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Single-cell transcriptomics offers a powerful way to reveal the heterogeneity of individual cells. To date,
many information theoretical approaches have been proposed to assess diversity and similarity, and
characterize the latent heterogeneity in transcriptome data. Diversity implies gene expression variations
and can facilitate the identification of signature genes; while, similarity unravels co-expression patterns
for cell type clustering. In this review, we summarized 16 measures of information theory used for eval-
uating diversity and similarity in single-cell transcriptomic data, provide references and shed light on
selected theoretical properties when there is a need to select proper measurements in general cases.
We further provide an R package assembling discussed approaches to improve the researchers own
single-cell transcriptome study. At last, we prospected further applications of diversity and similarity
measures in support of depicting heterogeneity in single-cell multi-omics data.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The single-cell transcriptomic data is able to elucidate the
heterogeneous and state-dependent gene expression patterns. This
pattern likely reflects both the unique functions of individual cells
as well as the current and future trajectory of specialization/differ
entiation [37]. With the rapid development of single-cell sequenc-
ing techniques, the gene expression profiles of hundreds to thou-
sands single cells can be measured simultaneously [19]. The
high-throughput single-cell transcriptomic experiments provide
the opportunity to study the set of RNA transcripts relevant to cur-
rent state of each cell. More than 50,000 transcriptomic profiles of
cancer tissue samples have been collected since 2002. The gene
expression values measured on a tissue sample is the ensemble
expression of all its comprising cells, which are usually highly
heterogeneous. Under such circumstances, the ensemble expres-
sion may not represent the expression pattern of any individual
cells, thus the cell–cell difference within a tissue must be treated
with a great caution. The scRNA-Seq technology emerged to
unmask individual cellular properties, and scRNA-Seq data are
ideal objects to build reference maps of single cell behaviors. What
is more, with the use of certain machine learning techniques (such
as clustering) one may extract relevant subsets of cells together
with gene expression profiles which are used to define these sub-
sets. Such approach allow to uncover the differences in the diver-
sity of gene expression profiles of different cells, as well as the
similarities between RNA expression profiles of cells in distinct
clusters (functional subsets). This is particularly important when
studying gene expression on a single cell level in highly heteroge-
neous tissues and/or in non-mendelian disorders [24]. For exam-
ple, the highly heterogeneous expression patterns of cancer cells
define the intra-tumor sub-populations with diverse drug-
resistance levels and in turn result in different curative effects
causing relapses after specific treatments [34]. Accurate identifica-
tion of cell types based on the gene expression profiles is a neces-
sary but pivotal step in analyzing single-cell transcriptome data.
However, the high data sparsity and complexity leave a challenge
towards the accurate measurement of the heterogeneity and sim-
ilarity among cells and cell types [32,44].

Two concepts are commonly used to depict the heterogeneity in
single-cell transcriptome data analyses, i.e. diversity and similarity.
The diversity describes the variations of gene expression profiles
among cells, and lays a foundation for feature extraction and selec-
tion in support of novel biological insights derivation [25]. Mean-
while, the analysis of similarity allows to group cells with
relatively similar features, and enables the identification of cell
types/states which also refers to the cell clustering [33].
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Many algorithms and tools utilize the concepts of diversity
and similarity in single-cell transcriptome data analysis. Juan
et al. developed a novel biclustering method to separate regula-
tory signals and extract gene features by identifying the diversity
among local-low-rank gene modules [45,43]. Kim et al. applied
five common similarity measurements, including Euclidean, Man-
hattan distance, maximum distances, Pearson’s correlation, and
Spearman’s correlation coefficients to measure the diversity and
similarity for cell type prediction from single-cell transcriptomic
data [22]. Results showed that the choice of similarity metric
affects clustering performance, thereby leading to significant dif-
ferences in cell-type identification. Moreover, the concept of
entropy (which is associated with the uncertainty of a complex
system) has been extensively used to evaluate the diversity of
expression profiles among cells and lead to the identification of
distinct cell states [40,16]. According to that, Guo et al. and Liu
et al. used the single-cell entropy concept and proposed SLICE
and scEGMM [16], respectively, quantifying the differentiation
state of a given cell in an unbiased way, where the direction of
the transition was correctly estimated form a cross-sectional data
without sequential information. Moreover, Suo et al. evaluated
the ’activity entropy’ of co-regulated gene modules identified
from single-cell transcriptomic data using the Jensen-Shannon
Divergence, and unraveled the heterogeneous regulatory network
[38]. Our attention is mostly focused around diversity and simi-
larity indices that originate from information theory. We do not
discuss the neither the multidimensional distance measures
[39,5], the high-dimensional [14,10] or directional [4] depen-
dency concepts which are applied in the analysis of single-cell
transcriptomes. In this work, we review the methods for assess-
ment of the diversity and similarity of transcription profiles in
single cell systems. At the end we provide a R package that will
allow the readers to test presented measures on their data.

Throughout the article, we consider the contingency table
model, in which data (preferably gene counts) are arranged into
a two-way m� nð Þ table cij

� �
, with columns representing n differ-

ent cells and rows representing m genes that are potentially
expressed in any of these cells. Often, one may want to refer to a
given cell as being of ’a particular type’, therefore under the term
’type of a cell’ we understand a vector (profile) of relative gene
expression (for some well defied subset of all genes - usually ref-
ered to as markers). In statistical terms, we consider n independent
multinomial distributions p1 ¼ c11=

P
ci;1; . . . ; cm;1=

P
ci;1

� �
; . . .,

pn ¼ c1;n=
P

ci;n; . . . ; cm;n=
P

cin
� �

: We denote by um the vector of
uniform probabilities on the set 1;2; . . . ;mf gand by Dm�1the prob-
ability simplex in Rm

P0.

1.1. Diversity measures

The term ’diversity’ is one of the key concepts in many fields of
modern biological sciences (e.g. ecology, genetics). By diversity, one
typically understands the abundance of elements of a given popu-
lation. There are two main concepts associated with diversity and
its measurement – that is richness and evenness.It is worth noting
that here, we use evenness (in short) for the proportional abun-
dance of species, and not for the value of the diversity index relative
to its maximum. Richness translates into the number of genes that
are expressed in a cell of a given type, whereas the second one cor-
responds to the relative abundances of gene expression profiles in a
cell of a given type. Formally, consider a set ofm < 1 genes (RNAs)
and a population c ¼ c1; . . . ; cmð Þ 2 Nm

P0. We define diversity as.

Definition 1. For a given cell, i.e. a population c ¼ c1; . . . ; cmð Þ of m
genes, its richness is defined as the (often unknown) number
m0 :¼ j ci : ci – 0f gj its evenness is defined as p ¼ p1; . . . ; pmð Þ;
pi :¼ ciP
ck

and its diversity or fingerprint is the vector

F c ¼ v1; . . . ;vmaxici

� �
where vk ¼ j i : ci ¼ kf gj. Any nonnegative,

real function with values D F cð Þ 2 RP0 is called a measure of
diversity or an index of diversity.

For convenience we define the function D on the set of all non-
negative infinite sequences of natural numbers. It is also common
to impose the following set of conditions on the diversity index.
We will present these conditions as axioms.

Axiom 1. We shall say that a given diversity index D is:

� continuous if the multivariate function is continuous in each of
its coordinate variables

� symmetric if D is invariant to any permutation of its variables
� maximal on uniform if (for a set number of genes m) D is max-
imized by the vector um

Aside form these most common properties defined above, there
are several which are of additional interest. One of these is the
monotonicity of the diversity measure. Due to the multivariate
character of the diversity measurement, there are several ways in
which monotonicity may be defined. Below we present two such
approaches.

Remark 1. Let 1m ¼ 1; . . . ; 1ð Þ 2 Nm
P0 and denote by F 1m a vector

with v1 ¼ m and v i ¼ 0 for i > 1. We say that diversity index D is
monotone on uniform profiles if D F 1mð Þ is nondecreasing in m.

Let m > 0, p ¼ p1; . . . ;pmð Þ be a normalized gene expression
vector, 0 < i 6 m be a set gene. We say that the diversity index D is
nondecreasing with respect to the transfer of mass (total amount
of probability) from gene i (to a ’new’ gene) if for any 0 < � < pi
D pð Þ 6 D qð Þ; where q ¼ p1; . . . ; pi�1; pi � �; piþ1; . . . ; pm; �

� �
As stated above, the first definition requires only that the

diversity index is monotone with respect to the number of genes,
given that all genes are equally abundant in a set of cells. At the
same time, in the second condition one demands that the transfer
of abundance (gene expression) from one existing gene to a new
one always increases diversity. The detailed discussion of the
mutual relation between the above conditions goes far beyond the
scope of this short note.

As far as the transfer of abundance is concerned, there is one
more property which is often imposed on the diversity indices. In
this condition, one demands that the diversity increases as the
probability mass is transferred from a gene with higher expression
to a gene with lower expression.
Remark 2. Let m > 0, p ¼ p1; . . . ; pmð Þ be a normalized gene
expression vector and 0 < i; j 6 m be two genes, such that pi < pj.
We say that the diversity index D is nondecreasing with respect
to the transfer of mass from gene i to gene j if for any
0 < � < pj � pi we have D pð Þ 6 D qð Þ; where q ¼ p1; . . . ; pi�1; piþð
�; piþ1; . . . ; pj�1; pj � �; pjþ1; . . . ; pmÞ:

This condition is different in its nature form the monotonicity
with respect to transfer of mass to a new gene and is related to
the well-known mathematical property of order-preserving func-
tions (i.e. Schur-cocave functions).

1.2. Diversity Measures – examples

To date, there is a variety indices defined that are used in eco-
logical, genetical and molecular studies. One of the most obvious
ones is the richness - i.e. the number of genes expressed in a given
cell. As simple as it seems to be, it still remains one of the most dif-
ficult to estimate in practical studies when the theoretical richness
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of the studied system is much larger than the sample size that is
feasible to achieve. Recently, successful attempts have been made
to estimate diversity measures and richness via species accumula-
tion curves [8]. Yet, these general and elegant results do not pro-
vide ’optimal’ (most suitable under any sampling model)
methods for estimating diversity and/or richness. Additionally, it
is worth noting that in gene-level studies the population abun-
dances might be heavy-tailed and therefore the standard asymp-
totic theory for estimators of diversity might not apply (see
[2,30]). In molecular studies, the difficulties in learning the missing
mass may likely be best highlighted by the analysis of richness of
T- and B-cell antigen receptor populations [3,13]. At the same time,
the exact number of genes that are transcribed in the genome is
not known - esp. with the variety of different classes of non-
coding RNAs, some of which are highly unstable like eRNAs. We
will discuss briefly the aspect of estimation of the missing mass
in the subsequent section.

Below, we recall some of the best known and widely applied
diversity indices with a short description of their properties. Con-
trary to the richness estimator, the Berger-Parker index takes only
into account the relative expression level of the most abundant
gene in a given cell, it is defined as:

DBP pð Þ :¼ 1
max

i
pi

:

Although in many applications it is sufficient to use this index –
and sometimes desired as it is robust to rare events – it has a rather
pathological property being completely ’blind’ to transfer of mass
between non-abundant genes. The Simpson diversity index is
defined as the probability that when taking a simple random sam-
ple form a given population of genes, twice we select the same
entity, i.e. it holds that

DSI pð Þ :¼
X
i

p2
i :

Even though the definition of this index is quite intuitive, the
interpretation may be difficult – as high values of DSI reflect low
diversity. For this reason two other modifications of this index
are more commonly used:

DGS pð Þ :¼ 1� DSI pð Þ

and

DISI pð Þ :¼ 1
DSI pð Þ ;

where the first one is often referred to sa the Gini-Simpson index
and the latter as the Inverse Simpson Index. Yet, these measures
turn to be insufficiently sensitive to rare ’species’.

Probably the best known examples of diversity indices
are rooted in the information theory, see e.g. Tóthmérész [41],
Ricotta [36], Keylock [21] – in particular, the Shannon entropy
function

H1 pð Þ ¼ �
X

pi log pið Þ:

By the Jensen inequality we have that
H1 pð Þ 6 log mð Þ ¼ H1 umð Þ ¼ H1 F 1mð Þ and that H1 is monotone. The
H1 has numerous appealing properties – aside form the ones dis-
cussed of note is the additivity of entropy on product distributions
and the chain rule for entropy, which states that the joint entropy
of gene expression profiles in two cells equals the sum of the mar-
ginal entropy in one cell and the conditional entropy of gene
expression in the second cell given the expression profile in the
first cell. This particular property is not shared by a family of entro-
pies defined by A. Renyi:

Example 1 (Renyi Entropy). The Renyi entropy of order a 2 0;1½ �
is given by

Ha pð Þ ¼ 1
1� a

log
X

pai
� �

ð1Þ

for p 2 Dm�1, with the limiting cases of interest H0 pð Þ ¼ log mð Þ,
H1 pð Þ ¼ �Ppi logpiand H1 pð Þ ¼ � log maxipið Þ:The case a ¼ 2 in
the above example is sometimes known as the Rao quadratic
entropy [31] with the obvious relation to the Simpson index. It is
worth noting that the Renyi entropy of order a < 1 puts more
weight on genes with low expression levels and the Renyi entropy
of order a > 1 puts more weight on the highly expressed ones [35].
There exist another generalization of the Shannon entropy, which is
associated with non-extensive statistical mechanics and is called
Tsallis family of entropies [42]. One of the most important property
of these diversity indices is that the Tsallis entropy of order a– 1 is
non-additive on product distributions. The formal definition goes as
follows.
Example 2 (Tsallis Entropy). The Tsallis entropy of order a 2 0;1½ �
is given by

Ta pð Þ ¼ 1
a� 1

1�
X

pai
� �

ð2Þ

for p 2 Dm�1. For these two parametric families of entropy functions,
it was suggested that the analysis of diversity should be performed
as a function of the parameter a. Such approach has been applied in
various settings and is referred to as the analysis of diversity pro-
files (see Tóthmérész [41]).All diversity indices defined above have
values on completely different scales, therefore it is challenging to
compare the diversities of cells measured with the use of different
indices. This may be done via the concept of the effective number
of species (ENS) Jost [20]. Let c be an arbitrary population and D
be a diversity measure monotone with respect to the uniform distri-
bution. For any y of the form y ¼ mþ a (0 6 a 6 1) define
D F 1mþa
� �

:¼ 1� að ÞD Fmð Þ þ aD Fmþ1ð Þ. The ENS based on D is the
smallest solution y ¼ y0 of the equation

D F 1y

� � ¼ D F cð Þ:
Note that the ENS is typically less than the species number m and
may be noninteger. The ENS for the class of Renyi entropies are
called Hill numbers – i.e. we have.
Example 3. Set D ¼ Ha and a population p 2 NP0. The number

ma ¼ P
pai

� � 1
1�a for integer m is the ENS for this diversity index.

Note that for non-integer values of m we define ENS by the linear
interpolation. Note that the majority of diversity indices consid-
ered do share a number of important properties, but at the same
time are highly non-linear functions, and thus one encounters cer-
tain challenges when considering for instance the analysis of bias
for the so-called plug-in estimators. At the same time, since for
the single-cell experiments we are in the small n large p regimen,
it is unclear how does the undersampling bias affects the naive
estimators. We shall deal with these issues in the following
section.
1.3. Diversity Measures – estimators

In the present section, due to economy of space, we only con-
sider the problem of estimating the richness and the generalized
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family of Renyi diversity indices. One of the best known estimators
of population total is the Horvitz-Thompson estimator, which is
defined as follows (see [27]):
Example 4. Let c be a population of genes (i.e. a cell of a given
type) and assume that a sample gene expression profile S is
generated based on the scRNA-seq experiment with sequencing
depth N. Then the Horvitz-Thompson estimator of the population
total is given by:

MHT c; Sð Þ :¼
XM
i¼1

di Sð Þpi Sð Þ; ð3Þ

where di Sð Þ is the indicator of the event that the i-th gene was
observed at least once in our sample profile, and
pi Sð Þ :¼ 1� 1� pið ÞN is the inclusion probability of a gene i in a pro-
file of size N. In practical applications the pi is unknown and is sub-
stituted with its nonparametric estimator.

For the single-cell transcriptome profiling, the issue of under-
sampling bias may arises naturally due to huge diversity of gene
abundances per cell as well as the limitations on data collection
(cost of sequencing at very high depth). This problem of estimating
the missing mass is not new and has been previously studied for
example in the context of TCR sequencing. The core concept in ana-
lyzing the missing mass is the sample coverage. We describe it in
detail and first recall the following
Definition 2 (Coverage). Let X ¼ X1; . . . ;Xmð Þ denote a multino-
mial random variable Mult n;pð Þ and set Ii ¼ 1 if Xi > 0 and Ii ¼ 0
otherwise. The X-based sample coverage is given by

C ¼
X

pidi Xð Þ:

The sample coverage is a random variable and may be interpreted
as the posterior probability of discovering a new multinomial class
in the next sample given the information in the current sample. For
that reason it is used in molecular and ecological studies to estimate
the probability of discovering a new ”species” in a population [29].
The sample coverage is not available without knowing the normal-
ized abundance vectors a priori, yet, the following empirical esti-
mate, known as the Good-Turing coverage estimator, [15] proves
to be an excellent approximation. The Good-Turng empirical sample
coverage is given by

bC ¼ 1� f 1
n
; ð4Þ

where the symbol f i denotes the number of genes (species) in X
observed exactly i times, so that

P
f i ¼ n. The issue of estimation

of the sample coverage and the missing mass remains an active area
of research. The properties (consistency and normality) of the Good-
Turing estimator were originally studied by [11,12]. More recently,
a necessary and sufficient condition for the asymptotic normality ofbC was given by Zhang et al. [46]. At the same time, sufficient and
necessary conditions for the possibility of learning the missing mass
via any empirical estimator have been recently given [30]. These
conditions are associated with the tails of the distribution to be esti-
mated and based on the regularly varying functions. There are sev-
eral ideas on how to apply the coverage adjustment and Horvitz-
Thompson corrections to reduce the under-sampling bias in
entropy estimation (see [9]). In particular, the estimators con-
structed via adjusting the exponent of the Renyi and/or Tsallis
entropies [35] are seen to put more weight on the less frequent spe-
cies and hence, intuitively at least, should be reduce the under-
sampling bias. Moreover, as long as the sample coverage converges
to unity, the adjusted estimates are consistent under mild regularity
conditions. It is worth noting that the alternative approach which
uses species accumulation curves has been proposed by Chao and
Jost [8]. This method provides stable results and allows to reduce
the bias of both richness and diversity profile estimators. We indi-
cate the need for comprehensive (both theoretical and simulation-
based) comparison of this approach with other (more standard
methods) in regimens when the number of genes is much higher
than the sample size. Yet such comparative studies go beyond the
scope of the current short note.
Definition 3. Under the above notation, define the following cov-
erage and Horvitz-Thompson adjusted Renyi/Tsallis diversity index
by

H nð Þ
a pð Þ ¼ 1

1� a
log

X pai
1� 1� pið Þn

� 	
and

T nð Þ
a pð Þ ¼ 1

a� 1
1�

X pai
1� 1� pið Þn

� 	
:

Moreover define the coverage adjusted estimators of Renyi/Tsallis
entropies of order a by

HaC pð Þ ¼ 1
1� aC

log
X

paCi
� �

and

TaC pð Þ ¼ 1
aC � 1

1�
X

paCi
� �

:

The Horvitz-Thompson estimator is probably the best known exam-
ple of the estimator of population total in survey sampling. Yet,
there seems to be a better alternative with superior performance
under mild conditions, namely the Hajek estimator (see [17]). It
has a general form of a weighted average, where the weights are
the inverse inclusion probabilities. To best our knowledge, such
adjustments, based on the Hajek estimator, to general entropy func-
tions have not yet been made. Therefore we propose the following
example.
Example 5. Under the above notation, define the following cover-
age and Hajek adjusted Renyi/Tsallis diversity index by

H hnð Þ
a pð Þ ¼ 1

1� a
log

1P
1� 1� pið Þn� � X pai

1� 1� pið Þn
 !

and

T hnð Þ
a pð Þ ¼ 1

a� 1
1� 1P

1� 1� pið Þn� � X pai
1� 1� pið Þn

 !
:

It is of note, that under additional regularity conditions one may
define a diversity index which accounts for the unseen probability
mass explicitly and is directly related to the coverage-adjusted
Tsallis entropy index. Below, we present a heuristic reasoning
how such estimators may be constructed.
Remark 3. Let us consider a triangular array of probabilities pnið Þ
such that logn

P
ipni 1� pnið Þn�1 ! 0 and denote by Wn a random

variable such that P Wn ¼ log 1
pi

� �
¼ pi: Assume that an i.i.d. sample

Sn of size kn is drawn from the distribution pn1; . . . ; pnm nð Þ
� �

: By the

Taylor expansion (heuristically) we have
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X
i2Sn

pEbC
i � 1

1� EbC ¼

X
i2Sn

pi pEbC�1
i � 1

� 	
1� EbC

¼
X
i2Sn

pi log
1
pi

þ 1� EbC
2

X
i2Sn

pilog
2 1
pi

þ R;

where R ¼ o 1�EbC
2

P
i2Sn

pilog
2 1
pi

� 	
: Therefore we have

X
i2Sn

pEbC
i � 1

1� EbC �
X
i

pi log
1
pi

¼
X
i2Sn

pi log
1
pi

�
X

i 2 Snpi log
1
pi

þ 1� EbC
2

X
i2Sn

pilog
2 1
pi

�
X
iRSn

pi log
1
pi

þ R:

It is natural to treat the term
P

i2Sn
pi log 1

pi
as a good estimator of

the ’observed part’ of the Shannon entropy – which is
P

i2Sn
pi log 1

pi
:

By the above equation we note that in the coverage adjusted Tsallis

entropy an additional term – which is 1�EbC
2

P
i2Sn

pilog
2 1
pi
– is added

to correct for the ’unobserved part’ of the Shannon entropyP
iRSn

pi log 1
pi
: Therefore the question arises on the goodness of such

adjustment for ’unseen part’ of the entropy. Let us note that 1� EbC
is the estimator of the unseen probability mass (in the Good-Turing
sense). Therefore the correction term in the adjusted entropy esti-
mator is seen to be equal to the probability of the unseen part of
the distrubution times the estimator of the second moment of
the random variable Wn on the observed part of the ditribution.
Now, the question is whether the approximationP

iRSn
pi log 1

pi

1� EbC �
X
i2Sn

pilog
2 1
pi
:

that is associated with the coverage adjusted Tsallis entropy may be
corrected for certain types of distributions, and in turn be a better
estimator of the Shannon entropy may be proposed. Let us look at
the l.h.s. of the above equation as the expectation of the random
variableWn conditionally on the unobserved probability mass. With
this interpretation in mind we note the relation to the mean excess
function of a random variable – here, we are assuming that the
unobserved part of the distribution consists mostly of rare events.
The mean excess function is widely used in actuarial mathematics
in the context of power-law distributions. Thus we assume that
the random variable Wn has a distributon such that the sequence
of probabilities pið Þk2 1;...;m nð Þf g is a regularly varying (in Karamata’s
sense) sequence. Under such assumption we note that if
pið Þk2 1;...;m nð Þf g is regularly varying with index smaller then �1 then,
by the Karamata theorem, for sufficiently lagre d > 0; we haveX

i:log 1
pi
>d
pi log 1

pi

P W 1ð Þ
n > log 1

d

� � � d:

It is now clear, that in such case one may improve upon the
unseen part of the entropy by setting

bHPL ¼
X
i2Sn

pi log
1
pi

þ 1� bC� �
logn:

Moreover, in the case when pið Þk2 1;...;m nð Þf g is regularly varying with

index �1; which means that pi :¼ ln kð Þ
k where ln kð Þ is some slowly

varying function, and such that supn

P
ipi log 1

pi
< 1 from more

detailed analysis based upon Karamata’s theorem one may con-
clude that the slower the decay of the function ln, the better the per-
formance of the adjusted Tsallis entropy estimator is.

The analysis of diversity allows for comparison of certain sum-
mary statistics of the expression profile, however, in order to com-
pare expression profiles of two or more cells (and in turn classify
the cells into groups/clusters) one takes a different approach, based
on the idea of similarity measures. The theory of similarity mea-
sures is related to the concept of pseudometric spaces in mathe-
matics, yet to date (and best our knowledge) there is no unifying
definition of a measure of similarity.

1.4. Similarity measures

The comparisons of expression profiles of cells in high-
throughtput single-cell transcriptomic experiments are fundamen-
tal concepts that allow for the analysis of heterogeneity of cell
types in a given population as well as detection of ’novel’ cell types
via an unsupervised approach [22]. In this section, we consider n
cells c1; c2; . . . cn, each with at most m genes being expressed, so
that ci 2 Nm

P0 for i ¼ 1 . . . ;n. We aim to compare the supports
supp cið Þ of ci – i.e. quantify the Sn ¼ \n

k¼1supp ckð Þ: We start with
pairwise comparisons. The two most widely used overlap indices
are the Jaccard index and the Sorensen index.

Example 6 (Jaccard and Sorenson indices). Let c1; c2ð Þ 2 Nm
P0 �Nm

P0

be a pair of cells the Jaccard (J) and the Sorensen index (L) of
similarity are defined as follows

J c1; c2ð Þ ¼
P

min ci1; ci2ð ÞP
ci1 þ ci2ð Þ �Pmin ci1; ci2ð Þ

L c1; c2ð Þ ¼ 2
P

min ci1; ci2ð ÞP
ci1 þ ci2ð Þ :

Both the J and L indices, together with various modifications, are
widely used not only in ecological studies but also in molecular
immunology and transcriptomics (see, e.g., [7,18,23,26]). At the
same time, the geometric interpretation leads to a new family o
similarity measures, which are defined via the angle (or an appro-
priate angular measure) between two population vectors in Rm

P0.
The interpretation is obvious since the greater the angle, the more
dissimilar two populations tend to be. The most popular of such
measures is the Morisita-Horn index [28], which gives the cosine
of an angle between a pair of standardized population vectors.
Example 7 (Morisita-Horn index and Bhattacharyya’s coefficient).
Let c1; c2ð Þ 2 Nm

P0 �Nm
P0 be a pair of population vectors. The

Morisita-Horn index (MH) is defined as

MH c1; c2ð Þ ¼
2
X

k
ck1P
ci1

ck2P
ci2X

k
ck1P
ci1

� 	2

þ
X

k
ck2P
ci2

� 	2

or in terms of the inner products of the normalized populations
p1;p2,

MH p1;p2ð Þ ¼ 2p1p2

p2
1 þ p2

2

:

We have that 0 6 MH p1;p2ð Þ 6 1 and it attainis its minimum/max-
imum when c1 ? c2 and c1 ¼ c2, respectively. As expected from the
low-dimensional intuition this measure tends to be overly sensitive
to the highly abundant genes of c1 and c2. It is therefore desirable to
often use a more suitable index, known as the Bhattacharyya (BC)
coefficient and defined as the cosine of an angle between the vec-
tors

ffiffiffiffiffi
p1

p ¼ ffiffiffiffiffiffiffi
p11

p
; . . . ;

ffiffiffiffiffiffiffiffi
pm1

p� �
and

ffiffiffiffiffi
p2

p ¼ ffiffiffiffiffiffiffi
p12

p
; . . . ;

ffiffiffiffiffiffiffiffi
pm2

p� �
, i.e.
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BC p1;p2ð Þ ¼
X
k

ffiffiffiffiffiffiffiffiffiffiffiffi
ck1P
ci1

r ffiffiffiffiffiffiffiffiffiffiffiffi
ck2P
ci2

r
¼
X

pi1pi2ð Þ1=2:

The above considerations were generalized by the authors of
[35] to a slightly more general form of a geometric overlap index,
parametrized by two nonnegative numbers, which allows it to
put more weight on rare (resp. abundant) genes. The new index
may be viewed as an extension of the indices presented in the pre-
vious example.
Example 8 (PG index). For any pair p1;p2ð Þ 2 Dm�1 � Dm�1 and
a; b 2 0;1ð Þ the power-geometric (or PG) index of overlap is given
by

PGa;b p1;p2ð Þ ¼
P

pai1p
b
i2P

p2a
i1 þPp2b

i2

Form ¼ 2 the PG index is seen as the cosine of an angle between the

vectors pa :¼ pa11; . . . ;p
a
m;1

� �
and pb :¼ pb

12 . . .p
b
m;2

� �
. If a < 1; b < 1,

the PG index is less affected by the amount of intersection among
the most abundant species than the Morisita-Horn index. Similarly
to the Renyi entropy, the PG overlap measure can therefore be seen
as putting more weight on rare or abundant species, depending on
the value of the parameters a;b. In analogy with a diversity profile,
we refer to the function a ! PGa;a as a similarity profile. Note that for
a ¼ b ¼ 1 this is simply the Moristita-Horn index.

Perhaps the two most widely used families of similarity mea-
sures for clustering problems are the indices associated with: (1)
certain distance metrics in high dimensional Euclidean spaces,
and (2) mesures of correlation. Below, we recall the selected stan-
dard definitions for completeness:

Example 9. Let c1; c2ð Þ 2 Nm
P0 �Nm

P0 be a pair of population
vectors. For a set m P 1 we define the Minkowski distance (MK) as

MK c1; c2ð Þ ¼
X
i

j ci;1 � ci;2jm
 !1=m

:

It is known that the main pitfall of the Minkowski distance is
that it is dominated by the highly expressed genes (or the distance
between the most abundant genes). This led to a modified defini-
tion of the weighted Minkowski distance, yet this consideration
goes beyond the scope of this note. Closely related to this measure,
yet different in its concept as it is dependent on the ’geometry of
the data’, is the Mahalanobis distance, which is defined as the
weighted Euclidean distance (Minkowski with m ¼ 2), where the
weights are empirically defined by the covariance matrix R
between data points – i.e. we have

MA c1; c2ð Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 � c2ð ÞTR�1 c1 � c2ð Þ

q
:

One of the major issues with MA is that for the calculation of
this distance, one needs to invert the covariance matrix, which is
not a trivial task when strong linear relationships are present.

At the same time, the two most popular similarity measures
based on the measures o statistical dependency (correlation) are
worth mentioning – the Pearson and Spearmann correlations are
defined as:

PC c1; c2ð Þ :¼
X ci;1 � l1

� �
ci;2 � l2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ci;1 � l1

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ci;2 � l2

� �2q
0B@

1CA
�������

�������
and

SC c1; c2ð Þ :¼ 6
P

d2
i

n2 � 1ð Þn ;
where di :¼ rank ci;1
� �� rank ci;2

� �
and l1 and l2 are population

averages of c1 and c2 respectively. The last formula is valid only if
there are no ties in the sample.

The two measures of similarity based on correlation coefficents
are examples of the use of measures of statistical dependence in
defining similarity between data objects. Yet, both of these mea-
sures perform well almost exclusively in cases when linear depen-
dence is considered. Another way of measuring similarity is by
adapting certain concepts from information theory and signal pro-
cessing – it relies on the so-called (Renyi) divergence measures.
Such measures have been successfully utilized in the context of
independence testing in various settings. For instance, the problem
of testing for independence in contingency tables is a long standing
problem, dating back to the works of Karl Pearson, and still remains
unsolved for sparse tables. Below, we recall the definition of Renyi
divergence which has proven useful in this setting (see [1]).

Example 10 (Renyi Divergence). For a pair of normalized popula-
tions p1;p2ð Þ 2 Dm�1 � Dm�1, their Renyi divergence of order
a 2 0;1½ � is given by

Fa p1;p2ð Þ ¼ 1
a� 1

log
X pai1

pa�1
i2

� 	
:

Note that in the limiting cases we have F1 p1;p2ð Þ ¼ �Ppi1 log
pi1
pi2

� �
,

which is the Kullblack-Leibler divergence, and F1 p1;p2ð Þ ¼
� log maxi

pi1
pi2

� �
; as well as F1

2
p1;p2ð Þ ¼ �2 logBC p1;p2ð Þ:
1.4.1. Information Index
Based on this definition is a similarity measure defined by the

authors of [35]. It is a version of the generalized mutual informa-
tion statistic in two-way tables, and may be therefore viewed an
information-theoretical extension of the standard Pearson v2-
statistic (note that under appropriate conditions, that is ’near’ inde-
pendence of column and rows, the v2-statistic is a first order Taylor
expansion-based approximation to the Mutual Information). Let

P ¼ pij

� �
:¼ cijP

kl
ckl

� 
be a normalized matrix with columns

p1;p2; . . . ;pn. Denote also pi� ¼
P

jpij, p�j ¼
P

ipij and the row and
column marginals as P� ¼ p�1; . . . ; p�nð Þ 2 Dn�1, P� ¼ p1�; . . . ;ð
pm�Þ 2 Dm�1, as well as Q ¼ P� � P� :¼ pi� p�j

� �
. The main idea

behind the I � index is to measure the ’strength’ of the dependence
between marginals of the contingency table, instead of e.g. quanti-
fying the pairwise similarity of its columns-specific frequencies as
the independence in this table means that the column vectors are
proportional. The index is scaled, so as to take its values in the unit
interval. The I � index is defined as follows.

Definition 4. For any real m� n matrix C of nonnegative entries,
the I-index of order a 2 0;2ð Þ is defined as

Ia Cð Þ ¼ 1� Fa P;Qð Þ=H2�a P�ð Þ:
Remark 4. Note that in the case of a ¼ 1 we have

Q1 Cð Þ ¼ H1 P�ð Þ þ H1 P�ð Þ � H1 Pð Þ
H1 P�ð Þ

which is the mutual information index scaled by the Shannon
entropy of the column-marginal P�.

It follows from the definition that in the case when a > 1 the I-
index puts more weight on the entries of P with positive depen-
dence (i.e. when pij P pi�p�j) and in the case when a < 1, it puts
more weight on the entries with negative dependence (i.e. when
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pij 6 pi�p�j). This feature makes it potentially useful for analyzing
the dependence structure of a contingency table (see, for example,
[1]).In our setting, the positive dependence between the distribu-
tions P and Q ¼ P� � P� intuitively means that if a gene in one pop-
ulation is highly expressed, it also tends to be highly expressed in
the remaining populations, with the reverse statement being true
for the negative dependence.

2. Divo package

Aforementioned tools to asses the similarity and diversity of
expression profiles in single cell systems are assembled in the R
package ’divo’. The package is available from CRAN reposi-
toryhttps://CRAN.R-project.org/package=divo. For readers’ conve-
nience, we prepared an example code and dataset with brief
instruction on GitHub:https://github.com/MPiet11/Seweryn2020_
MiniReview.git. Using this code, the readers will be able to test
the functions described in this mini review on their own data.

3. Summary

The recent development of single-cell transcriptomics offers a
significant opportunity for understanding the heterogeneous sig-
natures in individual cells, and diversity and similarity measures
have been applied to evaluate the relationships in gene expressions
and cell types, respectively. We overviewed seven diversity and
nine similarity measures and showcased their applications in
single-cell transcriptome data analyses. Additionally, we assem-
bled these measures into an R package, named divo, to facilitate
wide applications for the community.

Despite much progress in analyzing the raw single-cell tran-
scriptome data, diversity and similarity measures can also help
evaluate advanced downstream analysis results, such as gene co-
expression networks [6], leading to a more comprehensive under-
standing of differences and commonalities among cells. Given the
generality of assessment measures in information theory, they
have the potential to be applied to other single-cell omics data,
e.g., genomics, epigenetics, proteomics, and metabolomics. Fur-
thermore, the fast-developed single-cell multi-omics data provides
a holistic view to better characterize cell heterogeneity by consid-
ering the synergistic effects among different omic layers. Such inte-
grative data is a trend in the future single-cell study and leaving a
challenge for the optimization of diversity and similarity measures.
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