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Abstract

To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene
coexpression network analysis (WGCNA). Candidate coexpression modules are those with an eigengene expression level
that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains,
and that share a genomic region that regulates the module transcript expression levels (mQTL) with a genomic region that
regulates alcohol consumption (bQTL). To address a controversy regarding utility of gene expression profiles from whole
brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate
coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado
laboratories) and from gene expression data from 6 brain regions (nucleus accumbens (NA); prefrontal cortex (PFC); ventral
tegmental area (VTA); striatum (ST); hippocampus (HP); cerebellum (CB)) available from GeneNetwork. The candidate
modules were used to construct candidate eigengene networks across brain regions, resulting in three ‘‘meta-modules’’,
composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA) and whole brain. To mitigate the
potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-
partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts’ cis-
eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic
influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol
consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms
associated with alcohol-related traits.
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Introduction

The concept of networks is critical to understanding biology at a

systems level [1,2,3]. The availability of genome-wide measures of

gene (transcript) expression levels provides the opportunity to

identify gene coexpression networks, which have been reported to

reflect biologically meaningful clustering of gene products [4,5,6]

A further benefit of this approach is the identification of the

genetic basis for regulation of the coexpression networks (genetics

of gene expression), i.e., determination of the genetic markers or

genomic regions that are associated with quantitative variation of

transcript expression levels [7]. At the single gene level, the

correlation of gene expression levels with a complex biological

trait, combined with quantitative trait locus (QTL) analysis that

identifies common genomic regions that regulate gene expression

(eQTL) and the biological trait (bQTL), has been used by us and

others to identify candidate genes for various complex phenotypes

[8,9,10,11,12]. The same approach can be applied to transcrip-

tional networks comprising gene coexpression modules. Such

analysis allows for the description of genetically-regulated path-

ways that are associated with a complex phenotype, and also take

gene-gene interactions into account [13,14]. This approach has

the potential to identify common signaling pathways that are

associated with a trait in different populations, even if different

individual genes/transcripts are associated with the trait in each

population.

Controversy exists as to whether gene expression profiles from

whole organs, or specific cells or regions of organs, provide better

indicators of the relationship of measures of gene expression to a

phenotype. Certainly, if one ‘‘refines’’ a phenotype to one clearly

associated with a defined anatomical entity, e.g., left ventricular

hypertrophy or absence seizures, or, on a cellular level, the release

of a neurotransmitter such as GABA, it is absolutely rational to

isolate the anatomical locus or cell type displaying the phenotype

of interest for gene expression studies. Even within an anatomical
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structure, it is evident that one can discern organization of

expressed RNA elements that is indicative of a particular cell type

(e.g., neurons/astroglia/oligodendrocytes in brain [6]; or various

cell types in liver, http://phenogen.ucdenver.edu) and thus, tease

out the contribution of particular components of the whole

structure to a phenotype. However, complex phenotypes are a

result of genetic and environmental influences that usually reflect

an array of networks that occur not only within a single tissue or

organ, or a single region of a tissue or organ, but that interact

between regions and between tissues and organs [15,16].This is

particularly relevant to complex (polygenic) phenotypes known to

involve several organs (e.g., obesity or diabetes), or interactions

between anatomically distinct parts of an organ such as heart or

brain (e.g., heart failure or compulsive behavior). Recent gene

expression-centered analysis of obesity has demonstrated the

benefit of cross-organ analytical approaches to provide informa-

tion about cross-organ communication (i.e., hypothalamus, white

fat and liver) and coordinated cross-organ gene expression as a

predisposing factor for obesity in mice [15]. Similarly, one can

envision cross-regional networks within a complex anatomical

structure, such as brain, that would contribute to a complex

phenotype.

One highly investigated trait that has generated a number of

studies using gene expression analysis is alcohol preference in

mice. This phenotype is accepted to be polygenic, and QTL

regions contributing to alcohol consumption/preference have

been identified and replicated [17,18,19]. It is also accepted that

this trait is a reflection of the coordinated function of a number of

brain regions such as the brain ‘‘reward’’ system (ventral tegmental

area (VTA), nucleus accumbens (NAc), striatum, etc.), executive

areas of brain (frontal cortex areas), areas that control sensory

systems (olfactory/taste), areas controlling reinforcement (hypo-

thalamus), limbic areas (amygdala), areas involved in memory

(hippocampus), and other areas [20]. It can be questioned whether

measuring the endophenotypes of gene expression, or gene

coexpression networks, in any particular region of brain is

sufficient to generate insight into genomic determinants of this

complex trait. Rather than attempting to generate insight into

alcohol consumption behavior by studying gene expression/

coexpression networks in only one area of brain [21,22], or even

studying several isolated areas, it may be more powerful to apply

analytical techniques meant to provide evidence of transcriptional

relationships across brain areas, so as to more thoroughly assess

information exchange among the areas.

In the current study, we have used weighted gene coexpression

network analysis (WGCNA) to identify and integrate gene

coexpression networks in six selected brain regions, and in whole

brain, to bring in transcript expression information from brain

areas not directly sampled. Using a panel of BXD recombinant

inbred (RI) mouse strains, we identified gene coexpression

modules correlated with the predisposition to differences in

alcohol consumption, and identified the genetic loci of control

(QTLs) of these transcriptional networks. Candidate gene coex-

pression modules from each brain region and whole brain, in

which the ‘‘module (m)QTL’’ overlapped a ‘‘behavioral (b)QTL’’

identified for alcohol drinking behavior, were used to construct

second level networks across brain areas. This analysis produced

‘‘meta-modules’’ composed of candidate modules from two or

more brain areas and whole brain that generate insight into the

brain areas that contribute to predisposition to variation in the

level of alcohol drinking, and the transcripts coordinately

regulating this complex trait across several brain areas.

Materials and Methods

Phenotype Data
Data on alcohol consumption by BXD recombinant inbred (RI)

strains were retrieved from GeneNetwork (www.genenetwork.org/

). Two experiments involving BXD RI panels and alcohol

consumption in the two-bottle choice (2BC) paradigm were used

[18,19]. These were the only two studies available that tested more

than 15 BXD strains (Rodriguez et al., 1994 included 21 strains

and Phillips et al., 1994 included 19 strains) and used a 2BC

ethanol consumption measurement without prior exposure to

ethanol. The Rodriguez et al. [19] data represent average daily

alcohol consumption (g/kg) by males (50–70 days old), over a 15-

day period of a two-bottle choice between 10% ethanol and tap

water, whereas Phillips et al. [18] reported the average daily

alcohol consumption (g/kg) by females (51 to 125 days old,

average 87 days old) on day 2 and 4 of a 4-day period of access to

10% ethanol and tap water. Although alcohol consumption was

measured in different sexes, the phenotypes across the BXD strains

from these two studies have a significant correlation of 0.79 (p-

value ,0.001). It should be noted that phenotypic data collected

on inbred strains remain stable over time, and, more specifically,

Wahlsten and colleagues [23] showed that alcohol drinking

behavior in 9 inbred strains (including the BXD parental strains,

C57BL/6 and DBA/2) maintained the same rank order for over

40 years and across different laboratories.

Whole Brain Gene Expression Measurements (Focus on
Predisposition)

Gene expression data were generated in our laboratory in

Colorado from whole brain tissue of naı̈ve (non-alcohol-exposed)

70–94-day-old male mice using Affymetrix mouse whole genome

oligonucleotide arrays (GeneChip Mouse Genome 430 v2.0 Array,

Affymetrix, Santa Clara, CA). These data were obtained under

protocols approved by the University of Colorado Anschutz

Medical Campus Animal Care and Use Committee. Animals were

euthanized according to the recommendations of the American

Veterinary Medical Association guidelines on euthanasia. Tran-

script expression levels were measured in mice from 30 BXD RI

strains (BXD1, BXD2, BXD5, BXD6, BXD8, BXD9, BXD11,

BXD12, BXD13, BXD14, BXD15, BXD16, BXD18, BXD19,

BXD21, BXD22, BXD23, BXD24, BXD27, BXD28, BXD29,

BXD31, BXD32, BXD33, BXD34, BXD36, BXD38, BXD39,

BXD40, BXD42) plus the 2 parental strains (C57BL/6J & DBA/

2J) all purchased from the Jackson Laboratory. Four to seven mice

per strain were used and RNA from each mouse was hybridized to

a separate array. The methods are described in more detail in

Tabakoff et al. [9], and all raw and processed data are available on

http://phenogen.ucdenver.edu.

Prior to normalization, individual probes were removed if their

nucleotide sequence did not uniquely map to a region in the

mouse genome (NCBI 37/mm9) or if the probe contained a

known single nucleotide polymorphism (SNP) between the two

BXD parental strains based on data from whole-genome

sequencing made available by the Sanger Institute [24]. Entire

probesets were removed if less than 4 of the original 11 probes

remained after this filter. Expression values were normalized and

summarized into probesets using robust multichip analysis (RMA)

[25]. The MAS5 algorithm [26] was used to evaluate if expression

level measurements were above background (present, absent or

marginal). If a probeset did not have at least one ‘‘present’’ call in

any of the samples, the probeset was dropped from further

analysis.

Brain Gene Expression and Alcohol Consumption
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Data were thoroughly examined for batch effects related to

processing. The microarrays were run over a year and a half

period, resulting in 15 batches. Both batches and strains can

contribute to non-random data distribution and a new method for

removing batch effects, while retaining strain effects, was used

(personal communication, Evan Johnson, Boston University). This

method combines a simple rank test and a Bayesian hierarchical

framework similar to the previously described empirical Bayes

method [27].

Like the data on alcohol consumption, whole brain transcript

expression levels have been shown by our laboratory to remain

highly correlated over time (Figure S1).

Brain Region Specific Expression Measurements
We obtained mRNA expression estimates from multiple brain

areas of BXD RI mice by using publically available datasets

through Gene Network (www.genenetwork.org). Datasets were

included if the mice were either untreated or treated only with a

saline injection, if the Affymetrix GeneChip Mouse Genome 430

v2.0 Array platform was used, and if expression values were

normalized using RMA [25]. The brain areas that fit these criteria

were cerebellum (GN accession# GN72), hippocampus (GN

accession# GN110), nucleus accumbens (GN accession#
GN156), prefrontal cortex (GN accession# GN135), striatum

(GN accession# GN66) and ventral tegmental area (GN

accession# GN228). All six brain areas, plus the whole brain,

have data from 15 BXD RI strains in common (BXD5, BXD6,

BXD9, BXD12, BXD15, BXD16, BXD19, BXD21, BXD27,

BXD28, BXD31, BXD32, BXD33, BXD34, BXD38). Due to lack

of information on present/absent calls for the datasets downloaded

from GeneNetwork, and in order to allow for comparisons among

gene expression networks identified in brain regions and whole

brain [15,16,28], the brain regional datasets were filtered to

contain the same probesets as were expressed above background

in the whole brain data. To evaluate the validity of this procedure,

we used raw data for gene expression from the ventral tegmental

area of the BXD RI strains, that was obtained in the Miles

laboratory. Analysis of these data showed that, depending on the

strains used for the analysis, and the filtering criteria for ‘‘present’’

calls, 80–90% of probesets expressed above background in the

ventral tegmental area dataset were also present in the whole brain

dataset and, conversely, more than 90% of the probesets expressed

above background in the whole brain dataset were also present in

the ventral tegmental area dataset (Table S1 in file S1).

Weighted Gene Coexpression Network Analysis (WGCNA)
WGCNA was performed separately on each of the 7 datasets

(whole brain and brain regional data) to determine within-region

coexpression networks. Expression data, after filtering for common

probesets, from all available BXD RI strains for each dataset were

utilized to create each network. The whole brain dataset consisted

of 30 strains, cerebellum of 28 strains, hippocampus of 67 strains,

nucleus accumbens of 34 strains, prefrontal cortex of 27 strains,

striatum of 31 strains, and the ventral tegmental area of 35 strains.

Data from parental strains were not used in statistical analyses to

avoid confounding due to population structure. Strain mean

expression values were used for all correlation measures.

An unsigned adjacency measure for each pair of transcripts was

calculated by raising the absolute value of their Spearman

correlation coefficient to a power of b. The proper power (b= 7)

was determined by using the model-fitting index from Zhang and

Horvath [29] with the whole brain dataset, and resulted in an

approximately scale-free network. We applied the same power to

the brain region specific networks. A scale-free network topology

consists of a relatively few ‘‘hubs’’, highly connected nodes (in our

case, transcripts), and many other less connected nodes [29]. Most

observed biological networks have been identified as scale-free, so

it is reasonable to believe that the transcriptional networks should

be as well [30,31]. At this stage, we created unsigned networks,

which allows grouping of probesets that are positively or negatively

correlated with one another.

The adjacency measure was transformed into a topological

overlap measure (TOM). This measure includes the direct

relationship between two transcripts, i.e., their adjacency measure,

and their indirect interactions based on their shared relationships

with other genes in the network. A quantitative measure of indirect

interactions between two transcripts is calculated by multiplying

the adjacency measures of the two transcripts with a third

transcript and summing the value across all other transcripts. The

TOM is weighted in such a way that a value close to 1 for two

genes signifies a high connectivity and co-expression, and will

result in the genes being clustered within the same module.

We defined the distance between two genes as 1– TOM.

Module detection was made using the TOM-based similarity

measure coupled with average linkage hierarchical clustering and

a dynamic tree cutting algorithm [32]. A distance criterion of 0.15

was implemented to distinguish individual modules. We chose to

reduce the minimum module size from the default value of 30 to 5

to allow for identification of smaller modules, and therefore the

inclusion of genes that would otherwise not be assigned to a

module, without dramatically changing the composition of the

larger modules. With smaller modules, functional enrichment

analyses [33] are not applicable due to loss of power, but smaller

modules allow for a more detailed knowledge-based investigation

of the function of genes in the module.

Identification and Characterization of Candidate Modules
for Each Network

Summary Measurements. An eigengene, the first principal

component of the module, was identified for each module and

used as a summary of gene expression for the module. A hub gene

was also identified for each module by determining the gene with

the highest connectivity measurement within the module (i.e., sum

of adjacencies with respect to other transcripts in the module).

Association with Phenotype. To identify modules associat-

ed with a predisposition to alcohol consumption, we calculated a

Pearson correlation coefficient and its associated p-value between

each eigengene and each alcohol consumption dataset from the 2

independent studies of 2BC alcohol consumption [18,19]. We

combined results from both consumption studies for each module

using Fisher’s method [34]. A false discovery rate (FDR) was

implemented to account for multiple testing [35]. A module was

considered associated if the FDR value was less than 0.05, or if the

unadjusted Fisher’s p-value was ,0.01.

QTL Analysis. We identified expression quantitative trait loci

(eQTLs) for individual transcripts and module quantitative trait

loci (mQTLs) for individual modules (eigengenes) by performing

marker regression QTL analysis using the single nucleotide

polymorphism (SNP) dataset available via the Wellcome Trust

(version 37, obtained from http://gscan.well.ox.ac.uk/

gsBleadingEdge/mouse.snp.selector.cgi. Only SNPs with unique

strain distribution patterns were used, based on the BXD RI

strains available for each specific dataset. Empirical p-values were

calculated using 1,000 permutations and considered significant if

the resulting p-value was ,0.05 [36]. Of interest are modules with

a significant mQTL that overlaps a behavioral (b)QTL (i.e.,

alcohol consumption QTL), based on the rationale that if the

expression level of genes within the module controls the variance

Brain Gene Expression and Alcohol Consumption
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of a behavior, the bQTL and mQTL should be localized within

the same area of the genome [9].

We calculated bQTLs associated with alcohol consumption

using behavioral data from Phillips et al. [18] and Rodriguez et al.

[37] along with the SNP dataset described above (Wellcome Trust,

version 37), and also using a marker regression algorithm. To be as

inclusive as possible, we also considered bQTLs for alcohol

consumption reported by Belknap and Atkins [17], which were

based on a meta-analysis of alcohol preference studies of mapping

populations derived from C57BL/6 and DBA/2 strains. The

reported bQTL range in cM was converted to Mb using the

mouse Map Converter (http:cgd.jax.org/mousemapconverter)

[38]. All of the bQTLs are listed in Table S2 in file S1. Although

it was not a criterion for distinction as a candidate module, we also

examined each module to determine if a common eQTL location

existed for the genes within the module. Genes were considered to

be cis regulated if the eQTL was within 20 Kb of the gene [39].

Module Robustness. Robustness (quality) analysis was per-

formed using module preservation statistics specifically for

evaluating WGCNA modules [40]. We summarized robustness

by reporting Z summary scores. The Z summary is a composite

measure of 4 statistics related to density (i.e., highly connected

nodes maintain that level of connectivity) and 3 statistics related to

connectivity (i.e., connectivity pattern between specific genes is

maintained). We used two methods to generate Z summary scores.

First, to verify that our candidate modules were of high quality and

not generated by chance, we examined reproducibility within a

dataset. Using 100 bootstrap samples, we calculated the module

preservation statistics for each bootstrap sample compared to the

original dataset to generate a Z summary score of reproducibility.

Z summary values between 2 and 10 are considered to be

moderately preserved (reproducible), while those below 2 are

considered not preserved, and those above 10 are considered

strongly preserved [40]. Second, we compared the preservation of

candidate modules between datasets (different brain areas). We

used the brain area in which the module originated as a reference

set, and the other brain regions as a test set for generating these Z

scores.

Eigengene Network
To determine how the candidate modules from all 6 brain

regions and whole brain interact with each other, an eigengene

network was constructed. All candidate module eigengenes were

consolidated into one dataset and only the 15 strains that had

expression data from 6 brain regions, and whole brain, were used.

A signed network was created by performing WGCNA on this

dataset; by keeping the direction of co-expression the same, we

retain important biological function information [28]. In order to

be conservative (i.e., to identify the most highly related modules), a

distance (1– TOM) cut height of 0.5 was used to identify co-

expressed candidate modules. We refer to these resulting co-

expressed modules as meta-modules. To avoid examining a

summary of a summary, we characterized the individual probesets

within each candidate module that was a member of a meta-

module. We calculated the connectivity for all probesets,

identifying a hub gene, calculating a meta-mQTL by using the

individual probesets to create a meta-eigengene, correlating the

meta-mQTL with alcohol consumption and performing a

knowledge-based search into the function of relevant genes. All

meta-eigengenes were treated as individual variables and put into

a multiple linear regression (PROC REG in SAS) to determine

how much alcohol consumption variance is explained by the meta-

modules for each 2BC study. The unadjusted R2 is reported.

Adjustment for cis-eQTL effects on gene coexpression
and phenotypic correlations

It has been pointed out that the expression levels of most genes

with strong cis-eQTL tend to be highly correlated with other genes

that have closely-linked (genetic position), strong cis-eQTLs [41].

This correlation could reflect a functional, biological relationship,

but could also result from the fact that gene expression in a

particular genetic region is controlled from closely liked genetic

loci [15]. To investigate this latter possibility, we calculated a

Pearson semi-partial correlation coefficient between each individ-

ual probeset within the candidate meta-modules and the

phenotype, conditional on the most proximal marker to the

genomic location of the individual probeset. We also calculated the

partial correlation among probesets after accounting for the most

proximal marker to the probesets. When the most proximal

marker was not shared between two probesets, we calculated the

residual expression values for each probeset after accounting for

the most proximal SNP to that probeset and then correlated the

residuals for a ‘‘modified’’ partial correlation.

Integration of Mouse Data and Human GWAS Data
To integrate the results from the mouse transcriptome analysis

with human GWAS results, human syntenic regions for the meta-

mQTLs were determined. A 95% Bayesian credible interval was

calculated for all meta-mQTLs and these intervals were input into

the UCSC LinkOver tool to map the mouse (mm9) genome

location to the human (hg19) genomic location (http://genome.

ucsc.edu/cgi-bin/hgLiftOver). Various alcohol related phenotype

GWAS [42,43,44,45,46] were examined for any associated SNPs

residing within the syntenic region of the mQTLs. Knowledge-

based searches on these syntenic regions were used for

comparative genomics.

Results

Coexpression Modules from Whole Brain and Brain
Regional Datasets

Of the 41,581 probesets in the whole brain dataset that were

retained after masking, 30,031 probesets were detectable above

background levels, and, as described in Methods, these probesets

were used for WGCNA of whole brain and brain regional data

(Figure 1). The characteristics of coexpression modules created

from each dataset are shown in Table 1. The whole brain dataset

contained the highest number of probesets that were included in

coexpression modules, while the nucleus accumbens dataset

contained the smallest number of probesets that were included

in coexpression modules. However, the number of resultant

nucleus accumbens modules exceeded the number calculated for

whole brain (Table 1).

Characterization of Candidate Modules
‘‘Candidate’’ modules were those with module eigengenes that

were significantly (p,0.01) correlated with the phenotypic data on

alcohol consumption by BXD RI mice in the 2BC paradigm

[18,37], and that had a statistically significant (p,0.001) module

QTL (mQTL) that overlapped with a behavioral QTL (bQTL) for

alcohol consumption (Figure 1A). A total of twenty-four modules

derived from whole brain or brain regional data met these criteria

(Table 1). Expression data from whole brain, nucleus accumbens

(NA), prefrontal cortex (PFC), and ventral tegmental area (VTA)

yielded the highest number of candidate modules. These networks

are visualized in Figure S2. We also determined the amount of

expression variance within a candidate module that was captured

Brain Gene Expression and Alcohol Consumption
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by the module eigengene (first principal component). As shown in

Table 1, for each module, the corresponding eigengene captured

at least 82% of the variance, indicating that the eigengenes can be

used to represent the modules in further analyses.

The characteristics of the candidate modules are shown in

Table 2. In most of the candidate modules, the majority of the

probesets have the same eQTL, which overlaps the mQTL region.

As shown in Table S3 in file S1, within many of the modules, most

transcripts have cis-eQTLs (i.e., the eQTL is within 20 Kb of the

physical location of the transcript) [39]. Candidate module

preservation mean Z summary scores ranged from 3.05 to

16.15. Two modules (bisque 4.1 (prefrontal cortex) and burlywood

3 (striatum)) had a lower interval boundary below 2 when the

range of 6 two standard deviations was taken into account.

Therefore, the large majority of candidate modules are considered

to be moderately to highly ‘‘reproducible’’ [40]. It is notable that

several of the modules derived from whole brain data or from

brain regional datasets have the same hub gene (most connected

transcript) (e.g., Scd5d is the hub gene for the whole brain slateblue

module, the NA honeydew module, the PFC lightsteelblue module

and the VTA indianred3 module). This finding suggests similarity

among modules from different brain regions, and we also used

module preservation statistics to evaluate the conservation of

candidate modules between whole brain and brain regional

expression datasets. The results of this analysis are shown as the

heatmap in Figure 2. According to this analysis, modules derived

from whole brain data show the highest conservation, based on the

Z-scores, in the expression data from NA, PFC, VTA and

hippocampus.

Figure 1. Flow Chart of Analysis Procedure for Whole Brain (A) and Brain Regional (B) Microarray Data. Whole brain microarray data
were filtered for SNPs between C57BL/6 and DBA/2 mice, and for expression above background levels. The remaining probesets were subjected to
WGCNA, and the resulting coexpression modules were filtered by correlation of eigengene with alcohol consumption data, followed by
determination of overlap of mQTLs and alcohol bQTLs, to identify ‘‘candidate modules’’. B. Microarray data for the indicated brain regions were
obtained from GeneNetwork (www.genenetwork.org), and subjected to WGCNA (using the same probesets as were used for the whole brain data).
Candidate modules were identified and characterized within each network, and were used to create an eigengene network that demonstrates gene
coexpression within and between brain regions.
doi:10.1371/journal.pone.0068878.g001

Brain Gene Expression and Alcohol Consumption
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Candidate Module Eigengene Network Analysis
In addition to identifying candidate coexpression modules from

whole brain and brain regional expression data, we evaluated the

higher order relationships among these modules, using a

modification of the method described by Langfelder and Horvath

[28]. In our analysis, we began with candidate modules from

individual brain regions or whole brain, i.e., modules that were

correlated with the phenotype of alcohol consumption, and met

the added criterion of mQTL/bQTL overlap. All candidate

modules were used for the eigengene network analysis. As a result,

module relationships were not determined only within each brain

region (each dataset), but relationships were also evaluated

regardless of brain region network membership (i.e., candidate

module relationships both within and across brain regions were

determined). Figure 3 shows the meta-modules from the eigengene

network that are correlated with alcohol consumption and that

arise from several brain regions. The characteristics of the meta-

modules are shown in Table 3, and the connectivity of the

probesets that comprise the meta-modules is visualized in

Figure S3. Each meta-module QTL is located on a different

chromosome, and each meta-module includes common genes that

are co-expressed in different brain regions and/or whole brain

(Table S4 in file S1). These common transcripts represent the

most highly connected genes (Figure S3) within modules in a

particular brain area. Each meta-module also contains some less

highly connected transcripts that are representative of only one

brain region. It is of interest that, while the turquoise meta-module

did not contain an eigengene from any of the whole brain

candidate modules, we noted that the most connected genes in this

meta-module were also identified within one or more of the whole

brain candidate coexpression modules (Figure S3). In contrast, as

an example, no genes from candidate hippocampal coexpression

modules were included in any of the meta-modules. All three of

the meta-modules accounted for 75 and 81% of the variance in

alcohol consumption [18,37].

Meta-Module Characterization
Most of the transcripts that comprise each meta-module are

clustered in common chromosomal regions, and have proximal

(cis) eQTLs that overlap with the meta-module QTL. In part, this

is a result of our use of candidate modules for the eigengene

WGCNA analysis, since a characteristic of a candidate module is

that its mQTL overlaps with a behavioral QTL for alcohol

consumption. The mQTL is calculated from the candidate

module eigengene, and is a reflection of the eQTLs of the

transcripts comprising the module. It has been suggested that

chromosome-specific correlation patterns of gene expression result

from gene expression traits controlled by closely linked genetic loci

[15]. To investigate the correlation of the transcripts in the meta-

modules with each other and with the alcohol consumption

phenotype, while controlling for the effect of closely linked cis-

eQTLs, we calculated the correlations of all transcripts in each

meta-module conditional on the most proximal marker to the

genomic location of the probeset. This analysis does not dismiss

the relevance of the cis-eQTLs to the behavior or to transcript

expression variation. Instead, the purpose of the analysis is to

determine if the phenotype and transcript expression levels share

any additional genetic (or environmental) determinants [41]. After

this correction, sixteen individual probesets remained correlated

with the phenotype (Fisher’s combined P-value ,0.10) (Table 4),

and some of these probesets were also significantly (p,0.05)

correlated with one another (Table S5 in file S1).

All of the transcripts in the meta-modules may contribute to the

predisposition to consume alcohol, but those that remain

Table 1. WGCNA Network Summary

Whole
Brain

Cerebe
llum

Hippo
campus

Nucleus
Accumbens

Prefrontal
Cortex Striatum

Ventral
Tegmental Area

Number of BXD RI Strains
On Which Network
is Based

30 28 67 34 27 31 35

Number of Probesets
Placed Into Modules

28,867 26,109 18,949 16,632 19,288 21,687 20,550

Number of Modules
Identified

499 604 337 512 595 300 433

Minimum Module Size 5 5 5 5 5 5 5

Maximum Module Size 2,881 4,270 3,185 2,928 2,144 3,903 3,440

Median Module Size 9 8 8 9 8 9 9

Candidate Modules

Number of Modules
Significantly1 Correlated
with Alcohol Consumption

12 2 5 19 7 9 12

Modules Significantly
Correlated with Alcohol
Consumption and with
mQTL/bQTL overlap
(Candidate Modules)

4 1 1 8 4 1 5

Minimum Proportion of
Variance in Candidate
Module(s) Captured by
Eigengene

91% 98% 99% 88% 82% 97% 83%

1Significant association with alcohol consumption is defined as FDR ,0.05 or Fisher’s unadjusted p-value ,0.01 for the association between module eigengene and
alcohol consumption (Rodriguez et al., 1994; Phillips et al., 1994).
doi:10.1371/journal.pone.0068878.t001
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correlated with the phenotype after correction for the cis-eQTL

effect may be considered as the strongest candidates, and it is of

interest to explore their function. We initially focused our attention

on the transcripts that were found in the prefrontal cortex

(turquoise meta-module). These transcripts are Hyou1, Alg9, Chpf2,

Ubash3b and Sorl1. The products of these transcripts are associated

with protein processing via the various compartments of the

endoplasmic reticulum (ER) and protein degradation machinery.

Hyou1 (hypoxia up-regulated protein 1) (also called ORP150) is

part of the ER chaperone network (chaperones of the heat shock

protein family) that maintains protein folding [47,48], and is

induced by ER stress and hypoxia. This transcript was previously

identified as a candidate gene for alcohol preference in whole

brain and differential expression was validated by qRT-PCR

[49,50]. Alg9 (asparagine-linked glycosylation 9, alpha-1, 2-

mannosyltransferase homolog) is an ER enzyme that is involved

in the synthesis of N-linked glycans [51]. Alg9 and other related

enzymes catalyze the synthesis of oligosaccharides that are

transferred to the side chain amides of acceptor proteins. The

N-glycans play a key role in quality control for protein folding in

the ER, leading either to secretion of properly folded proteins or

targeting of defective proteins for degradation [51]. Chpf2

(chondroitin polymerizing factor 2, also called chondroitin

synthase 3) is also an ER enzyme, which is involved in the

synthesis of chondroitin sulfate, the polysaccharide (glycosamino-

glycan) portion of several families of proteoglycans [52,53]. The

chondroitin chain is synthesized and modified (e.g., sulfated) in the

ER and Golgi and attached glycosidically to serine in core

proteins. There are numerous forms of proteoglycans [53],

including those found in the brain extracellular matrix, which

Figure 2. Reproducibility of Candidate Modules and Conservation of Candidate Modules across Brain Regions and Whole Brain.
Conservation of candidate coexpression modules across individual brain regions and whole brain is represented by a Z summary score (color scale: 0
(black) to 10 (bright red)) (Langfelder et al., 2011; see text). In this graphic, Z summary scores above 10 are truncated to 10. The coexpression modules
on the vertical axis are followed by an abbreviation indicating the network from which the module is derived: wb, whole brain; cer, cerebellum; hip,
hippocampus; na, nucleus accumbens; pfc, prefrontal cortex; str, striatum; vta, ventral tegmental area. For each module, the Z summary score for
conservation within each of the other datasets is shown. In addition, the average bootstrapped Z summary score is illustrated for the dataset from
which the module was originally derived (represents reproducibility of candidate module in its original dataset). *Average Z summary score for
reproducibility is within one SD of 2.
doi:10.1371/journal.pone.0068878.g002
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play important roles in neuronal plasticity [54]. Ubash3b (ubiqui-

tin-associated and SH3 domain containing B) (also called Cbl-

interacting protein Sts-1) has been implicated in protein degrada-

tion, specifically of the receptor tyrosine kinases, epidermal growth

factor receptor (EGFR) and platelet-derived growth factor

receptor (PDGFR) [55]. Ubash3B contains an SH3 domain that

interacts with the ubiquitin ligase, Cbl, and a ubiquitin-associated

domain that interacts with ubiquitin or a ubiquitin-protein

complex. The interaction of Ubash3B with the EGFR complex

inhibits receptor internalization (endocytosis) and blocks receptor

degradation [55].

Sorl1 (Sortilin-related receptor, L (DLR class) A repeats

containing) is a transmembrane receptor that is found primarily

in the trans-Golgi network (TGN) [56]. The TGN is a sorting

compartment from which proteins are directed to secretory or

degradative (endosomes or lysosomes) pathways. In particular,

sortilin can bind to brain-derived neurotrophic factor (BDNF) and

may direct BDNF into the regulated secretory pathway and/or to

lysosomes [56].

In summary, the products of the transcripts from the prefrontal

cortex that are correlated with the phenotype form a network

related to protein processing in the ER and Golgi, including

protein synthesis and degradation.

Many of the transcripts in the nucleus accumbens, VTA and

striatum that are correlated with the phenotype are also linked to

protein processing in the ER and Golgi, and to RNA metabolism.

Transcripts in the nucleus accumbens include Hyou1, Rcn2, Arih1,

Dis3l (turquoise meta-module) and Lsm12 (brown meta-module).

Rcn2 (reticulocalbin 2, EF-hand calcium binding domain) codes for

a protein that is a member of the CREC family of low affinity,

Ca2+-binding proteins [57]. Its localization is restricted to the ER,

where it may play a role in the protein secretory pathway, possibly

as a chaperone [57,58]. Arih1 (ariadne homolog, ubiquitin-

conjugating enzyme E2 binding protein; E3 ubiquitin protein

ligase) is an enzyme associated with protein ubiquitination, a

cascade that mediates regulated protein degradation and numer-

ous other cellular processes including transcriptional regulation,

protein trafficking and cellular signaling [59]. Protein ubiquitina-

tion involves transfer of ubiquitin between an activating enzyme

(E1), a conjugating enzyme (E2) and a ligase (E3), which binds to

E2 and enhances the transfer of ubiquitin from E2 to target [60].

The Arih1 protein is a member of the HECT family, a major class

of ubiquitin ligases, and interacts with the E2 Ubch7 [61,62],

thought to be involved with cell proliferation and immune

function. The product of Dis3l (Dis3 mitotic control homolog-

like; Dis3-like exonuclease 1) is an exonuclease which, in human, is

associated with the exosome, an exoribonuclease complex involved

in the degradation and processing of a wide variety of RNAs

[63,64]. Other transcripts correlated with the phenotype in

nucleus accumbens and VTA (brown meta-module) are Lsm12,

Thumpd1 (VTA, blue meta-module) and Rps15a (striatum, blue

meta-module), all of which are involved with RNA metabolism.

Lsm proteins, including Lsm12, accumulate in stress granules that

are critical for regulation of translation and degradation of mRNA

[65]. The Lsm12 protein has also been suggested to play a role in

tRNA splicing and in methyl group transfer to tRNAs [66]. The

product of Thumpd1 (Thump domain containing 1) is a protein that

contains an RNA binding domain that is fused to a methyltrans-

ferase that modifies tRNAs [67] Rps15a (ribosomal protein s15a)

codes for a protein component of the 40S ribosomal subunit,

which contributes to mRNA translation and protein synthesis.

Another transcript correlated with the phenotype in the nucleus

accumbens (turquoise meta-module) is Fyxd2 (Fyxd domain

containing ion transport regulator 2; Na+/K+ ATPase subunit
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gamma). The protein product of this transcript regulates the

affinity of Na+/K+ ATPase for Na+ [68], and the activity of this

enzyme is important for maintaining the cell membrane potential,

which in turn affects protein trafficking processes [69].

Integration with GWAS
One of the goals of the approach used here is to generate

information on intermediate transcript expression pathways

between phenotypes and genetic polymorphisms found to be

associated with the phenotypes in genome-wide association

studies. This is particularly important since many identified

genetic polymorphisms do not reside in protein coding regions

Figure 3. Eigengene Network. The eigengene network dendrogram was constructed based on a distance of (1-TOM) (see text). The red line ([1-
TOM] = 0.5) represents the criterion used for defining the meta-modules. Eigengenes colored grey were not assigned to a meta-module. The names
of the candidate modules are followed by an abbreviation indicating the network from which these modules were derived: WB, whole brain; NA,
nucleus accumbens; VTA, ventral tegmental area; PFC, prefrontal cortex, CER, cerebellum; HIP, hippocampus; STR, striatum.
doi:10.1371/journal.pone.0068878.g003

Table 3. Meta-Module Characteristics.

Meta-Module

# Eigengenes (#
probesets) (#
unique genes) Hub Gene (Gene Symbol)

Association with
Alcohol
Consumption1 (p-
value)

mQTL2

Location:
Chr (Mb)

mQTL2 LOD
Score
(p-value)

bQTL
overlap

turquoise 7 (117) (65) sterol-C5-desaturase (fungal ERG3, delta-5-
desaturase) homolog (S. cerevisae) (Sc5d)

1.71E-03 9 (35.8) 7.1 (0.028) Belknap & Atkins
(et al., 2001)

blue 3 (29) (13) ribosomal protein S15A Gene (Rps15a) 9.23E-04 7 (124.4) 5.2 (0.033) Rodriguez (et al.,
1994)

brown 2 (16) (13) LSM12 homolog (S. cerevisiae) (Lsm12) 1.08E-02 11 (100.2) 3.9 (0.118) Rodriguez (et al.,
1994)

The size of each meta-module in the eigengene network is reported as number of eigengenes and number of probesets/genes. The hub gene is the highest connected
gene of all probesets in the meta-module. 1Unadjusted Fisher’s p-value is for association of meta-eigengene and alcohol consumption. 2The mQTL for the meta-module
is reported as the location of the highest peak (Chr:Mb).
doi:10.1371/journal.pone.0068878.t003
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of genes, but in regulatory regions of the genome [70]. The human

syntenic regions for the mouse meta-module QTL regions were

compared with several recent GWAS for alcohol drinking and

alcohol dependence. Table 5 shows the mouse chromosomal

regions of the meta-module QTLs and the corresponding syntenic

regions of the human genome. Several genetic polymorphisms

(SNP or CNV) that were found to be associated with alcohol

consumption parameters or alcohol dependence in humans are

located within the corresponding regions of the mouse genome

that regulate (mQTL) the gene co-expression modules that are

associated with alcohol preference in mice. One of the human

GWAS SNPs (rs7925049) is located within 5 Kb of a U6 snRNA,

which is an important component of the spliceosome, and interacts

with Lsm proteins [66,71].

Discussion

The brain has been envisioned to consist of anatomically and

functionally related networks which evolved to both segregate and

integrate information [72,73,74]. The network properties of brain,

in many cases, are conserved in space and time, and neuroimaging

information can be transformed to demonstrate consistent

modularity, the existence of highly connected ‘‘hub’’ entities,

and high efficiency of information transfer [75,76]. Bullmore and

Sporns [76] have utilized ‘‘graph theory’’ to demonstrate that

brain functional networks, generated from MRI, EEG and MEG

data, can span ‘‘multiple spatially distinct brain regions’’ and

connote that the functional networks, rather than the isolated

brain regions, provide the basis for the physiological function of

brain and ‘‘mental representations’’.

Network theory [77] has also been applied to global studies of

gene expression [15,56,78] with the premise that the calculated

networks can provide organizational information relevant to

function at a cellular [78], organ [15], and organism [56] level.

One of the popular network construction methods which have

been applied to gene expression data is WGCNA

[6,32,79,80,81,82]. This approach can generate scale-free tran-

scriptional networks consisting of modules, edges, and hubs

[79,83]. More recently, WGCNA has been applied to a higher

level of organismal organization to discern cross-tissue relation-

ships of gene expression and provide links between genetics, gene

expression and phenotype [15,16].

Most psychiatric phenotypes are complex (polygenic) traits that

involve several anatomical regions of brain. Brain can be

considered a multi-tissue organ, because of the anatomical

organization of different cell types into regional nuclei (collection

of cell bodies). The anatomical regions associated with an animal’s

predisposition to consume addictive substances are many

[20].Certain publications have contended that benefit can be

derived by studying gene expression in one or more areas of brain

[22], while others have studied the relationship of whole brain

gene expression levels to a phenotype such as ethanol preference

[9,10]. However, to date, there has not been a comparison of

candidate gene networks for a complex trait that were identified

within vs across brain regions. The strategy that we employed was

focused on generating and utilizing gene coexpression network

structure derived from mouse whole brain gene expression data, as

well as data from six anatomically distinct areas of brain, to arrive

at a global representation of gene expression network structure

associated with the trait of alcohol preference.

In an attempt to ascertain whether there are relationships across

brain areas between ‘‘candidate modules’’ identified in gene

expression networks constructed from data for each brain area,

meta-modules were constructed from all candidate modules in

each brain area and whole brain using WGCNA. The analysis

generated three meta-modules that can potentially indicate

regulatory processes that encompass more than one brain region,

and that reflect cross-regional signaling pathways associated with

predisposition to alcohol consumption. Each of the meta-modules

had candidate modules from more than one brain area, indicating

Table 4. Transcripts Significantly Correlated with Alcohol Consumption after Correction for cis-eQTL.

Module Gene Symbol Probeset
Rodriguez Correlation
coefficient (p value)

Phillips Correlation
coefficient (p value)

Fishers combined p-
value

lightsteelblue1.pfc Hyou1 1423291_s_at 0.89 (0.016) 0.92 (0.010) 0.002

honeydew.na Hyou1 1423290_at 0.75 (0.089) 0.93 (0.008) 0.006

lightsteelblue1.pfc Chpf2 1453846_at 0.91 (0.012) 0.68 (0.137) 0.012

rosybrown3.na Arih1 1441022_at 20.86 (0.030) 20.63 (0.180) 0.033

rosybrown2.na 2310030G06Rik 1449357_at 20.46 (0.354) 20.89 (0.017) 0.038

mediumturquoise.vta Lsm12 1427998_at 20.87 (0.025) 20.56 (0.249) 0.038

burlywood3.str Rps15a 1457726_at 20.51 (0.297) 20.85 (0.033) 0.055

rosybrown3.na Rcn2 1444248_at 20.82 (0.045) 20.59 (0.219) 0.056

honeydew.na Fxyd2 1419378_a_at 20.73 (0.097) 20.73 (0.102) 0.056

lightsteelblue1.pfc Alg9 1418844_at 20.42 (0.401) 20.84 (0.036) 0.075

rosybrown3.na 1700017B05Rik 1447063_at 0.52 (0.289) 0.81 (0.052) 0.078

lightsteelblue1.pfc Ubash3b 1436805_at 0.69 (0.129) 0.71 (0.117) 0.079

tomato2.vta Thumpd1 1436007_a_at 20.80 (0.055) 20.51 (0.296) 0.084

limegreen.na Lsm12 1429509_at 0.73 (0.097) 0.64 (0.170) 0.084

lightsteelblue1.pfc Sorl1 1460390_at 20.64 (0.174) 20.73 (0.096) 0.085

rosybrown3.na Dis3l 1437737_at 20.63 (0.176) 20.71 (0.116) 0.100

Pearson semi-partial correlation coefficients were calculated between transcripts within meta-modules and the alcohol consumption phenotype, conditional on the
most proximal marker to the genomic location of the individual probeset.
doi:10.1371/journal.pone.0068878.t004
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a closer connectivity between candidate modules from different

brain areas than certain modules within a brain area. Within a

meta-module, certain candidate modules had the same hub gene.

The mQTL location for each meta-module was within only one of

the several bQTLs for alcohol consumption. These meta-modules

contain candidate modules primarily from the NAc and VTA,

areas which have been extensively linked with generating attention

to rewarding/reinforcing situations [84] and especially to the

availability of reinforcing/addictive substances [20,85]. The other

brain areas appearing in some of the meta-modules are the frontal

cortex and striatum, as well as modules from analysis of whole

brain. The striatum is in line of communication from the NAc with

regard to the action necessary for obtaining alcohol ‘‘reward’’, and

the frontal cortex provides the ‘‘executive function’’ which

dampens behavior that is generated in response to signaling

through the NAc regarding the possibility of obtaining ‘‘reward’’.

Clearly, and maybe not surprisingly, our WGCNA analysis of

gene expression in various brain areas related to the phenotype of

alcohol consumption has focused our attention on anatomical

areas previously reported to be involved in determining levels of

alcohol consumption. What our data add, however, is that gene

expression levels, when organized into modules and networks, can

distinguish between brain areas more or less important to a

phenotype, and the surprising result that modules correlated with

alcohol consumption (and possibly other phenotypes) organize into

meta-modules such that the overall control of most (if not all)

transcripts included in a meta-module is from a segment of the

genome that is identified as one bQTL (albeit the bQTLs identify

a general region rather than an individual locus). Further analysis

is needed to determine whether this characteristic of segregation of

one meta-module to one bQTL is a general characteristic of gene

expression in relation to any particular complex trait.

The analysis that brought us to the identification of candidate

modules, and meta-modules, is based on the premise that

transcript expression levels, or coexpression modules, that are

correlated across the RI strains with the phenotype, and that have

genomic regulatory regions in common with the regions that

regulate the phenotype (e/mQTL/bQTL overlap), represent the

strongest candidate genes/networks associated with the phenotyp-

ic trait [9,10,11,86]. However, it is a concern that this analysis may

generate expression level correlations based on the genomic

location of genes within haplotype blocks, rather than providing

insights into functional relationships that determine gene coex-

pression patterns. It has been reported that genes with strong cis-

acting eQTLs are most highly correlated with other genes that

have closely linked, strong cis-acting eQTLs [41], and therefore

that chromosome-specific correlation patterns reflect this fact

rather than representing biologically relevant coexpression pat-

terns [15]. When we examine the transcripts within each

candidate module and meta-module, we note that a large

proportion of the transcripts are regulated by closely linked cis-

eQTLs, suggesting that at least some of the transcripts in the meta-

modules are correlated with one another, and with the phenotype,

based on the cis-eQTL structure. When we calculated the

correlations with alcohol consumption of the transcripts within

the meta-modules conditional on the eQTL for each transcript,

the transcripts that remain significantly correlated with the alcohol

consumption phenotype may reflect the most biologically relevant

relationships.

Table 5. Integration of Gene Expression and GWAS Data.

Study Meta-Module turquoise blue brown

95% CI mQTL: chr
(Mb range)

9 (29.7256.7) 7 (124.42127.1) 11 (98.32111.0)

Human Syntenic Region(s):
chr (Mb- range)

11 (107.52131.2) 16 (18.6221.0)
& 16 (17.0217.7)

17 (37.9268.3)

Heath et al., 2011 SNP associated with alcohol
dependence
factor score

rs7925049: chr11 (122,
452,193) U6

SNP associated with 12-month
weekly alcohol consumption

rs6501422: chr17 (66,389,646)

SNP associated with DSM-IV
alcohol dependence diagnosis
in family-based analyses

rs1785039: chr11 (127,900,579)

Edenberg et al.,
2010

Replication of SNPs in
GWAS of German
Alcoholics (Table4)

rs12603061: chr17
(64,812,198)

Pei et al., 2012 CNV associated with regular
alcohol drinking (p,0.05 in
Discovery Sample Only)

CNV2260: chr17 (39,532,869–
39,536,674)

Beirut et al., 2010 SNPs associated with
alcohol dependence.
(p ,10ˆ -6)

rs10893366: chr11
(125,178,403) rs10893365:
chr11 (125,176,437) rs
750338: chr11 (125,172,593)

rs9302534: chr16
(18,048,710)

Lind et al., 2010 Top 30 most significant
SNPs associated with AD in
Australian Population

rs1784300: chr11 (118,679,629) rs16947824: chr17
(62,501,505)

Regions of the human genome that are syntenic with the mouse meta-module QTLs (95% Bayesian credible intervals) were identified. The table lists several GWAS of
alcohol-related phenotypes in humans that have significantly associated polymorphisms within these syntenic regions. SNP rs7925049 is located within 5 Kb of U6
snRNA, which is shown to have a relevant association with Lsm12 (brown meta-module). All other SNPs/CNV are either not located in/near a gene, or the genes are not
found in any of the mouse meta-modules.
doi:10.1371/journal.pone.0068878.t005
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For the most part, these transcripts code for proteins that are

associated with protein processing – synthesis (through tRNA and

mRNA metabolism), folding (chaperone proteins) and trafficking

and degradation (ubiquitination, endosomal/lysosomal traffick-

ing). The localization of the products of many of the correlated

transcripts is the ER and Golgi apparatus, where the synthesis and

maturation of extracellular membrane proteins occur. Our

network analysis is carried out on brains of ethanol-naive animals,

and thus, generates insight into the systems that are associated with

the predisposition to consume alcohol. The mutation or knockout

of one protein associated with these systems, ubiquitin-specific

peptidase 46 (Usp 46), has very recently been demonstrated to

reduce ethanol preference in mice [87]. This study validates the

involvement of the system related to protein processing and

protein degradation as an in vivo modulator of the phenotype of

alcohol consumption.

It is also of interest that ethanol exposure affects the systems that

we have identified. For example, ethanol has been reported to

induce ER stress in the brain (ER stress is a result of perturbation

of ER function, e.g., by hypoxia, that results in accumulation of

misfolded or unfolded proteins), and thereby induce the expression

of chaperone proteins [88,89,90,91]. Furthermore, exposure of

neurons to ethanol affects the trafficking (neuronal membrane

insertion and endocytosis) of (for example) GABAA [92] and

NMDA [93] receptors. Based on these findings, one may postulate

that pre-alcohol consumption differences in the activity of protein

processing pathways associated with the ER and Golgi machinery

in particular brain regions contributes to the ‘‘sensation’’ that an

individual experiences when alcohol is consumed, thereby

influencing the amount of alcohol consumption. In other words,

the function of the proteins generated from the transcripts that we

have identified may provide each individual with a particular ‘‘set-

point’’ that allows him or her to ‘‘sense’’ the effect of ethanol. It is

of interest also that while many of the transcripts that we identified

are correlated with one another within brain regions, there are

also some (Table S5 in file S1) that are correlated across brain

regions. These correlations suggest the possibility that certain

processes are coordinated across connected regions.

The characteristics of data derived from WGCNA analysis of

whole brain need to be considered in some detail since argument

exists on whether whole brain transcriptome analysis is informa-

tive for relating transcript abundance to complex traits. We would

expect that if whole brain were capturing all the information

generated from data from each of the areas of brain, then the

whole brain network generated by WGCNA under our constraints

would contain more or the same number of modules, compared to

any of the individual brain areas (this was not the case).

Additionally, if the majority of the modular organization of gene

expression in whole brain were simply an aggregate of modules

from other brain areas with robust modules, there would be some

expectation that modules from the whole brain network would be

evident in each meta-module, since they would be replicates of

modules evident in one of the other tested brain areas. We,

however, note that there is no absolute identity in transcript

membership between any two modules across the tested brain

areas, and thus, although many modules have similarities (high Z

scores) across brain areas, each area retains certain anatomically

specific transcript membership within modules.

Is there a rationale, therefore, for measuring gene expression

and analyzing data from whole brain? It should be noted that a

whole brain module did segregate to the blue meta-module, and

when one examines the transcripts included in this whole brain

module (hotpink3), the transcripts encompass 67% of the

transcripts in the tomato2 module from the VTA and 75% of

the transcripts from the burlywood3 module from the striatum.

There is also a whole brain module (slateblue) in proximity

(relatedness distance) to the modules aggregating from three brain

regions in the turquoise meta-module. The slateblue module

contains 87% of genes within the turquoise meta-module

(Figure S3). Thus, one can posit, that on the transcript level, data

from whole brain can identify the major portion of transcripts that

are associated with each other and with the phenotype of alcohol

consumption in relevant brain areas. Since there are also modules

in the whole brain transcriptome network that are correlated with

alcohol consumption, with mQTLs overlapping alcohol consump-

tion bQTLs, one can hypothesize that whole brain data may

identify certain modules not captured in the networks generated

from the six brain areas which were assessed (e.g., arising in other

relevant brain areas). It is noteworthy, however, that the gene

expression variance demonstrated by the transcripts contained in

our three final meta-modules accounts for 82% of the variance in

the behavioral data.

A further goal of this analysis is to provide information

regarding an intermediate transcriptional network between

GWAS and phenotype that could explain the influence of the

genetic polymorphisms [86]. With this goal in mind, we

determined regions of the human genome that are syntenic with

the mQTLs for the meta-modules obtained in our analysis, and

identified several genetic variants in those regions that have been

associated with alcohol-related traits in GWAS. In particular, one

SNP (rs7925049) that was significantly associated with alcohol

dependence in the study of Heath et al. [42], was in the syntenic

region of the mQTL for the meta-turquoise module. This SNP is

close to a U6 snRNA, which is part of the spliceosome, and is

thought to be crucial for the splicing reaction [94]. The U6 snRNP

(ribonucleoprotein) also contains numerous protein components,

and Lsm proteins (such as Lsm 12 in the VTA or nucleus

accumbens) are particularly important for the mechanisms of the

splicing reaction [71,94]. It is possible that the GWAS SNP (or an

associated polymorphism) affects the snRNA/Lsm protein inter-

actions that influence transcript isoforms in brain. This integration

of the human GWAS and the mouse transcriptome analyses is an

example of potential insights into the genetic control of alcohol

consumption and dependence that can be provided by cross-

species analyses.
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