months 21 16/5 40.0� 2.79 14.0� 1.74 3.5 (2.7–4.2) 0.35� 0.10

� Nat >24 months 22 17/5 40.6� 2.20 49.0� 3.62 3.25 (2.5–4.0) 0

� PML 15 12/3 45.9� 2.22 33.5� 3.34 – –

IQR: interquartile range; EDSS: Expanded Disability Status Scale; RRMS: relapsing–remitting multiple sclerosis; Nat: natalizumab; PBMC:

peripheral blood mononuclear cell; PML: progressive multifocal leukoencephalopathy.
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significant downregulation of TGFBR2 in CD4þT
cells from untreated MS patiens versus healthy vol-

unteers (Figure 2(a), right panel) (r¼ –0.60;

P¼ 0.002). However, in contrast to the restored

PARP-1 mRNA levels in patients treated with nata-

lizumab, sustained downregulation of TGFBR2 was

observed under treatment, although significance was

lost in the long-term treated group, suggesting a pos-

sible delay in the restoration of TGFBR2 mRNA

levels. In B cells, PARP-1 upregulation was associ-

ated with both TGFBR1 and TGFBR2 downregula-

tion (P¼ 0.051 and P¼ 0.038, respectively) in

untreated patients versus healthy volunteers

(Figure 2(b)). Long-term treatment with natalizumab

increased TGFBR1 expression significantly

(Figure 2(b), left panel) contrasting to TGFBR2

mRNA expression levels that remained downregu-

lated under therapy (Figure 2(b), right panel). No

(a) (b)

(c) (d)

Figure 1. Expression of poly (ADP-ribose) polymerase 1 (PARP-1) mRNA in CD4þT, CD8þT, B cells and monocytes. Transcriptional

expression of PARP-1 was analysed with real-time reverse transcriptase polymerase chain reaction in CD4þT (a), CD8þT cells (b), B cells (c) and

monocytes (d) from healthy volunteer, untreated patients and natalizumab-treated patients (3–24 months or >24 months). Relative expression

levels (median with interquartile range) are depicted. ****P< 0.0001; ***P< 0.001; **P< 0.01; *P< 0.05.

(a)

(b)

Figure 2. Expression of TGFBR1 and TGFBR2 mRNA in CD4þT and B cells. Transcriptional expressions of TGFBR1 (left panels) and

TGFBR2 (right panels) were analysed with real-time reverse transcriptase polymerase chain reaction in CD4þT (a) and B cells (b) from healthy

volunteers, untreated and natalizumab-treated patients (3–24 months; >24 months). Relative expression levels (median with interquartile range)

are depicted. ***P< 0.001; **P< 0.01, *P< 0.05; ns: not significant.
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significant differential expression of TGFBR1 and

TGFBR2 was detected in CD8þT cells (data not

shown).

Differential expression of B-cell lymphoma 6 (BCL6)

in B and CD8þT cells from untreated and

natalizumab-treated patients

PARP-1 has been proposed to play an important role

in switching off BCL6 transcription in B cells.16 In

our cohort, in parallel to the uncovered PARP-1

upregulation, a trend for downregulation of BCL6

was observed in untreated and both groups of

natalizumab-treated patients (Figure 3(a)).

Notably, significant lower expression of BCL6

mRNA was detected in samples from patients with

long-term therapy. We further extended our analyses

to T-cell subsets. In CD4þT cells, where BCL6 was

shown to play a critical role for regulatory T cell

(Treg)-mediated control of T helper type 2 inflam-

mation,17 no significant difference was found in our

cohort of patients (data not shown). In contrast, in

CD8þT cells, BCL6 expression levels correlated

with PARP-1 expression, with significant downregu-

lation in untreated patients compared to healthy vol-

unteers (r¼ –0.51; P¼ 0.021) and restored

BCL6 expression in natalizumab-treated patients

(r¼ –0.61; P¼ 0.002) (Figure 3(b)).

PARP1/TGFBR deregulation in PML

Regarding the reported suppressive effect of a

PARP-1 inhibitor on JCV replication,13 we further

expanded our investigation of PARP-1 expression to

samples from patients with natalizumab-associated

PML. The analysis was performed on PBMCs due

to the limitation of sample volume. A total of 15

PML patients whose natalizumab treatment duration

varied from 17 to 62 months were included in the

study. In contrast to the MS-related upregulation of

PARP-1 in B and T-cell subsets, no significant dif-

ference was found in PBMCs of untreated and con-

trol groups, probably reflecting the heterogeneity of

the PBMC mixture (Figure 4(a)). Also, natural killer

cells, which were not studied, may contribute to the

expression in PBMCs. The upregulation of PARP-1

mRNA expression was also detected in long-term

natalizumab-treated patients. Importantly, a higher

expression of PARP-1 was detected in patients

with PML. TGFBR1 and TGFBR2 were downregu-

lated in long-term treated patients, in parallel with

the expression levels of PARP-1 (Figure 4(b), left

and right panel, respectively). Strikingly lower

expressions of TGFBR1 and TGFBR2 were found

in PML patients, thereby being in line with the high

PARP-1 expression levels.

Discussion

Growing evidence supports a significant role for

PARP-1 in neurological diseases.18 In the field of

neuroimmunology, most data were acquired from

experimental animal models.12 In contrast, only

few studies have been conducted using human MS

samples. PARP-1 activation has been detected in

apoptotic oligodendrocytes in MS lesions.19 In a

(a)

(b)

Figure 3. Expression of BCL6 mRNA in B cells and CD8þT cells. Transcriptional expression of BCL6 was analysed

with real-time reverse transcriptase polymerase chain reaction in B cells (a) and CD8þT cells (b) from healthy volunteers,

untreated and natalizumab-treated patients (3–24 months; >24 months). Relative expression levels (median with inter-

quartile range) are depicted. ***P< 0.001; **P< 0.01; *P< 0.05; ns: not significant.

Meira et al.

www.sagepub.com/msjetc 5



study performed on peripheral blood monocytes of

RRMS patients and secondary progressive multiple

sclerosis (SPMS), Farez and colleagues showed that

PARP-1 enzymatic activity was significantly higher

in patients with SPMS.10 Here, we report for the first

time higher expression of PARP-1 in lymphocyte

subsets from RRMS patients compared to healthy

volunteers. Noteworthy, higher PARP-1 expression

was detected in CD4þT, CD8þT and B cells, where-

as no significant increase was found in CD14þ

monocytes, suggesting a possible specific effect on

common lymphoid progenitors.

PARP-1 appears as an important regulator of

TGFBR expression and transforming growth factor

beta (TGF-b) signalling. In fact, increased expres-

sion of TGFBR1 and TGFBR2 were found in CD4þ

T cells from PARP-1–/– mice.15 In our cohort of

human CD4þT cell samples, increased PARP-1

expression in untreated patients correlated with

decreased expression of TGFBR2 but not

TGFBR1. Zhang and colleagues proposed distinct

underlying mechanisms of negative regulation of

TGFBR1 and TGFBR2 expressions by PARP-1,

involving on one side a selective binding of

PARP-1 to the promoter of TGFBR2 and on the

other side an inhibition of TGBFR1 expression

mediated by PARP-1 enzymatic activity.15 Such

divergent or additional/compensatory mechanisms

might be involved in the differential effect of

PARP-1 on the expression of TGFBR1 and

TGFBR2 in our CD4þT samples. Significant down-

regulation of TGFBR2 expression in untreated

RRMS patients compared to healthy volunteers

was previously found in another study from our

lab using different CD4þT cell samples.20 These

findings may contribute to a better understanding

of the pivotal role of TGF-b signalling in the regu-

lation of immune responses. Hence, Li and col-

leagues reported lethal inflammation associated

with T-cell activation in mice with T-cell-specific

deletion of TGFBR2.21 Importantly, deregulation

of TGF-b signalling, a critical regulator of the devel-

opment and function of Tregs, might contribute to

the impaired immunoregulatory function of Tregs in

MS.22,23 In parallel, growing evidence is supporting

an important role for PARP-1 in the regulation of

Treg differentiation and function. Hence, Nasta and

colleagues reported increased Foxp3þ regulatory

T cells in PARP-1 deficiency.24 More recently,

Luo and colleagues suggested that PARP-1 negative-

ly regulates the immunosuppressive function of Treg

(a)

(b)

Figure 4. Expression of poly (ADP-ribose) polymerase 1 (PARP-1), TGFBR1 and TGFBR2 mRNA in peripheral blood mononuclear cells

(PBMCs). Transcriptional expression of PARP-1 (a), TGFBR1 ((b), left panel) and TGFBR2 ((b), right panel) were analysed with real-time

reverse transcriptase polymerase chain reaction in PBMCs from healthy volunteers, untreated, natalizumab-treated patients (3–24 months;

>24 months) and natalizumab-associated progressive multifocal leukoencephalopathy (PML) patients. Relative expression levels (median with

interquartile range) are depicted. ****P< 0.0001; ***P< 0.001; **P< 0.01; *P< 0.05; ns: not significant.
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cells at the post-translational level by way of FOXP3

poly (ADP-ribosyl)ation.25 Collectively, these data

suggest a potential important impact of the deregu-

lation of the PARP-1/TGFBR axis on T-cell function

in MS.

In B cells, which are also central players of the

immune cascades triggering CNS inflammation,26,27

deregulation of PARP-1/TGFBR signalling might

also contribute to MS disease activity. In fact,

using PARP-1-deficient mice, Ambrose et al. unrav-

elled an essential role of PARP-1 in normal T-cell-

dependent antibody responses and the regulation of

isotype expression.28 In mice, B-cell-specific dele-

tion of TGFBR2 highlighted the important role of

TGFBR signalling in controlling B-cell homeostasis

and responses, notably IgG production.29 In patients’

B cells, unlike in T cells, deregulation of PARP-1/

TGFBR signalling was observed both in untreated

patients and in natalizumab-treated patients.

Considering the proposed critical regulatory role of

B cells in the immune response that controls JCV

infection,30 these data might be of importance in the

setting of natalizumab-induced PML development

where strikingly overexpressed PARP-1/TGFBR

signalling was detected.

Deregulated expression of BCL6 in B cells might

also contribute to MS disease pathomechanisms. In

fact, BCL6 functions as a transcriptional repressor

that impairs premature B-cell activation/differentia-

tion31 and plays a critical role in the development of

a diverse primary B-cell repertoire.32 In CD8þT
cells, considering the critical role of BCL6 in the

generation and maintenance of activated memory

CD8þT cells,33 the downregulation of BCL6 in

untreated patients could possibly be involved in the

reported deficiency of CD8þT effector memory T

cells in MS.34 BCL6 was also shown to control gran-

zyme B expression in murine effector CD8þT
cells.35 In our patient CD8þT cells, no significant

change in the expression of granzyme B was

detected (data not shown).

Conclusions

Our data support a potential impact of PARP-1

deregulation in MS and treatment-associated PML

pathomechanisms, therefore strengthening further

the proposed PARP-1 inhibition approach as a

novel therapy for MS. However, considering the pri-

mary function of PARP-1 in DNA damage detection

and repair, the use of PARP-1 inhibitors as therapy

for inflammatory diseases requires caution due to the

risk of genomic instability.
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