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Abstract: Neonicotinoids are widely used systemic insecticides that have been associated with spider
mite outbreaks on diverse plants. These insecticides have complex effects on plant physiology,
which have been speculated to drive enhanced performance of spider mites. We used RNA-Seq to
explore how neonicotinoids modify gene expression in soybean thereby lowering plant resistance.
We exposed soybean (Glycine max L.) to two neonicotinoid insecticides, thiamethoxam applied to
seeds and imidacloprid applied as a soil drench, and we exposed a subset of these plants to spider
mites (Tetranychus cinnabarinus). Applications of both insecticides downregulated genes involved
in plant—pathogen interactions, phytohormone pathways, phenylpropanoid pathway, and cell
wall biosynthesis. These effects were especially pronounced in plants exposed to thiamethoxam.
Introduction of spider mites restored induction of genes in these pathways in plants treated with
imidacloprid, while expression of genes involved in phenylpropanoid synthesis, in particular,
remained downregulated in thiamethoxam-treated plants. Our outcomes indicate that both
insecticides suppress genes in pathways relevant to plant–arthropod interactions, and suppression of
genes involved in cell wall synthesis may explain lower plant resistance to spider mites, cell-content
feeders. These effects appear to be particularly significant when plants are exposed to neonicotinoids
applied to soybean seeds.
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1. Introduction

Insecticides indirectly affect crop yield by eliminating herbivores that compromise plant
productivity [1,2]. Until recently, it was assumed that insecticides did not directly affect plants. Recent
research, however, suggests that a group of insecticides commonly used in agricultural crop protection,
neonicotinoids, alter primary and secondary plant functions and reduce the ability of plants to
defend themselves against invertebrate herbivores unaffected by the toxicity of these insecticides [3–5].
Given the widespread, almost ubiquitous use of neonicotinoids in agricultural crops and ornamental
plants [6], exploring the consequences of these insecticides on plant transcriptome is a key step to
understanding their broader impacts on plant physiology and plant–arthropod interactions.

Neonicotinoids have complex, variable, and potentially beneficial effects on plant growth, vigor,
and stress response. For example, research in multiple plant species has demonstrated an association
between neonicotinoid applications and increased seed germination in bean (Phaseolus vulgaris) [7],
root growth in wheat (Triticum aestivum) [8], and seedling vigor in the presence of weed competition
in corn (Zea mays) [9]. Neonicotinoids can also alter stress tolerance of plants, including increased
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drought tolerance in soybean [10] and cold tolerance in wheat [11]. While the genetic mechanisms that
underlie these benefits are often unknown, these insecticides induced expression of the salicylic acid
pathway, which increased disease resistance in Arabidopsis thaliana [3]. However, these effects are not
consistent, which has been exemplified in several studies that report little benefit from neonicotinoid
exposure on germination or plant productivity in systems, such as soybean (Glycine max) [12,13].

Direct effects of neonicotinoids on plant physiology have been implicated in shaping
plant–herbivore interactions. In particular, outbreaks of several genera of spider mites (Acari:
Tetranychidae), which are cell-content feeding herbivores not susceptible to neonicotinoid
insecticides [14], have been associated with applications of these insecticides in diverse plant systems
including trees [15–17], shrubs [18,19], and crop plants [4,20,21]. These outbreaks can be severe in
their magnitude. For example, numbers of twospotted spider mites (Tetranychus urticae) feeding
on corn, cotton (Gossypium hirsutum), and tomato (Solanum lycopersicum) treated with neonicotinoid
insecticides increased by 30%, 60%, and 200%, respectively [2]. A similar outcome was reported in
field experiments in cotton, where neonicotinoid insecticide exposure resulted in spider mite densities
that were two to three times greater than in the untreated plants [21]. Toxicity of neonicotinoid-treated
plants to spider mite predators likely contributed to the outbreaks, but elimination of natural enemies
alone did not explain high populations of these pests in field experiments [15]. Instead, outbreaks
of spider mites were linked to suppression of host plant defense against these herbivores. This
was documented in cotton and corn plants that were exposed to thiamethoxam and clothianidin
seed treatments, respectively, and exhibited suppressed transcription of several genes involved in
plant resistance and lowered concentrations of plant hormones involved in plant defense against
arthropods [4].

Interactions between changes in plants triggered by neonicotinoids and defenses induced by
spider mite herbivory are likely to be complex. Phytohormone and gene expression analysis in multiple
plant species indicate that a defense pathway governed by the plant hormone jasmonic acid (JA) is
the predominant inducible plant defense employed against spider mite feeding [22–26], albeit a plant
hormone, salicylic acid (SA) involved primarily in pathogen defenses can be induced by spider mite
herbivory as well [27]. In fact, strong induction of the SA pathway was previously implicated in
increased population growth of spider mites by suppressing induction of the JA pathway via the
antagonistic cross-linkage (“cross-talk”) between these plant defensive pathways [22,28,29]. However,
there is significant variation in incidence and strength of the JA–SA cross-talk across plants [30] and
spider mites elicit responses regulated by both phytohormones [27,31]. It is noteworthy that the
neonicotinoids can affect the SA pathway [3,4], which could potentially interfere with the JA-regulated
defense response against spider mites. A previous study demonstrated a reduction in concentrations of
12-oxophytodienoic acid (OPDA), a precursor of JA in cotton (Gossypium hirsutum) and corn (Zea mays)
grown from seeds treated with neonicotinoid insecticides [4]. Notably, alteration of other pathways
can affect plant physiology and impact plant–arthropod interactions. For instance, repression of the
cell wall and lignin genes are implicated in increased susceptibility to herbivory [32–34], and the
neonicotinoid insecticide thiamethoxam has been previously shown to affect genes regulating cell wall
biosynthesis in soybean (Glycine max) [5].

The goal of this research was to quantify the global transcriptional responses of a crop plant,
soybean, to two neonicotinoid insecticides: thiamethoxam applied as seed treatments and imidacloprid
applied as a soil drench. Thiamethoxam seed treatments represent one of the most common methods
of neonicotinoid applications in crop plants [6], and imidacloprid soil drenches are prevalent in
vegetable [35–38] and fruit production [39]. We examined how the interaction between spider mite
herbivory and neonicotinoid exposure changed the soybean transcriptome, and quantified the effects
of neonicotinoid seed treatments on the abundance of spider mites (Tetranychus cinnabarinus) on
soybean. We hypothesized that the neonicotinoids would alter the transcriptome of soybean and affect
plant processes that impact plant resistance to spider mites. Outbreaks of these arthropods following
exposure to neonicotinoid insecticides have been reported previously [2,13–18], but this study is the
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first to explore global transcriptome changes in plants exposed simultaneously to the neonicotinoids
and the herbivore that may explain reduced plant resistance to spider mites.

2. Results

2.1. Neonicotinoid Insecticides Alone and in Combination with Spider Mite Herbivory Altered the
Transcriptome of Soybean Plants

Sequencing of 18 libraries generated 12.8 to 29.6 million reads from individual samples, and 8.08
to 18.97 million reads were uniquely mapped to a soybean reference genome (Gmax_275_Wm82.a2.v1).
On average, 98% of the reads mapped to the exonic regions (Supplementary File 1).

A total of 4418 differentially expressed genes (DEGs) were recovered, and 60% of them were
down-regulated. Neonicotinoid insecticide exposure in the absence of spider mites suppressed the
highest number of genes, with 988 and 735 genes down-regulated in response to thiamethoxam and
imidacloprid, respectively (Figure 1). A relatively low number of genes were up-regulated in these
plants, 177 for thiamethoxam- and 34 for imidacloprid-treated soybean. On the other hand, exposure
to spider mite herbivory alone elicited a general induction of genes, with 434 transcripts up-regulated
and 264 genes suppressed. Similarly, the majority of genes differentially expressed in plants exposed
to neonicotinoids and spider mites were up-regulated, albeit soybean treated with thiamethoxam
maintained a relatively high number of suppressed genes. These plants downregulated 435 transcripts
and induced 507 genes. It is noteworthy that imidacloprid exposure and spider mite herbivory elicited
the highest number of up-regulated DEGs, 619, while only 225 genes were suppressed.
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The overlaps among DEGs representing changes in soybean plants across treatments were 
further illustrated in Venn diagram (Figure 2). Thiamethoxam-treated soybean had the highest 
number of uniquely expressed genes (548), while imidacloprid-treated plants had the fewest (146). 
Imidacloprid-treated and untreated soybean exposed to spider mites expressed a comparable 
number of unique transcripts—367 and 326, respectively, while 222 unique genes were expressed in 
plants exposed to thiamethoxam and spider mite herbivory.  

Figure 1. Differentially expressed genes (DEGs) in soybean plants exposed to thiamethoxam (Thiam.),
imidacloprid (Imid.), spider mites, and the combination of the insecticides and spider mites. DEGs were
defined as having a fold change ≥2 or ≤−2 with a false discovery rate (FDR) adjusted p-value < 0.05.

The overlaps among DEGs representing changes in soybean plants across treatments were
further illustrated in Venn diagram (Figure 2). Thiamethoxam-treated soybean had the highest
number of uniquely expressed genes (548), while imidacloprid-treated plants had the fewest (146).
Imidacloprid-treated and untreated soybean exposed to spider mites expressed a comparable number
of unique transcripts—367 and 326, respectively, while 222 unique genes were expressed in plants
exposed to thiamethoxam and spider mite herbivory.
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Figure 2. Venn diagram representing overlap in DEGs across treatments and DEGs unique to each of
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and unique DEGs are presented in the diagram.

2.2. Neonicotinoid Insecticides and Spider Mites Affect Multiple Plant Pathways

Pathway enrichment analysis revealed that the insecticides altered a number of key plant
pathways in the absence and presence of the mites (Figure 3). Thiamethoxam treatments alone
affected the highest number of plant pathways, and the majority of these effects were suppressive.
Transcriptome changes in plants treated with thiamethoxam included down-regulation of genes
involved in plant hormone signal transduction, plant–pathogen interactions, and biosynthesis of
several defensive compounds. Further, imidacloprid exposure alone had a strong and exclusively
suppressive effect on plant–pathogen interaction and plant hormone signal transduction pathways.
Spider mites alone and in combination with either neonicotinoid insecticides generally induced
expression of genes in a number of plant pathways involved in primary and secondary metabolism.
The only exception to this trend was thiamethoxam-treated plants, where spider mite herbivory had
the weakest effect on induction of the plant hormone transduction and glucosinolate biosynthesis
and simultaneously downregulated several pathways, including the plant–pathogen interactions
pathway. It is noteworthy that the plant hormone transduction pathway was consistently affected by
the neonicotinoid insecticides in the presence and absence of spider mites (Figure 3).

Genes associated with a number of plant hormones were significantly affected by both insecticides
alone and in combination with the herbivore (Figure 4, Supplementary File 2). Most notable of these
were JA and SA, which play critical roles in plant–insect and plant–pathogen interactions. Exposure to
either insecticide significantly suppressed genes associated with both of these plant hormones. For
example, MYC2 (Glyma. 09G204500) transcription factor involved in the JA pathway and JA-mediated
resistance to insect pests [40–42] was down-regulated following imidacloprid exposure. Spider mite
herbivory, in turn, induced genes involved in the JA pathway, which were even further up-regulated
in plants exposed to spider mites and treated with imidacloprid. Moreover, all treatments had a
suppressive effect on genes involved in the SA pathway. For example, Glyma.15G062500, which codes
for Pathogenesis-Related Protein 1 (PR-1) involved in plant immune signaling and defense responses
against herbivores [43] was down-regulated in soybean plants treated with either insecticide and
exposed to spider mites alone or in combination with the neonicotinoids. It is noteworthy that spider
mite herbivory suppressed SA-related genes while inducing JA-associated genes, a cross-talk effect
between these two hormones common in plant–herbivore interactions [28,29]. Moreover, imidacloprid
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Figure 3. Pathways enriched in DEGs from soybean plants in response to thiamethoxam, imidacloprid,
spider mite, and the combination of both insecticides and spider mites. Enriched pathways were
selected based on an FDR corrected p-value < 0.05. Color of the bars refers to the −log2 corrected
p-value of the respective enrichment pathway, red colored bars up-regulated genes, and blue colored
bars indicate down-regulated genes. Length of the bar refers to the number of genes within the
respective pathway, and the darker the color, the higher statistical significance.
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Further, auxin, a plant hormone involved in regulation of plant growth [44] as well as plant
defense [42,45], appeared to be strongly affected by treatments as well (Figure 4, Supplementary File 2).
Both insecticides alone had a similar effect on genes involved in auxin signaling, with roughly half
of the differentially expressed transcripts up-regulated and half of them down-regulated. Notably,
imidacloprid and thiamethoxam treatments resulted in the suppression of three auxin-responsive
protein SAURs (Small Auxin Up RNA), that are involved in several aspects of plant growth and
development [46]. These genes, on the other hand, were up-regulated in plants exposed to spider
mites alone or in a combination of either insecticide. Moreover, three genes in the brassinosteroid
(BR) biosynthesis pathway that is involved in the induction of various detoxifying genes against
pesticides [47,48] were strongly up-regulated in thiamethoxam treated plants.

Expression patterns of individual genes involved in select pathways and significantly affected by
the two neonicotinoids alone and in combination with spider mites were further explored (Figure 5).
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These comparisons included genes involved in cell wall biosynthesis (Figure 5A), plant–pathogen
interactions (Figure 5B) and phenylpropanoid biosynthesis (Figure 5C). A trend common across these
plant functions includes a strong downregulation of genes in plants exposed to both neonicotinoids
alone. For example, thiamethoxam and imidacloprid suppressed a number of cell wall biosynthesis
genes involved in cell wall organization or biogenesis and cellulose metabolic processes (Figure 5A,
Supplementary File 3). Spider mite herbivory alone or in combination with either insecticide, on the
other hand, had no effect or induced expression of these genes. One notable example of this trend
includes a putative xyloglucan endotransglucosylase/hydrolase (XTH) gene, which cleaves xyloglucan
polymers involved in cell wall construction and growth [49]. Expression of this gene was strongly
down-regulated by thiamethoxam and imidacloprid, but up-regulated by spider mite herbivory alone
or in conjunction with either neonicotinoid insecticide. Further, both thiamethoxam and imidacloprid
reduced expression of a number of genes involved in glucose hydrolysis, GH28, GH17 [50], expression
of which was induced in plants exposed to spider mites across neonicotinoid treatments.
Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 18 
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Figure 5. Heat map of DEGs involved in cell wall biosynthesis and metabolism (A), plant–pathogen
interactions pathway (B), and phenylpropanoid biosynthesis pathway (C) in soybean exposed to
thiamethoxam, imidacloprid, spider mites, and the combination of either neonicotinoid insecticide and
spider mites. The color key represents log2-transformed fold change; red bars indicate induction of
expression, while blue bars represent a decrease in expression.

Likewise, both insecticides strongly suppressed genes involved in plant–pathogen interactions
(Figure 5B), including a number of genes involved in calcium binding and several WRKY transcription
factors (TFs) (Supplementary File 4). A number of genes from the Ca2+ sensors group encoding
calmodulin-like (CMLs) and calmodulin (CAM) proteins that are important in herbivore defense
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pathways in plants [51,52] were strongly suppressed in response to neonicotinoid treatments.
Expression of Glyma.17G128900, a putative calcium-binding protein was particularly strongly
suppressed by both insecticides but unaffected in plants exposed to the herbivore regardless of
insecticides treatments. Further, suppression of multiple genes from the WRKY family of TFs that is
unique to plants and is involved in regulation of defense responses to pathogens and insects [53,54]
was evident in soybean exposed to both insecticides. Several WRKY genes including WRKY19,
WRKY33 among others were significantly suppressed by thiamethoxam and imidacloprid, while
only WRKY19 was down-regulated in plants exposed to spider mites. Homologs of these WRKY
genes were previously implicated in hormone signaling pathways and response to abiotic stresses in
Arabidopsis [29,55], and a homolog of WRKY19, in particular, has been shown to be a key regulator of
cross-talk between SA and JA signaling pathways [56].

Expression of genes involved in the phenylpropanoid pathway was also affected by the
neonicotinoids and spider mites (Supplementary File 5). The phenylpropanoid pathway is a rich
source of metabolites in plants that act as a physical or chemical barrier in plant defense responses
toward biotic and abiotic stimuli [57,58]. Thiamethoxam alone suppressed the highest number of
transcripts in this pathway, including caffeic acid 3-O-methyltransferases (COMT), and PAL1 gene that
encodes phenylalanine ammonia-lyase and proxidases. Imidacloprid treatments suppressed a number
of these genes as well, while spider mite herbivory on untreated plants induced expression of only
two genes from this pathway, the peroxidase gene and putative mannitol dehydrogenase. Effects of
both insecticides on the suppression of phenylalanine ammonia-lyase are especially noteworthy as
it catalyzes the first step of the phenylpropanoid pathway, which is a key reaction in the control of
lignin, flavonoid, and salicylic acid biosynthesis [59]. This gene has also been shown to be affected by
neonicotinoid insecticides in previous research [4]. Moreover, several of the other genes associated with
the phenylpropanoid pathway that were suppressed by both neonicotinoid insecticides are involved
in cross-linkage of lignin precursors [60–62]. Mutations in the last steps of lignin biosynthesis through
phenylpropanoid pathway including COMT can reduce the lignin content, which can affect plant
defenses against insects [63,64].

2.3. Thiamethoxam Seed Treatments Increase Abundance of Spider Mites

Exposure to thiamethoxam seed treatments significantly increased the density of spider mites on
soybean (Figure 6). Spider mites were nearly 50% more abundant on thiamethoxam-treated plants
compared to the untreated soybean (F1.38 = 17.07; p < 0.001).
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3. Discussion

Exposure to either neonicotinoid insecticide in plants free of the herbivore significantly altered
transcriptome of soybean plants and suppressed genes regulating key plant functions, such as plant
hormone signaling, cell wall macromolecule metabolic process, lignin metabolic process, and defense
response. While spider mite herbivory generally restored expression of these transcripts, a prolonged
suppression of a suite of genes involved in primary and secondary metabolism is likely to render
plants more susceptible to herbivores unaffected by the toxicity of the neonicotinoids. This effect is
likely to be especially relevant in seed-treated plants that are exposed to neonicotinoid insecticides
from germination and for several weeks before herbivory. A previously published study describing
transcriptional responses in soybean exposed to thiamethoxam found similar key pathways including
hormone signaling, oxidative stress, and cell wall metabolism to be affected by thiamethoxam, albeit
significantly fewer overall changes in soybean transcriptome were reported [5].

Thiamethoxam had the greatest impact on soybean transcriptome in our experiment, and the effect
of both insecticides on soybean in the absence of spider mites was largely suppressive. Repression
of the JA pathway, in particular, is likely to affect subsequent responses of soybean to herbivory
and has been shown to play a key role in plant responses to cell content feeding herbivores, such
as spider mites [23,27,65]. Both neonicotinoids had a similar and almost exclusively suppressive
effect on SA-associated genes as well. Salicylic acid plays an important role in mediating induced
plant responses to pathogens in particular [66–68] but has also been implicated in plant resistance
to herbivores in general [69,70] and spider mites in particular [24]. Interactions between JA and
SA are mostly antagonistic, where induction of one of the hormones represses the other [28,71].
Interestingly, while spider mite herbivory resulted in a cross-talk between these two pathways, the
combination of imidacloprid exposure and the herbivore had the strongest effect on suppression of
two SA-associated genes and simultaneous induction of JA-related transcripts. This was also evident
in imidacloprid-treated plants fed upon by spider mites, but the magnitude of this cross-talk was lower.
It appears that the combination of the insecticides and spider mite herbivory can have a synergistic
effect on the expression of genes in this pathway.

Strong suppression of cell wall biosynthesis and metabolism processes evident in the
neonicotinoid-treated plants may explain this synergism. Secondary cell walls and lignin are critical
constitutive defensive barriers against pathogens and herbivores, and rapid reinforcement of these
structures is an important mechanism for increased plant resistance [34,72,73]. Down-regulation of
these genes by neonicotinoid treatments would likely facilitate puncturing cell walls and maneuvering
between epithelial cells to access the mesophyll where the mites feed [74,75]. This would also allow
cells to be ruptured at a faster rate and enhance the influx of defense-inducing effectors, including
JA-associated genes. A similar pattern was identified in grapevine, where increased feeding damage
by successful, grapevine-adapted mites induced a strong defensive response, while poor performing,
non-adapted mites induced a weak JA response in plants but were unable to survive on the plants [76].

The consequences of cell wall integrity to plant resistance have been explored in previous research.
For example, the melon gene VAT promotes resistance to Aphis gossypii (Hemiptera: Aphididae)
through induction of the hypersensitive response, which increases the lignin and callose content in
the cell walls surrounding the aphid stylet path and disrupts aphid feeding [74,77]. Similarly, brown
planthoppers, Nilaparvata lugens (Hemiptera: Delphacidae), perform better on imidacloprid-treated
plants in which lignin and flavonoid synthesis genes were down-regulated by the neonicotinoid
treatment [78]. Spider mites are also likely affected by cell wall integrity. In tomato, spider mite feeding
up-regulated several cell wall genes, and the repression of secondary cell wall synthesis genes in
tomato has been linked to the improved performance of T. urticae [27,33,65].

It is also noteworthy that genes involved in the biosynthesis of phenylpropanoids and flavonoids,
which are highly conserved and are relevant to plants’ induced defenses [65], were suppressed in
thiamethoxam-treated soybean. Gene for phenylalanine ammonia-lyase that was suppressed by
both insecticides in this study was previously shown to be suppressed in neonicotinoid-treated
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tomato and cotton exposed to spider mite herbivory, but not in corn [4]. Notably, we found
that both insecticides significantly reduced expression of genes involved in phenylpropanoid
pathway—peroxidases, and a similar suppression of peroxidases was also reported by a previous
study exploring neonicotinoid-induced changes in soybean transcriptome [5]. Peroxidases play a role
in oxidative stress response and are also involved in oxidative signal transduction, regulating the redox
and Ca2+ homeostasis as well as the expression of defense genes [79–81]. Reduction in expression
of these genes is likely to dampen plant resistance to herbivores and increase the susceptibility of
neonicotinoid-treated plants to spider mites.

Effects on soybean transcriptome elicited by neonicotinoid exposure in this study were reflected
in reduced resistance of soybean seedlings grown from thiamethoxam-treated seed, which supported
higher densities of spider mites than untreated plants. This outcome corroborates earlier reports
of neonicotinoid insecticides enhancing spider mite densities in crop plants [4,20]. It is noteworthy
that neonicotinoid insecticides exposure does not consistently result in higher spider mite densities,
and variability in the propensity of the neonicotinoids to trigger spider mite outbreaks is especially
evident in field research. For instance, spider mite abundance on soybean treated with thiamethoxam
seed treatments in the field did not differ from untreated plants [82], while cotton exposed to the
same insecticide had significantly higher spider mite densities than untreated cotton [4,21]. In yet
another study, Ruckert et al. reported outbreaks of Banks grass mite (Oligonychus pratensis) on
neonicotinoid-treated corn but only when the plants were under stress elicited by water deficit [20].
These examples highlight the complexity of the indirect effects of these insecticides on plant resistance
and spider mite fitness and performance.

We conclude that neonicotinoid insecticides suppress stress-responsive genes, especially those
involved in cell wall reinforcement. These results support other observational and experimental
evidence that neonicotinoids repress or delay the induction of stress-related genes [4,5]. This
dampening of stress gene induction then predisposes plants to increased spider mite herbivory,
which heightens the JA mediated defense response to spider mites in treated plants. The strong
defense response to mites indicates that the critical determinant of spider mite susceptibility in
neonicotinoid-treated plants is likely the repression of constitutive defense genes before herbivory
rather than a weakening of the expression of inducible defense genes. This research along with other
studies provides evidence that the neonicotinoids alter plants, but there is substantial variability
in outcomes of these changes depending on the host plant [3,4], abiotic [5,20], and biotic stresses.
Further research is needed to improve our understanding of the complex interactions between these
insecticides and plants, and their consequences to plant–herbivore interactions.

4. Materials and Methods

4.1. Plant Material, Neonicotinoid Treatments, and Spider Mite Colonies

Commercially available soybean Glycine max L. (var. S15-L5) seeds were obtained either pretreated
only with fungicides (Mefenoxam 0.0113 mg and Fludioxonil 0.0038 mg, Syngenta Crop Protection,
LLC, Greensboro, NC, USA) or pretreated with the same fungicides and thiamethoxam (CruiserMaxx®

applied at the label rate of 50 g of AI per 100 kg of seed; Syngenta Crop Protection, LLC). All seeds
were inoculated with rhizobial bacterial (N-Dure, INTX Microbials, LLC, Kentland, IN, USA), grown
in 15-cm pots in Sunshine® soil mix (SunGro, Agawam, MA, USA) within a growth chamber (PGC-10,
Percival Scientific Inc., Perry, USA) at a constant temperature of 27 ◦C, 16 h, 900 µmol/m2/s light
intensity and 50% humidity. Three weeks after germination, twelve untreated soybean plants at V3
stage (first three trifoliate leaves fully developed) were randomly chosen and exposed to a soil drench
using 0.024 g/100mL of water per pot of imidacloprid (Marathon® 75 WP, soluble powder formulation,
750 g of imidacloprid/kg).
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Spider mite (T. cinnabarinus) colonies were established from naturally occurring greenhouse
infestations. Mites were moved onto soybean plants grown from untreated seeds and maintained on
soybean plants for at least 3 generations before the onset of experiments.

4.2. Impact of Neonicotinoids and Spider Mite Herbivory on Gene Expression

The experiment was a factorial design with three levels of the neonicotinoid insecticide factor
(thiamethoxam—Thiam; imidacloprid–Imid; and the untreated control) and two levels of herbivory
(spider mites absent; spider mites present). Four weeks after germination, and one week after the
imidacloprid treatment, half the soybean plants were exposed to 50 adult spider mites. Mites were
moved onto the newest fully expanded trifoliate using a fine-tipped paintbrush, allowed to feed for
24 h, recounted, and then gently wiped from all leaves using a damp KimWipe (Kimberly-Clark).
Immediately after removing mites, the entire trifoliate was excised, placed into an individual 15 mL
tube (VWR International, Suwanee, GA, USA) and flash frozen in liquid nitrogen. All soybean plants
assigned to the absent treatment were sampled within the same hour and in an identical manner. Each
of the treatment combinations was replicated three times (N = 18), and each biological replicate was
composed of two sub-replicates. All samples were then stored at −80 ◦C until RNA extractions.

Total RNA was extracted from the entire excised soybean trifoliate by grinding ~100 mg of leaf
material in liquid nitrogen with a mortar and pestle. Ground sub-replicates were then combined, and
RNA from each biological replicate was extracted using an RNAqeous kit with Plant RNA Isolation
Aid (Thermo Fisher Scientific, Waltham, MA, USA) following manufacturers protocols. Total RNA
was sent to the Molecular Research LP facility (Shallowater, TX, USA) for quality assessment on a
2100 Bioanalyzer (Aligent, Santa Clara, CA, USA) and for cDNA library synthesis of poly-adenylated
mRNA using the Illumina TruSeq RNA Sample Prep V2 LS protocol (Illumina, San Diego, CA, USA).
All eighteen samples were sequenced at the facility on one lane of an Illumina HiSeq 2500 v4 machine
to produce an average output of 10 million, 150 bp paired-end reads per sample. All raw sequencing
reads have been submitted to the NCBI Sequence Read Archive and are available under BioProject ID:
PRJNA515005 (available online: http://www.ncbi.nlm.nih.gov/bioproject/515005).

4.3. Gene Expression Analysis

Sequence reads were imported into the CLC Genomics Workbench version 11 (Qiagen, Valencia,
CA, USA) and mapped to the G. max reference genome (Gmax_275_Wm82.a2.v1) [83]. Based on
the total read counts for each annotated gene, differential gene expression analyses were conducted
using the Empirical Analysis of the DGE tool, which implements the ‘Exact Test’ for two-group
comparisons [84]. The transcriptional response of soybean treated plants was compared to non-treated
spider mite-free plants (the control) to identify DEGs. Differentially expressed genes were defined as
having a fold change ≥2 or ≤−2 with a false discovery rate (FDR) corrected p-value < 0.05.

For functional annotation, GO analysis was performed using AgriGO gene ontology analysis
tools [85] to determine overrepresented GO categories in the up- and down-regulated DEGs, and
significantly enriched gene ontology GO terms were identified. Pathway analysis was performed
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [86] to underline the pathways
to which the up- and down-regulated DEGs contribute, and pathway enrichment analysis completed
using the KEGG Orthology Based Annotation System (KOBAS) server (version v.3) [87]. The overlaps
between different sets of DEGs were generated with Bioinformatics & Evolutionary Genomics
webtools [20].

4.4. Impact of Thiamethoxam on Abundance of Spider Mites

Soybean plants were grown from thiamethoxam-treated treated and untreated seeds as described
above. Plants were maintained in mesh insect cages (60 × 60 × 60 cm, Bug Dorm, BioQuip Products,
Rancho Dominguez, CA, USA), four plants per cage. All plants were contained within cages from
germination until the end of the experiments. Spider mites (T. cinnabarinus) used in the experiment
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were obtained from a colony maintained on soybeans for at least three generations. When plants were
at V3 stage (first three trifoliate leaves fully developed, approximately 2 wk following germination)
20 adult females of T. cinnabarinus were moved onto three fully expanded leaves of each plant using a
fine paintbrush. Spider mites were allowed to colonize and reproduce on the plants for three wk, and
plants were destructively sampled at the end of the experiment. Each soybean leaf was excised, and
mites were brushed off onto a glass disk using a mite brush (Model 2836M, BioQuip Products, Rancho
Dominguez, CA, USA), and counted using a dissecting microscope (Leica EZ4 HD, North Central
Instruments, Plymouth, MN, USA). An average density of spider mites was calculated per leaf. Each
treatment (thiamethoxam present/absent) was replicated 20 times, and each plant was considered
a replicate. Data were transformed (square root) to meet assumptions of normal distribution and
homogeneity of variance and analyzed using one-way analysis of variance with treatment as a fixed
effect [88].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/3/
783/s1.
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