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Abstract: New mesomorphic series, 4-hexadecyloxy phenyl-imino-4′-(3-methoxyphenyl)-4”-
alkoxybenzoates (An), were prepared and investigated with different thermal and mesomorphic
techniques. The synthesized homologous series constitutes four members that differ from each other
in the terminal length of flexible chain (n) attached to phenyl ester moiety, which varies between
n = 6, 8, 10, and 12 carbons. A lateral CH3O group is attached to the central benzene ring in the meta
position with respect to the ester moiety. Molecular structures of all newly prepared homologues
were elucidated via FT-IR, 1H and 13C NMR spectroscopy. Mesomorphic and thermal properties
were examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and
the mesophases identified by polarized optical microscopy (POM). DSC and POM examinations
revealed that all members of the present series (An) exhibit a purely enantiotropic nematic (N) phase.
Comparative evaluations and binary phase diagrams were established between the present homo-
logues and their corresponding shorter one (Bn). The examination revealed that, the length of the
flexible alkoxy chain incorporated into the phenylimino moiety is highly effective on the temperature
range and stability of the mesophase observed. With respect to the binary mixtures An/Bn, the
exhibited N phase showed to cover the whole composition range with eutectic behavior.

Keywords: schiff base/ester; Lateral methoxy; optical properties; nematic stability; binary phase dia-
gram

1. Introduction

The optical and mesomorphic characters of compounds are known to be mainly
dependent on their architecture, in which a slight change in the molecular geometry is
accompanied with considerable changes in their optical characteristics [1–6]. In order
to understand the relationship between the molecular shape and the liquid crystalline
(LC) properties is, in principle, a fundamental task in condensed material science, where
it enables scientists to prepare LC materials with the desired properties. The design of
new non-symmetrical compounds is associated with new molecular parameters. The
first LC material prepared at room temperature, 4-methoxybenzylidene-4′-butylaniline
(MBBA), was prepared by Kelker, H., et al. [7]. Several calamitic thermotropic LC Schiff
base/ester LCs have been investigated and are often evaluated their interesting optical
phenomena [8–14]. The geometrical studies indicated that each of the orientations of
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the ester within the rigid portion of the molecule, the location of azomethine and ester
linking groups, laterally protruded groups, and the terminal flexible chain length, have
important roles in the enhancement of the phase thermal stability. The rigid shape of the
azomethine molecule makes them essential for exhibiting the mesomorphic phase with a
high thermal stability [15–17]. Moreover, their interesting properties provide the possibility
of molecular mobility in response to light or heat, thus offering many opportunities in
photonic applications [18–21].

Generally, as the breadth of the molecule is increased, the thermal transitions of
formed mesophases will be reduced [22]. In such cases, the inclusion of a compact polar
lateral group to the main skeleton of the molecule influences the physical properties
of the resulting LC material, such as the melting point, phase transition temperatures,
morphology, dielectric anisotropy and dipole moment [23–26]. The small volume of lateral
substituent enables its attachment into the mesomorphic shape of the molecule without
being sterically disrupted, and accordingly, the LC mesophases can still be observed. On the
other hand, the increased intermolecular separation, affected by the addition of the lateral
group, broadens the core portion and leads to a reduction in the lateral interactions [27].
Furthermore, the longer flexible terminal chains in the molecules enhance their orientation
in parallel alignments [28]. Actually, the lateral or terminal polar substituents induce
the mesomeric properties of wide numbers of Schiff bases/ester derivatives [16,29]. The
conformation of the alkyl terminal chain causes highly effects in the thermal and physical
properties as the -CH2- and -CH3 numbers in the terminal chain changes from odd to even
in LC mesophases; this effect is named the odd-even effect in a series [30]. Compounds
with an odd number of C atoms in the terminal alkyl chain are more flexible than molecules
with an even number of CH2 units. This behavior results in a less uniform orientation of
LC materials [31]. Moreover, in the total chain length, odd and even numbers of C atoms
result in a different macroscopic characteristics [31,32]. Thus, the odd-even effect offers a
new mode to optimize mesophase and optical properties [33].

In order to dropping the melting temperature of a liquid crystalline material to be
close to room temperature, the mixing of two or more components was established. The
mixtures of LC show mesophase transitions and thermal properties that differ from their
individual components. Mixing of two or more LC components leads to tuning the
needed characteristics of interest [34–42]. Moreover, the binary LC mixtures could be
better established for many fields in certain applications [43]. Thus, the mesomorphic
characterization of such mixtures is of considerable interest [44–46]. These types of mixtures
have been shown to achieve lower melting points [46]. Furthermore, the mesophase
temperature range, observed for the eutectic mixture, is wider than either of its pure
components [44–47].

In our previous work [48], the thermal and optical properties of 4-hexyloxyphenylimino-
4′-(3-methoxyphenyl)-4”-alkoxy- benzoates were investigated and the results showed that all
the homologues studied possess the nematic mesophase enantiotropically. Herein, the aim of
present work is to synthesize a homologous series; namely, 4-hexdecyloxyphenylimino-4′-(3-
methoxyphenyl)-4”-alkoxy- benzoates, An, of long terminal alkyl chain length connected to
the end of phenyl azomethine linkage, with different alkoxy terminal groups of different
lengths, on the other end of the molecule (Scheme 1). The study will be extended to
investigate their mesomorphic behavior and the effect of the terminal length of alkoxy chain
(n) on their mesomorphic phenomena. Finally, binary mixtures of different azomethine
homologues bearing different terminal chain lengths were investigated in order to evaluate
the mesophase behavior in their mixed states.
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Scheme 1. Prepared homologues series, An.

2. Experimental
2.1. Synthesis

Schiff base and hydrazone derivatives are well known as valuable intermediates in the
synthesis of many organic compounds that are used in a multitude of applications [49–57].
A series of new laterally methoxy Schiff base derivatives An were prepared according to
the following Scheme 2:
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Scheme 2. Synthesis route of title compounds An.

2.1.1. Synthesis of 4-((4-(Hexadecyloxy)Phenyliminomethyl)-3-Methoxyphenol (3)

Details were inserted in Supplementary Data.

2.1.2. Synthesis of 4-((4-(Hexadecyloxy)Phenyl)Imino M thyl)-3-Methoxyphenyl4-
Alkoxybenzoate, An

Details were inserted in Supplementary Data.
Elemental analyses, Infrared spectra (FT-IR) and 1H-NMR, for the designed series

were agreement with the structures assigned. 1H-NMR results displayed the expected
integrated aliphatic to aromatic proton ratios in all prepared compounds.
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3. Results and Discussion
3.1. Mesomorphic Behavior of Investigated Series, An

The mesophase transition temperatures and optical behaviors of the investigated
laterally methoxy homologous series were evaluated by DSC and POM measurements. A
DSC thermogram of the homologue A8 is displayed in Figure 1 upon heating and cooling
cycles, as a representative example. Two transition peaks were observed in Figure 1.
The nematic mesophase was observed either from Cr→ N on heating, or from I→ N on
cooling. The position of the endothermic and exothermic peaks observed depended on
the length of the attached terminal alkoxy chain. The endothermic peaks were ascribed
to mesophase transition upon heating and the exothermic peaks upon cooling. Optical
images under POM confirm the DSC measurements. Figure 2 illustrates the POM nematic
phase texture of the A8 homologue, as an example. The phase transition temperatures,
as driven from measurements via DSC, and their associated enthalpies of transitions for
all of the homologues series, An, are collected in Table 1. In order to investigate the effect
of the length of the terminal alkoxy chain (n) on the mesomorphic properties of prepared
compounds, Figure 3 displays their relationship. As shown from Table 1 and Figure 3,
all the synthesized homologues are mesomorphic in nature with enantiotropic properties
and their thermal mesophase stability (the maximum temperature stability of the phase) is
dependent on their terminal flexible alkoxy-chain length (n). Moreover, all were shown
to possess a pure nematic phase. It can also be seen from Table 1 and Figure 3 that the
melting temperature of compounds varied as usual randomly with n. The shortest terminal
length member (A8) exhibits an N phase with thermal stability (TN-I) and a temperature
range (∆T) of 112.9 and 38.0 ◦C, respectively. For A10, it possesses also the enantiotropic
N mesophase with nematogenic stability and ranges that are nearly 112.2 and 35.5 ◦C,
respectively. The homologue A12 possesses less thermal N stability (110.1 ◦C) and the
N mesophase temperature range is nearly 37.0 ◦C. The longest derivative A16 exhibits
the lowest thermal N stability (108.7 ◦C) and the highest nematogenic temperature range
nearly 39.0 ◦C. In general, the shape of the molecule, polarizability and the dipole moment
of the designed molecule are highly impacted by the electronic nature of the terminal
substituents. Moreover, the mesomorphic behavior is influenced by an increment in the
polarity and/or polarizability of the molecular mesogenic cores. The nematogenic range
of the present investigated homologues series decreases in the order: A16 > A8 > A12 >
A10. Mesomorphic phenomena indicate the sharing of these factors with different extents.
The aggregation due to the oxygen of the alkoxy chain and the ester carbonyl moiety and
the cohesive forces between molecules are important factors that determine the observed
nematic phase [58,59].

Table 1. Mesomorphic transition temperatures (◦C), enthalpy (∆H) of transition, kJ/mole, and
normalized entropy (∆S/R) of transition for homologues An.

Comp. TCr-N ∆HCr-N TN-I ∆HN-I ∆T ∆SN-I/R

A8 74.9 62.39 112.9 1.59 38.0 0.50

A10 76.7 48.4 112.2 2.70 35.5 0.84

A12 73.1 40.90 110.1 1.56 37.0 0.49

A16 69.7 44.65 108.7 1.63 39.0 0.51
Cr-N = transition of solid to the nematic phase. N-I = transition of nematic to the isotropic liquid phase. ∆H =
Enthalpy of transition, kJ/mole derived from DSC peak of transitions; ∆S/R = ∆H/RT is the normalized entropy
of transition, unitless (due to the entropy change ∆S is divided by R = gas constant).



Polymers 2021, 13, 1687 5 of 12Polymers 2021, 13, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 1. DSC thermograms of homologue A8 recorded from the second heating and cooling cy-

cles at a rate of 10 °Cmin-1. 

 

Figure 2. N mesophase textures observed upon heating under POM for (a) homologue A8 at 107.0 

°C and (b) homologue A16 at 102.0 °C. 

Figure 1. DSC thermograms of homologue A8 recorded from the second heating and cooling cycles
at a rate of ±10 ◦C min−1.

Polymers 2021, 13, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 1. DSC thermograms of homologue A8 recorded from the second heating and cooling cy-

cles at a rate of 10 °Cmin-1. 

 

Figure 2. N mesophase textures observed upon heating under POM for (a) homologue A8 at 107.0 

°C and (b) homologue A16 at 102.0 °C. 
Figure 2. N mesophase textures observed upon heating under POM for (a) homologue A8 at 107.0 ◦C and (b) homologue
A16 at 102.0 ◦C.



Polymers 2021, 13, 1687 6 of 12

Polymers 2021, 13, x FOR PEER REVIEW 6 of 12 
 

 

T
ra

n
s

it
io

n
 t

e
m

p
e

ra
tu

re
 (

o
C

)

40

60

80

100

120

Cr

N

A8 A10 A12 A16

 

Figure 3. Impact of alkoxy chain length (n) on the mesomorphic behavior of the present investi-

gated series, An. 

The normalized entropy changes (ΔSN-I/R) of the prepared homologous series are 

summarized in Table 1. The results revealed that the value of the entropy changes is ob-

served to be related, independently, to the chains terminal length (n). The small values 

observed for the entropy change can be attributed to the decrease in the ratio of 

length/breadth as a result of their lower anisotropy due to their molecular shape and 

molecular biaxiality [60,61]. The induction, conjugation forces, the specific dipolar inter-

actions, as well as the π-π stacking interactions, play essential roles in the molecular 

orientation and thus in the arrangement of molecules, as well as in the formation of the 

mesophase. Moreover, the thermal cis/trans isomerization of the –CH = N- linkage was 

an essential factor in the observed entropy change values. The higher entropy changes of 
the A10 derivative may be attributed to the increment of its molecular biaxiality in addi-

tion to differences in its molecular interactions. 

3.2. Thermal Characterizations 

The thermal stabilities of the prepared compounds (An) were evaluated by ther-

mogravimetric analysis (TG). The TG thermogram and its corresponding derivative 
(DTG) of the homologue A8 is displayed in Figure 4, as a representative example. As can 

be seen from Figure 4, the decomposition takes place through two degradation steps 

depending on the molecular structure of the compound. The first step occurs in the 

temperature range ≈ 220–310 °C and starts at 240 °C with maximum degradation rate 

(Tmax) at 310 °C, indicating that the sample has a high thermal stability, while the second 

decomposition step occurs between 320 °C and 380 °C with maximum degradation rate ≈ 

340 °C. The results revealed that the investigated materials possess high thermal stabili-

ties of up to 340 °C, which covers the temperature window of phase transitions.  

Figure 3. Impact of alkoxy chain length (n) on the mesomorphic behavior of the present investigated
series, An.

The normalized entropy changes (∆SN-I/R) of the prepared homologous series are
summarized in Table 1. The results revealed that the value of the entropy changes is
observed to be related, independently, to the chains terminal length (n). The small val-
ues observed for the entropy change can be attributed to the decrease in the ratio of
length/breadth as a result of their lower anisotropy due to their molecular shape and
molecular biaxiality [60,61]. The induction, conjugation forces, the specific dipolar in-
teractions, as well as the π-π stacking interactions, play essential roles in the molecular
orientation and thus in the arrangement of molecules, as well as in the formation of the
mesophase. Moreover, the thermal cis/trans isomerization of the –CH=N-linkage was an
essential factor in the observed entropy change values. The higher entropy changes of the
A10 derivative may be attributed to the increment of its molecular biaxiality in addition to
differences in its molecular interactions.

3.2. Thermal Characterizations

The thermal stabilities of the prepared compounds (An) were evaluated by thermo-
gravimetric analysis (TG). The TG thermogram and its corresponding derivative (DTG) of
the homologue A8 is displayed in Figure 4, as a representative example. As can be seen
from Figure 4, the decomposition takes place through two degradation steps depending
on the molecular structure of the compound. The first step occurs in the temperature
range ≈ 220–310 ◦C and starts at 240 ◦C with maximum degradation rate (Tmax) at 310 ◦C,
indicating that the sample has a high thermal stability, while the second decomposition
step occurs between 320 ◦C and 380 ◦C with maximum degradation rate ≈ 340 ◦C. The
results revealed that the investigated materials possess high thermal stabilities of up to
340 ◦C, which covers the temperature window of phase transitions.
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Figure 4. TG (a) and DTG (b) curves of the compound A8.

3.3. Effect of the Proportionating of the Alkoxy Chain Length on the Mesomorphic Properties

The terminal alkoxy chain attached to the molecule has an essential role to impact
their mesomorphic transitions. In order to analyze the impact of the proportion of the
alkoxy chain length, which is connected to the terminal azomethine phenyl moiety, on
the mesomorphic phenomena of the series, a comparison was made between the phase
behavior of the present long-chain analogues (An) and the previously short chain homo-
logues series Bn [48] (Scheme 3) and the correlation is graphically depicted in Figure 5a
and their temperature ranges in Figure 5b. As can be seen from Figure 5a, the mesomorphic
thermal stability of Bn homologues are higher than those of An. This may be attributed to
the influenced mesogenic core dipole moments, which is dependent upon the mesomeric
nature of the short chain (CH2 = 6). The mesomorphic range (Figure 5b) of the Bn series
exhibits higher temperature ranges than those of An, except for n = 16 carbons. The present
homologous series An showed a wider nematic temperature range than the previously
investigated analogues, Bn. The constructed comparison revealed that the nematic thermal
stability, as well as its temperature range, depends also on the length of the alkoxy chain
attached to the phenylimino moiety. The flexibility of the terminal alkoxy chains and the
rigidity of phenyl rings in the central backbone are important in the LC phase formation.
Moreover, the semi-flexibility of terminals has a big role in the thermal stability of LC
phases. That is, as the terminal alkoxy chain length of the molecule increases, the rigidity
of the central part will be decreased; so, the linearity of the molecule slightly decreases due
to the greater number of configurations of the terminal chains (which lead to the strong
terminal interactions).
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3.4. Binary Phase Diagrams of Components of Different Terminal Alkoxy Chain Lengths

The binary mixture phase diagrams are changed depending on the kind of its indi-
vidual components. The different polarity, as well as the location of the lateral substituent,
is the main factors. The goal of such a study was to attain a balance between the two
components, which are expected to be improved on mixing, thus resulting in advantageous
physical and thermal properties, as well as depression of the melting transitions.

The constructed phase diagrams, derived from measured DSC curves of mixtures, are
made from different homologues with different alkoxy chain-lengths and are depicted in
Figure 6a,b. As can be seen from Figure 6a,b, the mixtures constructed from compounds
bearing short alkoxy-chain groups (A8/B8) and the longest terminal chains (A16/B16) were
shown to possess the N phase over the entire composition range. Slight decrements from
the ideal behavior are observed for the clearing temperatures of both systems. This may
be due to the molecular association disruption, as a result of the dis-similarity of the
alkoxy terminal chain lengths, in the two components as is observed in the previously
reported binary systems [62]. In both systems, their solid mixtures have eutectic melting
temperatures of 69.1 ◦C and 55.3 ◦C with eutectic compositions 79.9 and 59.6 mol% for
A8/B8 and A16/B16, respectively. On the other hand, the eutectic mixture of binary system
A8/B8 exhibits an N temperature range of nearly 47.0 ◦C, while the N range for the eutectic
mixture of the A16/B16 system is about 56.3 ◦C. It can be concluded that the two mixed
analogues An and Bn have different aspect ratios, in which one derivative is longer than
the other, which may be located in the organized directed geometry; so, the addition of the
designed derivatives of An are not expected to disturb the molecular arrangement of the
shorter homologues Bn. Typical DSC curve of heating and cooling scans of the mixture
A8/B8 of composition 80% mol of A8 (at eutectic composition) are displayed in Figure 7.
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4. Conclusions

A new homologue set based on the laterally-methoxy substituted azomethine deriva-
tives was synthesized and investigated with different optical and thermal techniques.
Molecular structures were confirmed by FT-IR and NMR spectroscopy. The optical, meso-
morphic and thermal properties were determined using DSC, POM, and TGA analyses.
The results revealed that all synthesized compounds exhibit only an N phase irrespective
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of their terminal alkoxy-chain length. Moreover, their thermal stability was examined
and shown to cover a higher stability than their mesomorphic transitions. A comparative
investigation was made between the present designed series and their corresponding short-
chain homologues. The study revealed that the attached flexible chain to the phenylimino
portion is more effective on the observed nematic temperature range and stability. The
binary phase mixtures of An/Bn showed an enantiotropic N phase covering the whole
composition range, with depression in the melting temperature at the eutectic composition.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13111687/s1. The synthetic and characterization details of investigated compounds.
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