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Breast Cancer is the most prevalent cancer among women across the globe. Automatic detection of breast cancer using Computer
Aided Diagnosis (CAD) system suffers from false positives (FPs). *us, reduction of FP is one of the challenging tasks to improve
the performance of the diagnosis systems. In the present work, new FP reduction technique has been proposed for breast cancer
diagnosis. It is based on appropriate integration of preprocessing, Self-organizing map (SOM) clustering, region of interest (ROI)
extraction, and FP reduction. In preprocessing, contrast enhancement of mammograms has been achieved using Local Entropy
Maximization algorithm.*e unsupervised SOM clusters an image into number of segments to identify the cancerous region and
extracts tumor regions (i.e., ROIs). However, it also detects some FPs which affects the efficiency of the algorithm. *erefore, to
reduce the FPs, the output of the SOM is given to the FP reduction step which is aimed to classify the extracted ROIs into normal
and abnormal class. FP reduction consists of feature mining from the ROIs using proposed local sparse curvelet coefficients
followed by classification using artificial neural network (ANN).*e performance of proposed algorithm has been validated using
the local datasets as TMCH (Tata Memorial Cancer Hospital) and publicly available MIAS (Suckling et al., 1994) and DDSM
(Heath et al., 2000) database.*e proposed technique results in reduction of FPs from 0.85 to 0.02 FP/image for MIAS, 4.81 to 0.16
FP/image for DDSM, and 2.32 to 0.05 FP/image for TMCH reflecting huge improvement in classification of mammograms.

1. Introduction

Breast cancer is the most common cancer disease among
women across worldwide. It is the leading cause of deaths for
women suffering from cancer disease in India. It is estimated
that breast cancer cases in India would reach to as high as
1,797,900 by 2020 [1]. Rising rate of incidences can cause
high mortality. *is is due to lack of awareness about breast
screening, late reporting, and insufficient medical access [2].
*is fact brings a concern and necessity that screening for
breast cancer is prudent in its early stage to confirm longer
survival. Among all techniques, namely, mammography,
tomosynthesis, ultrasonography, computed tomography,
and magnetic resonance, mammography is the most reliable
and accepted modality by radiologist for preliminary ex-
amination of breast cancer due to cost benefits and acces-
sibility [3–5]. *e diagnosis of breast cancer using

mammogram by radiologist varies from expert to expert as
symptoms are misinterpreted or overlooked, due to the
tedious task of screening mammograms. Study reveals that
10% to 30% of the visible cancers on mammograms are
overlooked, and only 20% to 30% of biopsies are positive
[6–8]. Biopsies are traumatic in nature and costly; therefore,
computer aided detection and diagnosis (CAD) systems
combined with expert radiologists’ experience would pro-
vide more comprehensive diagnosis [9]. Detailed survey
about the research in the design of CAD systems has been
given in next section.

2. Literature Survey

*e design and development of CAD system is an important
progressive area of research for contrast enhancement for
better visualization and clarification [10–12], pectoral
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muscle removal, segmentation for better delineation of re-
gion of interest (ROI), extraction of features, and classifi-
cation [13, 14]. *e segmentation method is classified as
region based, contour-based, and clustering method [15].
*e region and contour-based methods are popularly used
by many researchers. Görgel et al. [16] developed Local Seed
Region Growing-Spherical Wavelet Transform (LSRG–
SWT) algorithm using local dataset and MIAS [17] with
classification accuracy of 94% and 91.67%, respectively.
Pereira et al. [18] presented segmentation and detection of
masses in mammogram using wavelet transform and genetic
algorithm that provides FP rate of 1.35 FP/image and
sensitivity of 95% using DDSM [19]. Rouhi et al. [20] studied
segmentation using region growing, Cellular Neural Net-
work (CNN), and ANN. *e result of classification varied
from 80 to 96%, which is the main weakness of their study.
Berber et al. [21] proposed Breast Mass Contour Segmen-
tation (BMCS) approach and showed 6 FPR for local dataset.
Hybrid level set segmentation method [22] based on
combination of region growing and level set was used to
segment tumor. *e results showed that the sensitivity
varied from 78 to 100% due to the presence of artifact in the
MIAS database. *e difficulties in region and contour-based
segmentation methods are the appropriate initialization of
seed point and contour position.

Several researchers have implemented clustering method
like K-means and Fuzzy C-means (FCM) for breast abnor-
mality segmentation [3, 23]. However, they have limitations
in terms of learning abilities. Learning-based techniques such
as Self-organizing map (SOM) [24] have been successfully
used inmedical image segmentation [25].*e success of SOM
in medical image segmentation has inspired the researcher to
choose it for mammogram segmentation. Many of the times
the tumor-segmented regions are not the abnormal tissues
(cancerous region), and they are known as false positives
(FPs).*is FP consumesmuch time of radiologists and results
into unnecessary biopsies. *us, reducing the FPs is an open
research problem and various researchers have proposed FP
reduction algorithms to improve the specificity of the CAD
systems [5, 9, 23, 26–31]. Usually, FP reduction algorithm is
postprocessing step of a CAD system with two stages namely:
Feature extraction and Classification. Various methods have
been developed for feature extraction based on wavelets
[8, 18, 32], curvelet [33, 34], Gabor [35, 36], morphological
descriptors [20], textural analysis [26, 27, 30, 32], histogram
[4, 5, 7, 29, 37–40], etc.*e segmentation error can reduce the
performances of morphological descriptor. When Gray Level
Co-occurrence Matrix (GLCM) from normal and abnormal
region in dense mammogram is same, texture descriptor
overlaps that leads to more number of FPs [37]. Ojala et al.
proposed local binary patterns (LBPs) [41] for textural feature
extraction which works well in feature extraction as
compared to morphological descriptor and GLCM-based
textural descriptor. LBP descriptor can be considered as
local microstructures, namely, edges, flat areas, spots, etc.
Variants of LBP have been proposed by various researchers
to achieve rotation and intensity invariant features. Also,
LBP is computationally efficient and extracts robust fea-
tures; therefore, LBP descriptors have been widely applied

in FP reduction and classification methods for mammo-
gram images [29, 37, 39, 40]. However, LBP descriptor does
not provide the directional information of local micro-
pattern. *erefore, transform technique such as curvelet
combined with LBP was used to extract features. Various
curvelet-based approaches have been proposed in the lit-
erature [8, 33, 34, 42] which conclude that curvelet out-
performs as compared to wavelet transform.

In this work, novel method of extracting sparse curvelet
subband coefficients by incorporating the knowledge of
irregular shape of masses as they appear in sparse matrix and
calculating LBP features has been presented. *erefore, this
paper presents scheme as follows:

(1) Preprocessing of mammogram image for contrast
enhancement using local entropy maximization-
based image fusion algorithm and removal of
background noise

(2) Cluster-based segmentation of mammograms using
SOM and extract tumor regions, i.e., ROI)

(3) FP reduction: extraction of sparse curvelet subband
coefficients and computation of LBP descriptor to
classify true positives and false positives to improve
performance of CAD system using MIAS [17],
DDSM [19], and Tata Memorial Cancer Hospital
(TMCH) datasets.

*e organization of paper is as follows: Sections 1 and 2
illustrate the introduction and literature review on auto-
matic segmentation and extraction of abnormal masses
(i.e., tumor region) as well as FP reduction methods. Section
3 presents the proposed methodology for SOM based seg-
mentation of mammograms followed by novel false positive
reduction in detail. Section 4 depicts the experimental results
and discussions on three benchmark datasets. Finally,
Section 5 concludes the proposed approach for accurate
extraction of abnormal masses (i.e., tumor region) by ex-
cluding the FPs.

3. Methodology

*e block schematic of proposed integrated method for
automatic detection of breast cancer using sparse curvelet
coefficient-based LBP descriptor has been shown in Figure 1.

3.1. Preprocessing. *e mammogram images are low-dose
x-ray images so they have poor contrast and suffer from
noises. *e preprocessed mammogram image as shown in
Figures 2(a)–2(d) represents preprocessing of mammogram,
and Figures 2(e)–2(g) represents SOM clustering and ROI
extraction.

3.1.1. Local Entropy Maximization-Based Image Fusion:
Contrast Enhancement. *e contrast enhancement of the
mammogram is performed using local entropy maximiza-
tion [12] for better segmentation. Here, original image is
given to the contrast limited adaptive histogram equalization
(CLAHE) algorithm to get the second input to our image
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fusion algorithm. Further, original image along with the
CLAHE has been given to the image fusion algorithm.
Procedure of the image fusion has been given in Algo-
rithm 1. We have used local entropy as a fusion rule given by
the following equation:

ENT � −􏽘
255

k�0
p(k)log(p(k)), (1)

where ENT is the local entropy and p_org(k) and
p_CLAHE(k) are the probability of kth pixel from 5× 5
sliding window [12]. Here, both high frequency components
from original mammogram and CLAHE mammogram have
been fused using maximum entropy criteria. Figure 3(b)
presents contrast-enhanced mammogram using local en-
tropy maximization-based image fusion.

3.1.2. Pectoral Muscle Removal. Pectoral muscle suppression
has been performed by defining rectangle as suggested in
[14] (Figure 3(c)). It illustrates the rectangle (ABDC) and

fixes the points G and has intensity variation and joins them
for pectoral muscle suppression. Figure 3(d) illustrates
pectoral muscle removed image to avoid discrepancies in the
algorithm because of similar intensities present between
pectoral muscle and masses.

3.2. SOM Clustering. SOM is a special type of neural net-
work designed to map the input image of size Nx × Ny toM
clusters based on their characteristic features [25]. For SOM,
the image (I) is converted into a feature vector
f � f1, f2, . . . , fm􏼈 􏼉, where m is the number of features. In
this experiment, we have trained SOM with M� 4 clusters
using p � 9 neighbourhood features such as given a centre
pixel (gc) in the image, the neighbourhood features are
computed as given in the following equation:

F(1, p) � gp, p ∈ [1, n], (2)

where n is the number of neighbourhood (3 × 3 window), gp

is the neighbourhoods, and F is the feature vector
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Figure 1: Schematic architecture for automatic breast cancer detection.
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Figure 2: Steps for mammogram processing (a) enhanced mammogram, (b) binary mask, (c) pectoral removal, (d) pectoral removed
mammogram, (e) clustered image, (f ) cluster of interest, and (g) ROI extraction.
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corresponds to centre pixel gc. *e selection of 3× 3 window
pixel is based on [43] to capture local details.

At the start, weight vector Wi � wi1, wi2, . . . , wim−1􏼈 􏼉 is
random and updated as the network learns. *e minimum
Euclidean distance ‖f−Wi‖ is described as the best
matching component or winner node ‖f−Wc‖ and de-
scribed as

f−Wc
����

���� � mini f−Wi
����

����􏽮 􏽯. (3)

Weight vector for winning output neuron and its
neighboring neurons are updated as

Wi(t + 1) � Wi(t) + Nci(t) f(t)−Wi(t)( 􏼁, (4)

where t � 1, 2, . . . is time coordinate. *e function Nci(t) is
the neighbourhood kernel function and expressed as

Nci(t) � η(t)exp −
mc −m2

i

����
����

2σ2(t)
􏼠 􏼡, (5)

where η(t) is the learning rate, σ(t) is a width of kernel that
corresponds to neighbourhood neurons around node c and
mc and mi corresponds to location vectors of nodes c and i.

Figures 4(a) and 4(b) represent cluster map and cluster
boundaries marked on mammogram. After the several
observations for known areas, it was empirically noticed that
number of pixels of range or pixel level threshold (PLT based
on pixel count in TP) as 450 to 31,500; 16,000 to 2,00,000;
and 4,000 to 2,00,000 consist of abnormality for MIAS,
DDSM, and TMCH database, respectively, which is verified
from the expert. *e size of the tumor is varying because of
the mammogram size of 1024 × 1024 pixels for MIAS,
2728 × 3920 pixels to 4608 × 6048 pixels for DDSM, and
2294 × 1914 or 4096 × 3328 pixels for TMCH datasets.
*erefore, cluster regions below or above the specified
threshold are discarded and the remaining region is marked
as true positive (TP) as shown in Figure 4. Figure 4(a) shows
the clustered image using SOM; Figure 4(b) shows the
cluster boundaries marked on original image.

We can see that there are many FPs along with TP
(marked by pink color) which are reduced using pixel level
threshold (PLT based on pixel count in TP) as explained
above. Figure 4(c) shows the filtered result using PLT.

3.3. ROI Extraction. After SOM clustering (initial segmen-
tation), the next step is to classify the detected regions into
TP and FP by using proposed local sparse curvelet features
(LSCF) followed by ANN classifier. To do so, initially, we
have extracted ROIs from detected regions by SOM clus-
tering and manually categorized into TP and FP. We col-
lected these ROIs from three different datasets according to
their maximum height and maximum width using con-
nected components e.g., region marked in Figure 4(c).
*erefore, their patch size is different as shown in Figure 5,
ROIs for MIAS, DDSM, and TMCH dataset. Further, these
extracted patches have been used to train the ANN for the
task of FP reduction.

3.4. False-Positive (FP) Reduction. After ROI extraction, FP
reduction algorithm performs computation of proposed
local sparse curvelet features (LSCF) followed by ANN
classifier.

3.4.1. Proposed Algorithm. LBP [43] was proposed as LBP
descriptor computation at circular neighbourhood which is
called as uniform LBP (ULBP) descriptor and expressed as

ULBP(P,R) �
􏽐

P−1

n�1
S if U LBP(P,R)􏼐 􏼑≤ 2,

P + 1 otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(6)

where

U LBP(P,R)􏼐 􏼑 � S gP−1 −gC( 􏼁− S g0 −gC( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ 􏽘
P−1

n�1
S gP −gC( 􏼁− S gP−1 −gC( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(7)

Computation of LBP based on actual shape of mass
according to sparse matrix has been shown in Figure 6, where

(a) (b)

A
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F E
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(c) (d)

Figure 3: Preprocessing. (a) Original image from MIAS database. (b) Contrast-enhanced mammogram using local entropy maximization.
(c) Process of pectoral muscle removal. (d) Pectoral muscle removed mammogram.
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it takes pixels related to shape of mass which are called as
foreground pixels and rejects the other pixels called as
background pixels. *e proposed algorithm uses foreground
pixels only for LBP computation, and this will tend to number
of pixel reduction in LBP computations. *erefore, identi-
fication of foreground and background pixels is an important
step which is performed using lookup table approach. *e

identification of foreground and background pixel is based on
number of nonzero pixels in the lookup table, i.e., if count of
sliding window nonzero pixels is greater than 2, count(p(i, j))
> 2 is identified as foreground and LBP is estimated. On the
other hand, if count of sliding window nonzero pixels is less
than 2, count(p(i, j))< 2 is identified as background and LBP
would not be estimated and rejected from lookup table.

(a) (b) (c)

Figure 4: FP reduction by thresholding (a) clustered image, (b) clusters boundaries marked on original image, and (c) clusters after
thresholding.

MIAS ROI patches from abnormal mammogram

DDSM ROI patches from abnormal mammogram

TMCH “GE Medical Senograph System” ROI
patches from abnormal mammogram 

TMCH “Hologic Selenia System” ROI patches
from abnormal mammogram 

Figure 5: Variable sizes ROIs from MIAS, DDSM, and TMCH datasets.
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Figure 6: Lookup table approach for LBP computation from shape of mass in ROI.
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Nonzero pixels provide actual shape of mass and are taken for
LBP computations. Graphical representation of proposed
algorithm for LBP descriptor computation using foreground
pixels has been given in Figure 7 and the algorithm has been
described in Algorithm 2.

3.4.2. 6e Fast Discrete Curvelet Transform (FDCT). *e
authors [44] have introduced computationally simple and
efficient Fast Discrete Curvelet Transform (FDCT). We have
preferred wrapping-based FDCT approach in proposed
work, as it is faster. *e curvelet coefficients CD(j, l, k)

represented by scale j, angle l, and spatial location k can be
written as

C
D

j, l, k1, k2( 􏼁 � 􏽘

n1�N1

n1�1
􏽘

n2�N2

n2�1
I n1, n2􏼂 􏼃φD

j,l,k1,k2
n1, n2􏼂 􏼃. (8)

Figure 8 illustrates LBP code computation based on sparse
curvelet coefficients; ROI decomposes using curvelet trans-
form with scale orientations l of 16° and scale of 2 as the
database consists of minimum ROI size of 25 × 22 pixels.
Curvelet transform with scale orientations l of 16° and scale of
2 produces 1 + 16 � 17 different subbands based on subband
division. Further, each curvelet subband coefficients have
been represented using lookup table using 3 × 3 sliding
window, and if the row in the lookup table identifies fore-
ground coefficient, then LBP is computed with radius R� 1
and P� 8 neighboring pixels as shown in Algorithm 2; total 58
LBP features have been obtained from foreground curvelet
subband coefficients. *erefore, total 986 LBP features have
been extracted from 17 curvelet subbands. It can be observed
from Figure 8, curvelet subbands also provide shape of mass
in 16 different directions so that the directional information
can be associated with LBP features. Kanadam et al. [3] used
concept of sparse ROI; similarly, we have extended it for
sparse curvelet subband and LBP features computation.

3.5. Classification. In this work, we have analyzed extracted
ROI from mammogram using normal-abnormal, benign-
malignant, and normal-malignant classes with ANN, SVM,
and KNN classifiers. *e detailed description of ANN
classifier has been given in [45, 46]. To evaluate performance

of the proposed system, we have used 3-fold cross validation
where database is randomly divided into three sets and
accuracy is calculated for each set. *e final accuracy of the
system is average of accuracy of each of three sets. However,
it will not be fair to compare 3-fold cross validation result of
SVM and KNN classifier with ANN, because ANN classifier
is tested on only one set of images (33% for training, 33% for
testing, and 33% for validation).*us, to do fair comparison,
we have trained ANN using input layer (986 neuron) over
three different sets (which are considered in SVM and KNN)
and calculated its average accuracy. Our proposed false
positive reduction algorithm illustrates in Figures 9(a)–9(c).
Algorithm 3 summarizes flow of the proposed method for
FP reduction in mammograms.

4. Experimental Results and Discussions

*e proposed method has been tested and validated using
three classifiers and three clinical mammographic image
datasets.

4.1. Data Sets

4.1.1. Mammographic Image Analysis Society (MIAS)
Database. *e mini-MIAS [17] database consists of 322
mammograms, each having 1024×1024 pixels and anno-
tated like background tissue character, class, severity, center
of abnormality, and radius of circle for abnormality. *is
database includes 64 benign, 51 malignant, and 207 normal
cases, which have been taken for experimentation.

4.1.2. Digital Database for Screening Mammography
(DDSM). *e DDSM [19] dataset consists of 2500 studies
and is composed of cranial-caudal (CC) and mediolateral-
oblique (MLO) views of mammographic image for left and
right breast, annotated with ACR breast density, type of
abnormality, and ground truth. Randomly selected 150
abnormal and 100 normal cases from both HOWTEK and
LUMISYS scanner of 12 bits per pixel resolution have been
subjected for experimentation.

ROI Shape of mass

Mass shape by sparse matrix

Position in
look-up table Nine neighborhood pixels Decision making

Yes

LBP operator on 3×3 neighborhood

Nine neighborhood pixels

120 125 210

105 45

254
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93 200 250
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1 0
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0 + 2 + 4 +
8 + 16 + 32
+ 64 + 128
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> 2

Discard the row
from look-up table,

e.g., X, P, etc.

Input

•
•

•
•

•
•

•
•

•

X 0 0 0 0 0 0 0 0 1
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Y 123 90 70 100 23 45 0 144 17

Z 120 105 93 125 45 200 210 10 250
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(a) (c)(b) (e)(d)

Figure 7: Process for computation of LBP descriptor from shape of mass in ROI. (a) Original image, (b) 3× 3 window for selection of
foreground pixels, (c) lookup table, (d) decision making process, (e) LBP computation from selected foreground pixels.
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4.1.3. 6e Tata Memorial Cancer Hospital (TMCH). *is
dataset [47] contains 360 full-field digital mammograms
(FFDMs) comprising 180 CC views and 180 MLO views
from right and left breast acquired from 90 randomly se-
lected patients. It is composed of 180 verified malignant and
180 normal breast images. It uses biopsy proven breast
cancer patients’ pathological data approved by the In-
stitutional Research Ethics Committee of Tata Memorial
Centre Hospital (TMCH), Mumbai, India. *e ground truth
marking on each abnormal mammogram is performed
manually using the Histopathological Reports (HPR) of the
respective patients and expert radiologist from TMCH,
Mumbai. Approximately 35 patients are examined using
“Hologic Selenia System” (Scanner1) gives 16-bit.

*e remaining 55 patients were examined with “GE
Medical Senograph System” (Scanner2) providing 8-bit true
color mammogram image in DICOM format of 4096× 3328
or 2294×1914 pixels each measuring size 50× 50 μm2.

4.2. Segmentation Evaluation and ROI Extraction. *e seg-
mentation using SOM that detects suspicious mass regions is
considered as TP whereas from nonmass is taken as FP.
From Table 1, it is clear that total suspicious ROI (including
TP & FP) of 381 for MIAS, 1343 for DDSM, and 1009 for
TMCH have been taken for evaluation our proposed al-
gorithm for FP reduction.

From extracted ROIs, the minimum patch size is
25 × 22 pixels whereas the maximum size is 1152 ×1356
pixels. Tables 2 and 3 represent curvelet subband co-
efficients from 17 subbands, and reduced coefficients
based on lookup table approach are used to calculate LBP
features. It has been observed during experimentation
that the curvelet coefficients on an average are reduced
for sparse LBP by 14%, 32%, 33%, and 34% for MIAS,
DDSM, TMCH: Scanner1, and TMCH: Scanner2, re-
spectively. It may be noticed that reduction in curvelet
coefficients for every ROI is not fixed. It completely

•
•
•

•
•
•

•
•
•

Scale 1: approximate
coefficients

Scale 2: 1 to 16
subband coefficients

Curvelet transform

1

58

58

2

1
58 LBP

descriptors
from

approximate
coefficients

58 ∗ 16
LBP

descriptors
from

1 to 16
subband 
curvelet

coefficients

2

Figure 8: LBP code computation using sparse curvelet subband coefficients.

(a) (b) (c)

Figure 9: (a) FP reduction by clusters marked on original image, (b) FP reduction by thresholding, (c) FP reduction by sparse curvelet
coefficient-based LBP, and ANN.
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depends upon the shape of the ROI as per the sparse
matrix. Tables 2 and 3 do not represent exact reduction in
pixels for complete database, but they exhibit pixel re-
duction for sample mammograms.

4.3. Classifier Evaluation and False-Positive Reduction.
From Figures 10–13, the best classification accuracy of 98.57
% has been obtained for MIAS in benign versus malignant
classification, whereas 98.70% for DDSM, 98.30% for

(1) Load input image (img1)
(2) Apply CLAHE algorithm and obtain enhanced image (img2)
(3) Decompose img1 and img2 up to 3 level of decomposition using Discrete Wavelet transform (DWT)
(4) Use maximum local entropy rule for fusion of img1 and img2 for high frequency subbands
(5) Take inverse DWT to obtain the fused image

ALGORITHM 1: Image fusion for contrast enhancement.

Input: I(m, n); m� no. of rows and n�no. of column
Output: LBP features
Initialize: Radius R� 1 and neighborhood pixels P� 8

Mask� [1 2 4 8 16 32 64 128 0]
Sliding window coordinates: k�−1 :1
Count� 1 //number of pixels in I(m, n)

for i� 1 to m do
for j� 1 to n do

//prepare local circular window
I_local� I(i+ k, j+ k)
center_pixel� I(i, j)
//Arrange local neighborhoods of I(i, j) pixels in a row col� 1 : 9
Lookup_table (i, col)� reshape(I_local [7, 17])
//count number of pixels greater than zero
a� length(find(Lookup_table> 0))
//select pixel position from lookup-table for computation of LBP
if a> 2

LBP_code(count,:)� I_local> center_pixel
count� count + 1

end
end

end
//compute histogram of LBP codes
LBP_descriptor� LBP_descriptor/count
//scale invariant

ALGORITHM 2: Algorithm for LBP feature computation based on shape of mass in ROI as.

(1) Load input image (img1)
(2) Apply CLAHE algorithm and obtain enhanced image (img2)
(3) Process img1 and img2 and obtain enhanced image using procedure given in Algorithm 1
(4) Remove pectoral muscle using proposed approach (Section 3.1.2)
(5) Extract neighbourhood features for each pixel and apply SOM clustering
(6) Obtain clustered image and separate out the tumorous cluster
(7) Extract detected regions i.e., ROI’s from clustered result
(8) Extract Sparse Curvelet Coefficients (Subband) up to 2 level from each ROI
(9) Extract Sparse LBP code for each subband and obtain a combined feature vector for each ROI
(10) Classify each ROI into tumorous and nontumorous class i.e., TP and FP respectively
(11) Map each TP region on original mammogram (img1)
(12) end

ALGORITHM 3: Summary of proposed method for FP reduction in mammograms.
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TMCH: Scanner1, and 100% for TMCH: Scanner2 clas-
sification accuracies have been obtained in normal versus
malignant classification. *e classification performance of
ANN has improved from 6% to 43% for different databases
as compared to KNN classifier, whereas there is little
improvement about 7% compared with SVM classifier. *e
performances of both proposed sparse LBP and LBP
computation on curvelet subbands are nearly same;
therefore, the proposed algorithm can be efficiently

implemented in CAD system with lesser number of cur-
velet coefficients.

Data augmentation has been used for some classes to
maintain balance between two classes, to improve perfor-
mance, and to learn more powerful model. Table 4 explains
the FP reduction with the use of curvelet-based LBP features
and ANN. It has been observed that FP reduced from 0.85 to
0.02 FP/image in MIAS, 4.81 to 0.02 FP/image in DDSM and
2.32 to 0.13 FP/image in TMCH.
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Figure 10: Average classification rate for TMCH dataset.
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Figure 11: Average classification rate for MIAS and DDSM dataset.
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Figure 12: Average classification rate for MIAS and DDSM dataset.
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Similarly, Table 5 shows the reduction in FPs as 0.85
to 0.01 FP/image for MIAS, 4.81 to 0.03 FP/image for
DDSM, and 2.32 to 0.00 FP/image for TMCH using sparse
curvelet coefficient-based LBP features. *e results show

the effectiveness of sparse curvelet coefficient-based LBP
and ANN. From Table 6, the best value of AUC � 0.99 is
obtained in benign versus malignant classification for
MIAS, AUC � 0.98 in benign versus malignant in case of

Table 1: Result of SOM segmentation.

Dataset
used

Result of SOM clustering and threshold TPR (true-positive
rate)�

TP/#lesions

FPPI (false-positive
per image)�

FP/#images
Mass

Segmented nonmass (FP) Total (#) images
Segmented (TP) Lost

MIAS 108 7 273 322 (108/115)� 0.94 (273/322)� 0.85
DDSM 140 10 1203 250 (140/150)� 0.93 (1203/250)� 4.81
TMCH 172 8 837 360 (172/180)� 0.95 (837/360)� 2.32

Table 2: Reduction in curvelet coefficients for sample mammograms from MIAS and DDSM dataset.

Sr.
No.

MIAS DDSM

ROI Size

Total number of
curvelet

coefficients from
subbands

Total number of
selected curvelet
coefficients from

subbands

% reduction
in curvelet
coefficients

ROI Size

Total number of
curvelet

coefficients from
subbands

Total number of
selected curvelet
coefficients from

subbands

% reduction
in curvelet
coefficients

1 124×138 1,03,911 77,133 25.77 192×187 2,16,729 1,68,333 22.33
2 179×138 1,50,123 1,26,142 15.97 294× 291 5,18,267 3,66,680 29.25
3 51× 116 36,815 33,421 9.22 145× 207 1,81,663 1,48,765 18.11
4 83× 83 42,449 36,653 13.65 169×168 1,71,873 1,54,752 9.96
5 84× 76 39,115 35,815 8.44 182× 248 2,72,517 2,19,822 19.34
6 74× 83 37,767 34,448 8.79 213× 349 4,49,783 3,01,359 33.00
7 53× 64 20,969 18,621 11.20 578× 412 14,33,195 6,62,072 53.80
8 70× 44 18,899 16,610 12.11 215× 219 2,86,429 2,42,935 15.18
9 80× 66 32,409 29,454 9.12 420× 428 10,82,461 5,01,209 53.70
10 69× 86 36,783 33,552 8.78 203× 307 3,75,871 2,66,829 29.01
11 59×116 42,019 38,442 8.51 226× 262 3,57,209 2,76,763 22.52
12 81× 101 50,637 46,122 8.92 159×194 1,87,563 1,48,741 20.70
13 41× 84 21,427 18,907 11.76 718× 686 29,61,127 7,62,561 74.25
14 69×141 60,641 52,427 13.54 409× 550 13,52,439 9,04,829 33.10
15 60× 62 22,925 20,475 10.69 524× 375 11,84,671 7,66,522 35.30
16 96×101 59,647 54,235 9.07 311× 275 5,17,433 3,97,737 23.13
17 136×139 1,13,727 66,352 41.56 319× 320 6,14,129 4,12,606 32.81
18 55× 94 31,359 28,305 9.74 313× 447 8,42,855 5,10,482 39.43
19 157×140 1,32,373 1,07,000 19.17 291× 517 9,07,903 6,37,412 29.79
20 156×130 1,23,007 90,834 26.15 370× 837 18,64,889 8,98,236 51.83

Average 58,850 48,247 14 Average 7,88,950 4,37,432 32
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Figure 13: Average classification rate for MIAS and DDSM dataset.
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DDSM, AUC � 0.94 in normal versus malignant in case of
TMCH: Scanner1, and AUC � 0.96 in normal versus
malignant classification in TMCH: Scanner2 using ANN
and curvelet subband-based LBP features. *e worst
performance of AUC � 0.53 for MIAS is obtained with the
proposed algorithm using KNN classifier as shown in
Table 7. Similarly, from Table 7, the best value of
AUC � 0.98 is obtained in TMCH: Scanner1, AUC � 1 is
obtained in TMCH: Scanner2 database for normal versus
malignant classification, AUC � 0.98 in benign versus
malignant classification is attained in MIAS database, and
AUC � 0.98 is achieved for normal versus malignant

classification in DDSM database using ANN classifier for
sparse curvelet subband-based LBP features.

However, from Table 7, it should be noted that the per-
formance of proposed algorithm is the best using ANN clas-
sifier. Figure 14 represents automated CAD system for breast
cancer diagnosis with sample mammograms.

Table 8 provides comparative study of methods developed
for breast tissue classification. *e proposed method provides
best results in terms of AUC and reduction of number of FPs
as 0.85 to 0.01 FP/image for MIAS, 4.81 to 0.03 FP/image for
DDSM, and 2.32 to 0.00 FP/image for TMCH. *e earlier
reported work uses the fixed patch size-based approach which

Table 3: Reduction in curvelet coefficients for sample mammograms from TMCH Scanner1 and Scanner2 dataset.

Sr.
no.

TMCH: Scanner 1: “GE Medical Senograph System” TMCH: Scanner 2: “Hologic Selenia System”

ROI size

Total number of
curvelet

coefficients from
subbands

Total number of
selected curvelet
coefficients from

subbands

% reduction
in curvelet
coefficients

ROI size

Total number of
curvelet

coefficients from
subbands

Total number of
selected curvelet
coefficients from

subbands

% reduction
in curvelet
coefficients

1 459× 412 11,40,617 7,94,885 30.31 291× 278 4,89,243 3,17,014 35.20
2 548× 513 16,93,403 11,17,873 33.99 545× 246 8,09,627 5,31,604 34.34
3 415× 303 7,58,323 4,45,585 41.24 560× 483 16,30,583 10,68,439 34.47
4 645× 495 19,51,443 11,45,580 41.29 782× 510 24,00,137 12,75,073 46.87
5 437× 691 18,16,651 9,85,120 45.77 87×141 75,773 67,871 10.43
6 812× 500 24,39,937 12,87,065 47.25 311× 185 3,48,565 2,40,546 30.99
7 468× 379 10,66,333 7,10,242 33.40 262× 348 5,50,303 2,82,821 48.61
8 673× 582 23,55,589 17,30,915 26.52 610× 440 16,14,515 8,42,876 47.79
9 250× 201 3,04,513 2,35,670 22.61 949× 391 22,27,209 13,59,338 38.97
10 525× 488 15,44,691 11,61,942 24.78 365× 385 8,46,523 6,04,473 28.59
11 488× 779 22,87,547 16,11,385 29.56 393× 247 5,85,063 4,90,474 16.17
12 1434× 966 83,26,581 37,42,277 55.06 341× 301 6,18,111 4,10,542 33.58
13 348× 421 8,81,701 6,16,501 30.08 523× 702 22,06,097 8,00,057 63.73
14 460× 530 14,67,227 7,99,885 45.48 370× 284 6,32,539 4,23,727 33.01
15 398× 450 10,78,441 8,28,064 23.22 344× 202 4,18,955 3,02,427 27.81
16 247× 272 4,04,401 3,44,822 14.73 264×188 2,99,997 2,31,926 22.69
17 411× 305 7,57,657 4,05,919 46.42 233× 247 3,46,983 2,67,686 22.85
18 286× 344 5,93,155 4,48,566 24.38 370× 291 6,50,701 4,86,125 25.29
19 417× 207 5,23,477 4,29,755 17.90 680× 483 19,79,543 10,52,793 46.82
20 463× 458 12,75,021 8,57,608 32.74 202× 266 3,24,295 2,15,042 33.69

Average 16,33,335 9,84,983 33 Average 9,52,738 5,63,543 34

Table 4: Number of ROIs resulted in FP reduction using curvelet-based LBP (without sparse) & ANN classification at training and
validation stage.

Class Dataset
used

Benign/malignant mass Nonmass/benign mass Total
(#)

images

TPR (true-positive
rate)�TP/#lesions

FPPI (false-positive
per image)� FP/#

images
Previous
stage

Selected
(TP)

Lost
(FN)

Previous
stage

Selected
(TN)

Lost
(FP)

Normal vs
abnormal

MIAS 108∗ 2� 216 203 13 273 257 16 315 (203/216)� 0.94 (16/315)� 0.05
DDSM 140∗ 4� 560 465 95 1203 1095 108 240 (465/560)� 0.83 (108/240)� 0.45

Benign vs
malignant

MIAS 49 49 0 59 57 2 108 (49/49)� 1.00 (2/108)� 0.02
DDSM 46∗ 2� 92 91 1 94 91 3 140 (91/92)� 0.99 (3/140)� 0.02

Normal vs
malignant

MIAS 49∗ 4�196 184 12 273 254 19 256 (184/196)� 0.94 (19/256)� 0.07
DDSM 46∗ 4�184 180 4 1203 1143 60 146 (180/184)� 0.98 (60/146)� 0.41
TMCH:
Scanner1 107∗ 4� 428 416 12 605 551 54 217 (416/428)� 0.97 (54/217)� 0.25

TMCH:
Scanner2 65∗ 4� 260 255 5 232 214 18 135 (255/260)� 0.98 (18/135)� 0.13

∗Augmentation of image.
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limits the automatic CAD system scope whereas proposed
system provides complete solution to CAD system right from
automatic tumor patch segmentation to reduction in FPs and
final representation of mammogram with TP marked on it.
It will drastically reduce the radiologist work by location
tumor directly on mammogram.

5. Conclusion

A fully automatic CAD system, which can accurately
locate the tumor on a mammogram and reduces FPs,
has been proposed. *e developed CAD system consists
of preprocessing, SOM clustering, ROI extraction,

Table 6: Performance evaluation of curvelet-based LBP descriptor algorithm.

Dataset Classification Normal-malignant Normal-abnormal Benign-malignant
Classifier Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC

MIAS
ANN 0.94 0.93 0.94 0.94 0.94 0.94 1.00 0.97 0.99
SVM 0.85 0.85 0.85 0.83 0.86 0.85 0.88 0.84 0.86
KNN 0.67 0.63 0.65 0.58 0.57 0.58 0.62 0.68 0.63

DDSM
ANN 0.98 0.95 0.95 0.83 0.91 0.85 0.99 0.97 0.98
SVM 0.97 0.88 0.92 0.71 0.91 0.83 0.94 0.89 0.92
KNN 0.96 0.64 0.87 0.67 0.90 0.80 0.87 0.73 0.79

TMCH: Scanner1
ANN 0.97 0.91 0.94 — — — — — —
SVM 0.96 0.91 0.94 — — — — — —
KNN 0.98 0.82 0.89 — — — — — —

TMCH: Scanner2
ANN 0.98 0.92 0.96 — — — — — —
SVM 0.97 0.90 0.94 — — — — — —
KNN 0.92 0.83 0.88 — — — — — —

Table 7: Performance evaluation of proposed algorithm.

Dataset Classification Normal-malignant Normal-abnormal Benign-malignant
Classifier Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC

MIAS
ANN 0.98 0.95 0.96 0.93 0.97 0.95 0.97 1.00 0.98
SVM 0.88 0.83 0.85 0.85 0.82 0.84 0.84 0.92 0.87
KNN 0.55 0.51 0.53 0.55 0.63 0.56 0.61 0.67 0.61

DDSM
ANN 0.99 0.97 0.98 0.92 0.96 0.93 0.97 0.95 0.96
SVM 0.99 0.92 0.96 0.89 0.96 0.92 0.94 0.92 0.93
KNN 0.98 0.73 0.92 0.74 0.90 0.82 0.89 0.77 0.83

TMCH: Scanner1
ANN 0.99 0.98 0.98 — — — — — —
SVM 0.98 0.96 0.97 — — — — — —
KNN 0.99 0.92 0.95 — — — — — —

TMCH: Scanner2
ANN 1.00 1.00 1.00 — — — — — —
SVM 1.00 0.98 0.99 — — — — — —
KNN 0.96 0.92 0.94 — — — — — —

Table 5: Number of ROIs resulted in FP reduction using sparse curvelet coefficient-based LBP & ANN classification at training and
validation stage.

Class Dataset
used

Benign/malignant mass Nonmass/benign mass
Total (#)
images

TPR (true-positive
rate)�TP/#lesions

FPPI (false-positive
per image)� FP/#

images
Previous
stage

Selected
(TP)

Lost
(FN)

Previous
stage

Selected
(TN)

Lost
(FP)

Normal vs
abnormal

MIAS 108∗ 2� 216 201 15 273 265 8 315 (201/216)� 0.93 (8/315)� 0.02
DDSM 140∗ 4� 560 516 44 1203 1155 48 240 (516/560)� 0.92 (48/240)� 0.2

Benign vs
malignant

MIAS 49 48 1 59 59 1 108 (48/49)� 0.98 (1/108)� 0.01
DDSM 46∗ 2� 92 89 3 94 89 5 140 (89/92)� 0.97 (5/140)� 0.03

Normal vs
malignant

MIAS 49∗ 4�196 192 4 273 259 14 256 (192/196)� 0.98 (14/256)� 0.05
DDSM 46∗ 4�184 182 2 1203 1167 36 146 (182/184)� 0.99 (36/146)� 0.25
TMCH:
Scanner1 107∗ 4� 428 424 4 605 593 12 217 (424/428)� 0.99 (12/217)� 0.05

TMCH:
Scanner2 65∗ 4� 260 260 0 232 232 0 135 (260/260)� 1.00 (0/135)� 0

∗Augmentation of image.
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sparse LBP feature computation based on sparse Cur-
velet coefficients, and finally, FP reduction using ANN
classifier.

*e proposed algorithm presents a novel concept of
extraction of curvelet coefficients according to irregular
shape of mass is called as sparse curvelet coefficients and
computation of LBP. *e analysis proves that the FPs are
reduced significantly from 0.85 to 0.01 FP/image for MIAS,

4.81 to 0.03 FP/image for DDSM and 2.32 to 0.00 FP/image
for TMCH. *e ANN classifier showed best results as
AUC� 0.98 and accuracy� 98.57% for MIAS in benign-
malignant classification, AUC� 0.98 and accuracy� 98.70%
for DDSM in normal-malignant classification, AUC� 0.98
and accuracy� 98.30% for TMCH: Scanner1, and AUC� 1
and accuracy� 100% for TMCH: Scanner2 in normal-
malignant classification as compared with SVM and KNN

(a) (b) (c) (d) (e) (f )

Figure 14: Representation of fully automatic CAD system for breast cancer using (a) samplemammograms fromMIAS, DDSM, and TMCH
datasets, (b) preprocessed mammograms, (c) clustered image, (d) TP and FP marked on mammogram, (e) TP marked by thresholding, (f )
TP marked by using LBP descriptor based on sparse curvelet coefficients.
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classifier. *e performance of LBP features and LBP features
based on sparse curvelet coefficients are nearly same which
show that the proposed algorithm is suitable for cancer breast
tissue diagnosis.

In future, the reduced curvelet coefficients can be used to
extract local ternary patterns and other local descriptor and
local directional patterns, etc. *e present work deals with
mammogram with single mass; this can be further extended
for multiple mass models with multiple LBP features based
on sparse curvelet coefficients.
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the corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*e TMCH database for this work was given by Department
of Radiodiagnosis, Tata Memorial Cancer Hospital, Mumbai.

References

[1] S. Malvia, S. A. Bagadi, U. S. Dubey, and S. Saxena, “Epi-
demiology of breast cancer in Indian women,” Asia-Pacific
Journal of Clinical Oncology, vol. 13, no. 4, pp. 289–295, 2017.

[2] A. Gupta, K. Shridhar, and P. Dhillon, “A review of breast
cancer awareness among women in India: cancer literate or
awareness deficit?,” European Journal of Cancer, vol. 51,
no. 14, pp. 2058–2066, 2015.

[3] K. P. Kanadam and S. R. Chereddy, “Mammogram classifi-
cation using sparse-ROI: a novel representation to arbitrary
shaped masses,” Expert Systems with Applications, vol. 57,
pp. 204–213, 2016.

[4] D. O. T. Bruno, M. Z. do Nascimento, R. P. Ramos et al., “LBP
operators on curvelet coefficients as an algorithm to describe
texture in breast cancer tissues,” Expert Systems with Appli-
cations, vol. 55, pp. 329–340, 2016.

[5] M. Hussain, “False-positive reduction in mammography
using multiscale spatial Weber law descriptor and support
vector machines,” Neural Computing and Applications,
vol. 25, no. 1, pp. 83–93, 2014.

[6] M. M. Pawar and S. N. Talbar, “Genetic fuzzy system (GFS)
based wavelet co-occurrence feature selection in mammo-
gram classification for breast cancer diagnosis,” Perspectives in
Science, vol. 8, pp. 247–250, 2016.

[7] C. Muramatsu, T. Hara, T. Endo, and H. Fujita, “Breast mass
classification on mammograms using radial local ternary
patterns,” Computers in Biology and Medicine, vol. 72,
pp. 43–53, 2016.

[8] M. M. Eltoukhy, I. Faye, and B. B. Samir, “A statistical based
feature extraction method for breast cancer diagnosis in
digital mammogram using multiresolution representation,”

Table 8: Comparison of classification accuracy, AUC, and FP/image values from different approaches in breast cancer diagnosis.

Author Database Method Classifier Result AUC FP/image
Eltoukhy et al. [33]

MIAS Biggest curvelet coefficients as a feature
vector

Euclidean classifier 94.07% — —
Eltoukhy et al. [42] 98.59 — —
Eltoukhy et al. [8] SVM 97.3 — —

Dhahbi et al. [34] Mini-MIAS Curvelet moments KNN 91.27 — —
DDSM 86.46 — —

Bruno et al. [4] DDSM Curvelet + LBP SVM 85 0.85 —
PL 94 0.94 —

da Rocha et al. [40] DDSM LBP SVM 88.31 0.88 —
Kanadam and
Chereddy [3] MIAS Sparse ROI SVM 97.42 — —

Pereira et al. [18] DDSM Wavelet and Wiener filter Multiple thresholding, wavelet,
and GA — — 1.37

Liu and Zeng [29] DDSM,
FFDM GLCM, CLBP, and geometric features SVM — — 1.48

De Sampaio et al.
[39] DDSM LBP DBSCAN 98.26 0.19

Zyout et al. [30] DDSM Second order statistics of wavelet
coefficients (SOSWC) SVM 96.8 0.97 0.018

MIAS 95.2 96.6 0.029

Casti et al. [31]
DDSM

Differential features Fisher linear discriminant
analysis (FLDA) — —

1.68
MIAS 2.12
FFDM 0.82

Proposed method

MIAS

LBP based on sparse curvelet subband
coefficients ANN

98.57 0.98 0.01
DDSM 98.70 0.98 0.03
TMCH:
Scanner1 98.30 0.98 0.05

TMCH:
Scanner2 100 1 0

14 Journal of Healthcare Engineering

http://eureka.sveri.ac.in/


Computers in Biology andMedicine, vol. 42, no. 1, pp. 123–128,
2012.

[9] Y. Li, H. Chen, Y. Yang, L. Cheng, and L. Cao, “A bilateral
analysis scheme for false positive reduction in mammogram
mass detection,” Computers in Biology and Medicine, vol. 57,
pp. 84–95, 2015.

[10] A. Gandhamal, S. Talbar, S. Gajre, A. F. M. Hani, and
D. Kumar, “Local gray level S-curve transformation—a
generalized contrast enhancement technique for medical
images,” Computers in Biology and Medicine, vol. 83,
pp. 120–133, 2017.

[11] S. Anand and S. Gayathri, “Mammogram image enhancement
by two-stage adaptive histogram equalization,” Optik-
International Journal for Light and Electron Optics, vol. 126,
no. 21, pp. 3150–3152, 2015.

[12] M. M. Pawar and S. N. Talbar, “Local entropy maximization
based image fusion for contrast enhancement of mammo-
gram,” Journal of King Saud University-Computer and In-
formation Sciences, 2018.

[13] K. Ganesan, U. R. Acharya, K. C. Chua, L. C. Min, and
K. T. Abraham, “Pectoral muscle segmentation: a review,”
Computer Methods and Programs in Biomedicine, vol. 110,
no. 1, pp. 48–57, 2013.

[14] I. K. Maitra, S. Nag, and S. K. Bandyopadhyay, “Technique for
preprocessing of digital mammogram,” Computer Methods
and Programs in Biomedicine, vol. 107, no. 2, pp. 175–188,
2012.

[15] A. Oliver, J. Freixenet, J. Mart́ı et al., “A review of automatic
mass detection and segmentation in mammographic images,”
Medical Image Analysis, vol. 14, no. 2, pp. 87–110, 2010.

[16] P. Görgel, A. Sertbas, and O. N. Ucan, “Mammographical
mass detection and classification using local seed region
growing–spherical wavelet transform (lsrg–swt) hybrid
scheme,” Computers in Biology and Medicine, vol. 43, no. 6,
pp. 765–774, 2013.

[17] J. Suckling, J. Parker, D. Dance et al., 6e Mammographic
Image Analysis Society Digital Mammogram Database, In-
ternational Congress Series, Exerpta Medica, England, UK,
1994.

[18] D. C. Pereira, R. P. Ramos, and M. Z. do Nascimento,
“Segmentation and detection of breast cancer in mammo-
grams combining wavelet analysis and genetic algorithm,”
Computer Methods and Programs in Biomedicine, vol. 114,
no. 1, pp. 88–101, 2014.

[19] M. Heath, K. Bowyer, D. Kopans, R. Moore, and
P. Kegelmeyer Jr., “*e digital database for screening
mammography,” in Proceedings of the 5th International
Workshop on Digital Mammography, M. J. Yaffe, Ed.,
Medical Physics Publishing, 2001, ISBN 1-930524-00-5.

[20] R. Rouhi, M. Jafari, S. Kasaei, and P. Keshavarzian, “Benign
and malignant breast tumors classification based on region
growing and CNN segmentation,” Expert Systems with Ap-
plications, vol. 42, no. 3, pp. 990–1002, 2015.

[21] T. Berber, A. Alpkocak, P. Balci, and O. Dicle, “Breast mass
contour segmentation algorithm in digital mammograms,”
Computer Methods and Programs in Biomedicine, vol. 110,
no. 2, pp. 150–159, 2013.

[22] R. Rouhi and M. Jafari, “Classification of benign and ma-
lignant breast tumors based on hybrid level set segmentation,”
Expert Systems with Applications, vol. 46, pp. 45–59, 2016.

[23] L. A. Salazar-Licea, J. C. Pedraza-Ortega, A. Pastrana-Palma,
and M. A. Aceves-Fernandez, “Location of mammograms
ROI’s and reduction of false-positive,” ComputerMethods and
Programs in Biomedicine, vol. 143, pp. 97–111, 2017.

[24] T. Kohonen, “*e self-organizing map,” Neurocomputing,
vol. 21, no. 1, pp. 1–6, 1998.
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