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Abstract: Liver failure is an outcome of chronic liver disease caused by steatohepatitis and cholestatic
injury. This study examined substance P (SP) effect on liver injury due to cholestatic stress caused
by excessive bile acid (BA) accumulation. Chenodeoxycholic acid (CDCA) was added to HepG2
cells to induce hepatic injury, and cellular alterations were observed within 8 h. After confirming
BA-mediated cellular injury, SP was added, and its restorative effect was evaluated through cell
viability, reactive oxygen species (ROS)/inflammatory cytokines/endothelial cell media expression,
and adjacent liver sinusoidal endothelial cell (LSEC) function. CDCA treatment provoked ROS
production, followed by IL-8 and ICAM-1 expression in hepatocytes within 8 h, which accelerated
24 h post-treatment. Caspase-3 signaling was activated, reducing cell viability and promoting alanine
aminotransferase release. Interestingly, hepatocyte alteration by CDCA stress could affect LSEC
activity by decreasing cell viability and disturbing tube-forming ability. In contrast, SP treatment
reduced ROS production and blocked IL-8/ICAM-1 in CDCA-injured hepatocytes. SP treatment
ameliorated the effect of CDCA on LSECs, preserving cell viability and function. Collectively, SP
could protect hepatocytes and LSECs from BA-induced cellular stress, possibly by modulating
oxidative stress and inflammation. These results suggest that SP can be used to treat BA-induced
liver injury.
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1. Introduction

The liver is the largest and most essential organ responsible for the removal of waste
products and foreign substances from the bloodstream, control of blood sugar levels by
converting glucose into glycogen, and production of essential nutrients and hormones.
These roles imply that the liver contributes significantly to maintaining homeostasis and
metabolic processes in the body [1].

Liver disease is caused by various factors, including viruses, drugs, and alcohol con-
sumption. However, there are no obvious symptoms until >70% of the liver is destroyed.
Although fatigue, loss of appetite, indigestion, nausea, and vomiting are typical symp-
toms, it is not easy to suspect the development of liver disease based on these symptoms
alone. The representatives of critical liver diseases include hepatitis, alcoholic liver disease,
non-alcoholic fatty liver disease, primary biliary cirrhosis (PBC), and primary sclerosing
cholangitis (PSC). These diseases are accompanied by excessive fibrosis, which leads to
the development of cirrhosis and liver failure. Currently, there is no way to repair liver
damage that has progressed over a long period.

The liver produces bile, which is mucus that aids in the digestion of lipids. Bile
acids (BAs) are the major constituents of bile and are synthesized from cholesterol in the
hepatocytes. Primary BA is comprised of cholic acid and chenodeoxycholic acid (CDCA).
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Primary BA is secreted into the intestine, used for digestion, and then reabsorbed as
secondary BA, deoxycholic acid, or ursodeoxycholic acid (UDCA).

Some pathological conditions, including genetic defects, drug toxicity, and hepato-
biliary malignancies, can interrupt bile flow in the liver. In this case, BAs stagnate in
the liver, leading to cholestasis and a reduction in bile flow. This exerts a detrimental
effect on parenchymal/non-parenchymal cells within the liver [2]. Under cholestasis, BAs
cause endoplasmic reticulum (ER) stress, mitochondrial damage, dysfunction of hepatocyte
transport proteins for BA secretion, and defects in bile synthesis [3–7]. Constant BA stimu-
lation promotes cell apoptosis, which results from oxidative stress with increased reactive
oxygen species (ROS) generation [8]. Moreover, BA-damaged hepatocytes produce high
levels of inflammatory cytokines, including interleukin (IL)-1β, IL-8, and tumor necrosis
factor–α [9–13].

BA hydrophobicity determines its toxicity [13]. Based on its hydrophobicity, CDCA
is the most potent and harmful BA. A comparative study of the effect of diverse BAs on
hepatocytes demonstrated that CDCA could promote ER stress, ROS production, and
inflammation in hepatocytes within several hours, eventually leading to cell apoptosis [7].

Liver sinusoidal endothelial cells (LSECs) are specialized capillary endothelial cells
that are involved in the maintenance of metabolic and immune homeostasis, also acting as
a structural barrier [14–16]. Notably, LSECs are involved in the hepatic immune response
by regulating leukocyte recruitment and infiltration into the tissue [16]. If hepatocytes are
damaged by excessive BAs, they produce ROS and inflammatory and apoptotic factors,
which might induce LSEC dysfunction by negatively affecting viability and cellular charac-
teristics. Considering the critical role of LSECs, their functional loss is likely to exacerbate
the hepatic disease.

Various treatments were attempted to inhibit cholestasis progression. The farnesoid
X receptor ligand is a nuclear BA receptor, and ligand binding reduces inflammation and
hepatic BA production. Fibroblast growth factor-19 mimetics exert their effects by regulat-
ing BA synthesis to maintain homeostasis [17,18]. Immunosuppressive drugs were used to
ameliorate hepatic inflammation [19]. UDCA competitively removes toxic hydrophobic BA
molecules from cell membranes and organs, preventing damage to hepatocytes and bile
ducts [17,20–22]. Additionally, antioxidants were used to block cholestasis by preventing
BA-induced oxidative stress [23]. Despite these trials, conventional treatment did not
provide a satisfactory efficacy, and novel therapy is required.

Substance P (SP) is a neuropeptide that binds to the neurokinin receptor 1, prevent-
ing cell apoptosis and stimulating cell proliferation via Erk/Akt signaling activation [24].
SP can simultaneously control inflammation by elevating M 2 macrophage/regulatory T
cell portion in the circulation and lymphoid organ, leading to inhibition of acute/chronic
disease progression. Additionally, SP could protect cells against oxidative stress, which
can enhance cell viability [25–28]. It has previously been observed that SP can prevent
alcohol-induced hepatic apoptosis and alleviate inflammation in a bile duct ligation animal
model, possibly by increasing regulatory T cells and bone marrow stem cells [27,28]. Con-
sidering previously reported SP functions, it was assumed that SP could reduce BA-induced
inflammation and apoptosis, rescuing liver dysfunction by participating in regression of
inflammation or oxidative stress.

The objective of this study was to determine the restorative effect of SP on hepatocytes
damaged by BA in vitro. To mimic the cholestasis environment in vitro, hepatocytes were
exposed to CDCA, and injured hepatocytes were treated with SP. The recovery effects of
SP on damaged hepatocytes were evaluated by analyzing cellular activity, inflammatory
indicators, endothelial cell media (ECM) production, and ROS production in hepatocytes.
In addition, the hepatocyte secretome effect on the ability to induce LSEC vascular tube
structure was assessed in vitro.
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2. Materials and Methods
2.1. Materials

HepG2 cells were obtained from the American Type Culture Collection (Manassas, VA,
USA). Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) were
purchased from Gibco (Grand Island, NY, USA). LSECs and endothelial cell medium were
obtained from ScienCell Research Laboratory (Carlsbad, CA, USA). Phosphate-buffered
saline, penicillin/streptomycin, and trypsin-ethylenediaminetetraacetic acid solutions were
purchased from Welgene (Daegu, Korea). SP, phenylmethylsulfonyl fluoride (PMSF), and
CDCA were provided by Sigma Aldrich (St. Louis, MO, USA). Anti-GAPDH, anti-ICAM-1
(EP1442Y), and anti-caspase-3 (E87) antibodies (Abcam, Cambridge, MA, USA) were also
used. Anti-epithelial cadherin (E-cadherin) (24E10), anti-cleaved caspase-3 (Asp175), anti-
endothelial nitric oxide synthase (eNOS), and anti-phospho-eNOS (Ser1177) antibodies and
10X cell lysis buffer were obtained from Cell Signaling Technology (Danvers, MA, USA).

2.2. Cell Culture

HepG2 cells were cultured in DMEM containing 10% FBS and 100 U/mL peni-
cillin/streptomycin at 37 ◦C and 5% CO2. LSECs were cultured in endothelial cell medium
(ScienCell Research, Carlsbad, CA, USA). The culture medium was changed every other
day. Images were obtained using a microscope (Nikon Eclipse; Tokyo, Japan). Conditioned
HepG2 medium was added to LSEC culture media at a 1:1 ratio to check the effect of
hepatocytes on endothelial cells in vitro.

2.3. Cell Viability Assay

HepG2 (2.0 × 104 cells/well) were seeded in 96-well plates and incubated at 37 ◦C.
CDCA was administered at the indicated dose. SP was added to the HepG2 cells 8 h after
CDCA treatment. To examine cell viability, WST-1 solution (Roche, Indianapolis, IN, USA)
was added to each well at 10% of the total volume of the medium, and the plates were
incubated for 2 h. The absorbance was measured at 450 nm using a plate reader (Molecular
Devices). The cellular activity under each experimental condition was expressed as a
percentage relative to the activity of the control group.

2.4. Western Blot

HepG2 cells and LSECs were lysed with lysis buffer/2 mM PMSF solution. Lysates
were collected via centrifugation at 12,000 rpm for 20 min at 4 ◦C. Protein concentration was
determined using a BCA protein assay kit (Thermo Fisher Scientific, Rockford, IL, USA).
Lysates were denatured and electrophoresed using sodium dodecyl sulfate polyacrylamide
gel electrophoresis. The separated proteins were transferred onto nitrocellulose membranes.
The membrane was blocked with 5% skimmed milk and incubated with primary antibodies
overnight at 4 ◦C. After washing with TBS containing 0.1% Tween 20, the membrane was
incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h at room
temperature. Blots were developed using EZ-Western Lumi Pico (Dogenbio, Seoul, Korea)
and visualized using Amersham imager chemiluminescence (GE Healthcare, Chicago, IL,
USA). Expression levels were quantified using ImageJ software.

2.5. SP Administration

SP treatment was carried out 8 h post-CDCA treatment at a final dose of 100 nM. Saline
was used as a control for SP treatment.

2.6. Cytokine Measurement of Cytokines Using Enzyme-Linked Immunosorbent Assay (ELISA)

Conditioned media was prepared via centrifugation at 1500 rpm for 5 min at 4 ◦C. Hu-
man IL-8 and pigment epithelium-derived factor (PEDF) concentrations were determined
according to the manufacturer’s instructions (IL-8, PEDF simple stem ELISA kit; Abcam,
Cambridge, MA, USA).
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2.7. ROS Measurement

ROS generation was detected using 2′,7′-dichlorofluorescein (Cellular ROS assay kit,
Abcam, Cambridge, MA, USA). ROS intensity in HepG2 cells was expressed relative to the
control group.

2.8. Alanine Aminotransferase (ALT)/Alkaline Phosphatase (ALP) Assay

The activity of ALT from HepG2 was detected using the ALT/ALP Activity Assay Kit
(Abcam, Cambridge, MA, USA).

2.9. Tube Formation Assay

LSECs were cultured in ECM. To evaluate the paracrine effect of hepatocytes, conditioned
medium (CM) of HepG2 cells was added to LSECs at a 1:1 ratio (HepG2 CM: Endothelial cell
medium = 1:1) and incubated for 24 h. Then, 10 µL of Matrigel were evenly distributed to each
µ-slide well (ibidi GmbH, Gräfelfing, Germany). LSECs (6.0 × 103 cells/well) were treated
with Matrigel (Corning, NY, USA) on a microslide. The formation of tube-like structures by
LSECs was monitored for 16 h. Images were obtained with a microscope (Nikon Eclipse).
To quantify the ability to form a tubular structure, the net/ring structure was considered as
a mesh. The average edge length of the mesh was regarded as a segment. The number of
meshes and length of segments was measured using ImageJ software.

2.10. Statistical Analysis

All data are presented as means ± standard deviation. Statistical analyses were
performed using GraphPad Prism (GraphPad Software, San Diego, CA, USA). Differences
were considered statistically significant at p < 0.05 and were interpreted to denote statistical
significance (* p < 0.05, ** p < 0.01, *** p < 0.001). Statistical analysis was performed using
an unpaired two-tailed Student’s t-test.

3. Results
3.1. BA Reduced Hepatocyte Cellular Activity, Accompanied by Inflammation

To determine whether the initial CDCA dose was detrimental to HepG2 cells, they
were exposed to different concentrations of CDCA and incubated for 8 h or 24 h. The cell
morphology, viability, and inflammatory factors in HepG2 cells were analyzed.

CDCA altered cellular morphology within 8 h of treatment (Figure 1A). While 50 µM
CDCA did not impair cellular shape, a dose above 100 µM seemed to moderately affect
the cellular junction. Notably, 400 µM CDCA clearly disturbed cellular shape, showing a
vague barrier, and 800 µM CDCA induced cell death via cell detachment. As predicted, cell
viability decreased in a dose-dependent manner (Figure 1B, 100 µM: 88.25 ± 2.96%, 200 µM:
86.43 ± 4.07%, 400 µM: 65.45 ± 1.22%, 0 µM vs. 100 µM p < 0.01, 0 µM vs. 200 µM p < 0.01).

Stimulation of HepG2 cells with CDCA for 24 h exceedingly interrupted their mor-
phology (Figure 1C). Cell viability was also reduced much more than after 8 h (Figure 1D,
100 µM: 87.03 ± 15.27%, 200 µM: 73.79 ± 0.18%, 400 µM: 35.06 ± 0.52%, 0 µM vs. 200 µM,
p < 0.001). Consistent with cell viability, quantitative analysis for cell morphology revealed
that a dose above 200 µM CDCA increased cell size with weakened cellular junction from
8 h and, 800 µM CDCA induced cell attachment, maintaining the minimal size of hepatocyte
(Figure S1).

Remarkably, the 100 µM CDCA treatment was likely to cause HepG2 damage at
8 h, but this effect disappeared at 24 h. This indicates that 100 µM CDCA did not cause
irreversible damage to HepG2 cells; thus, 100 µM CDCA was excluded from further
experiments. As shown in Figure 1B,D, 200 µM was determined as the optimal dose of
CDCA for impairing HepG2 cells.
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24 h (C,D) after CDCA treatment. Scale bar: 100 µm. Cell viability was determined using the WST-
1 assay and represented relative to the control group. (E) ICAM-1 expression was analyzed via 
Western blotting at 8 h after 200 µM CDCA treatment and quantified relative to GAPDH using the 
Image J software. (F,G) The conditioned medium of HepG2 cells with CDCA for 8 h was collected 
and then analyzed for the production of interleukin (IL)-8 (F) and pigment epithelium-derived 
factor (G) via enzyme-linked immunosorbent assay (ELISA). The values represent the means ± 
standard deviations of three independent experiments. ** p < 0.01,*** p < 0.001, n.s: non significant. 
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Figure 1. Chenodeoxycholic acid (CDCA) reduces cellular activity and induces inflammatory features
in hepatocytes. CDCA effect on hepatocytes was analyzed. HepG2 cells were exposed to various
concentrations of CDCA, and cell morphology and viability were evaluated 8 h (A,B) and 24 h (C,D)
after CDCA treatment. Scale bar: 100 µm. Cell viability was determined using the WST-1 assay
and represented relative to the control group. (E) ICAM-1 expression was analyzed via Western
blotting at 8 h after 200 µM CDCA treatment and quantified relative to GAPDH using the Image
J software. (F,G) The conditioned medium of HepG2 cells with CDCA for 8 h was collected and
then analyzed for the production of interleukin (IL)-8 (F) and pigment epithelium-derived factor
(G) via enzyme-linked immunosorbent assay (ELISA). The values represent the means ± standard
deviations of three independent experiments. ** p < 0.01,*** p < 0.001, n.s: non significant.

CDCA creates an inflammatory environment in the liver by increasing the ECM
expression of ICAM-1 and inflammatory cytokines [29]. These cellular changes may be the
primary cause of hepatic inflammation and fibrosis. In particular, IL-8 recruits neutrophils
that attach to ICAM-1 to infiltrate tissue. Thus, modulation of IL-8 and ICAM-1 may
prevent the exacerbation of hepatic inflammation.

Consistent with previous reports, CDCA-induced ICAM-1 and IL-8 expression were
repeatedly detected in this study (Figures 1E,F and S2). Additionally, PEDF is an endoge-
nous factor produced in hepatocytes that inhibits liver fibrosis by modulating hepatic
stellate cells. In the presence of CDCA, PEDF secretion severely declined within 24 h after
CDCA treatment (Figure 1G).
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These results suggest that CDCA deteriorates HepG2 cellular activity and induces
inflammation within 8 h. If these conditions are sustained, hepatic cell death and functional
loss can occur.

3.2. SP Prevented CDCA-Induced Hepatic Cell Death

CDCA-mediated cellular damage was observed at 8 h after treatment and was in-
creased at 24 h (Figure 1A). It has previously been observed that SP suppresses inflammation
in the liver and restores cellular activity against diverse stressors [28,30,31]. To determine
whether SP is capable of recovering hepatocytes damaged by CDCA, SP was added to
HepG2 cells pretreated with CDCA for 8 h. The effect of SP was examined 24 h post-CDCA
treatment (Figure 2A).

Antioxidants 2022, 11, x FOR PEER REVIEW 6 of 12 
 

experiments. As shown in Figure 1B,D, 200 µM was determined as the optimal dose of 
CDCA for impairing HepG2 cells. 

CDCA creates an inflammatory environment in the liver by increasing the ECM 
expression of ICAM-1 and inflammatory cytokines [29]. These cellular changes may be 
the primary cause of hepatic inflammation and fibrosis. In particular, IL-8 recruits 
neutrophils that attach to ICAM-1 to infiltrate tissue. Thus, modulation of IL-8 and ICAM-
1 may prevent the exacerbation of hepatic inflammation. 

Consistent with previous reports, CDCA-induced ICAM-1 and IL-8 expression were 
repeatedly detected in this study (Figures 1E,F and S2). Additionally, PEDF is an 
endogenous factor produced in hepatocytes that inhibits liver fibrosis by modulating 
hepatic stellate cells. In the presence of CDCA, PEDF secretion severely declined within 
24 h after CDCA treatment (Figure 1G). 

These results suggest that CDCA deteriorates HepG2 cellular activity and induces 
inflammation within 8 h. If these conditions are sustained, hepatic cell death and 
functional loss can occur. 

3.2. SP Prevented CDCA-Induced Hepatic Cell Death 
CDCA-mediated cellular damage was observed at 8 h after treatment and was 

increased at 24 h (Figure 1A). It has previously been observed that SP suppresses 
inflammation in the liver and restores cellular activity against diverse stressors [28,30,31]. 
To determine whether SP is capable of recovering hepatocytes damaged by CDCA, SP 
was added to HepG2 cells pretreated with CDCA for 8 h. The effect of SP was examined 
24 h post-CDCA treatment (Figure 2A). 

 
Figure 2. Substance P (SP) protects hepatocytes against CDCA-induced damage. The protective 
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was added. After 16 h, the cell viability and cellular function of HepG2 cells were assessed. (B) The 

Figure 2. Substance P (SP) protects hepatocytes against CDCA-induced damage. The protective
effects of SP against CDCA-induced hepatic injury were examined. (A) Experimental design for
CDCA and SP treatment of HepG2 cells. HepG2 cells were treated with CDCA for 8 h, and then SP
was added. After 16 h, the cell viability and cellular function of HepG2 cells were assessed. (B) The
cellular shape of HepG2 cells treated with CDCA or SP. Scale bar: 100 µm. (C) Cell size was measured
by image J. (D) The viability of HepG2 cells treated with CDCA and SP was evaluated using the
WST-1 assay. (E) Protein levels of cleaved caspase-3 and total caspase-3 were determined via Western
blotting and quantified using the Image J program. The results were compared to the total caspase-3
level. (F,G) Alanine transaminase and alkaline phosphatase activity in HepG2 cells were assayed.
The values shown represent the means ± standard deviations of three independent experiments,
* p < 0.05, ** p < 0.01, *** p < 0.001.

The untreated group showed a compact cellular colony with a distinct barrier, whereas
CDCA treatment provoked a broken boundary and morphological alteration (Figure 2B).
To some extent, CDCA-induced cellular changes were accompanied by a reduction in
E-cadherin (Figure S3). However, SP-treated cells showed a more compact boundary, which
led to the preservation of E-cadherin levels. Morphological analysis showed that SP treat-
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ment could alleviate enlargement of cell size due to CDCA (Figure 2C). Cell viability analy-
sis confirmed that SP inhibited CDCA-reduced cell viability (Figure 2D, non-treated control:
100 ± 4.67%, CDCA: 72.81 ± 2.29%, CDCA + SP: 90.86 ± 5.3%; CDCA vs. CDCA + SP,
p < 0.001).

To determine whether CDC-reduced cell viability is due to apoptosis, cleaved caspase-
3 expression was assessed via Western blotting (Figure 2E). CDCA treatment elevated
cleaved caspase-3 level, which was suppressed by SP treatment.

Alanine transaminase (ALT) and alkaline phosphatase (ALP) are used as representative
indicators of liver damage [32]. CDCA increased ALT/ALP, but SP reduced ALT/ALP
secretion in HepG2 cells treated with CDCA (Figure 2E). This corroborates the information
that SP treatment can block BA-induced hepatic damage by preserving hepatic cell viability
(Figure 2F,G).

3.3. SP Ameliorated BA-Induced Hepatic Inflammation and Oxidative Stress

ROS are activators of inflammatory factors in various cells, and excessive ROS produc-
tion can exacerbate inflammation, eventually leading to lethal disease [29–31]. CDCA can
enhance ROS production in hepatocytes, leading to oxidative stress, inflammation, and cel-
lular senescence [5,33,34]. Figure 3A shows that CDCA created ROS-enriched conditions in
HepG2 cells; however, SP treatment relieved this change. CDCA-induced oxidative stress is
anticipated to be highly related to the induction of inflammatory factors including IL-8 and
ICAM-1. At 24 h post-treatment of CDCA, IL-8 and ICAM-1 levels were extremely elevated
in HepG2, which were clearly decreased in SP-treated cells (Figure 3B,C). This confirmed
that the CDCA-induced pro-inflammatory condition was inhibited by SP treatment, which
might occur by modulating ROS generation.
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Figure 3. SP prevents CDCA-induced inflammation in hepatocytes. (A) Reactive oxygen species
(ROS) generation in HepG2 cells was measured using a cellular ROS assay kit. (B) IL-8 concentration
in HepG2 cell-conditioned media was checked using ELISA. (C) ICAM-1 protein level was assessed
via Western blotting and quantified using the Image J program. The values shown represent the
means ± standard deviations of three independent experiments, * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.4. SP Protected the Hepatic Endothelium against BA-Damaged Hepatocyte Paracrine Action

LSECs are localized next to hepatocytes and maintain their structural and functional
features by interacting with hepatocytes and immune cells. Thus, hepatocyte dysfunction
inevitably affects LSEC activity. CDCA-treated HepG2 cells produced ROS and inflam-
matory cytokines (Figures 1 and 3). To examine whether soluble factors from damaged
hepatocytes impair LSEC viability or migratory action, the conditioned medium (CM) of
HepG2 cells was used to treat LSEC for 24 h, and LSEC activity and function were evaluated
(Figure 4A).
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Figure 4. SP ameliorates LSEC injury due to secretory factors from CDCA-damaged HepG2 cells.
(A) In order to check the effect of secretory factor of hepatocyte on function of LSECs, CM, CMCDCA,
and CMCDCA+SP were added to LSEC in a ratio of 1:1. (B) LSEC morphology was comparatively
observed 24 h later. Scale bar: 200 µm (C) LSEC viability was evaluated via the WST-1 assay,
and it is shown relative to the control-CM group. (D) Protein levels of cleaved caspase-3 in LSEC
were analyzed via Western blotting and expressed relative to total caspase-3. (E) Protein levels
of phospho-endothelial nitric oxide synthase (eNOS) were determined via Western blotting, and
its expression level is shown relative to total eNOS. (F) LSEC ability to form a tubular structure
was assessed on Matrigel, and quantification based on meshes and segments was carried out. CM:
Conditioned medium of HepG2, CMCDCA: Conditioned medium of HepG2 with CDCA, CMCDCA+SP:
Conditioned medium of HepG2 with CDCA and SP; Meshes: full reticulated tubes; segments: the
tubes completely connected to each other. The values shown are the means ± standard deviations of
three independent experiment, * p < 0.05, ** p < 0.01, *** p < 0.001.

Compared to the control (HepG2 CM), CDCA-treated HepG2 CM (CMCDCA) expanded
the cell size of LSECs with a low proliferation rate, but SP-treated CM (CMCDCA+SP)
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preserved cellular morphology, similar to the control (Figure 4B). Moreover, treatment
with CMCDCA reduced LSEC viability, but CMCDCA+SP weakened the effect of CMCDCA

on LSECs (Figure 4C, Control: 100% ± 7.51%, CMCDCA: 68.26 ± 0.25%, CMCDCA+SP:
77.21 ± 1.21%, CMCDCA vs. CMCDCA+SP p < 0.01). Notably, CMCDCA activated cleaved
caspase-3, which might be the cause of low cellular activity, whereas CDCDCA+SP showed
low cleaved caspase-3 expression.

Dysfunctional endothelial cells are deficient in eNOS and NO production [35]. CMCDCA

decreased the levels of phospho-eNOS (p-eNOS), and CMCDCA+SP tended to preserve p-
eNOS levels in LSECs (Figure 4E). As a functional assay, the ability of LSECs to form
tube-like structures was evaluated on Matrigel. This observation revealed that the vascular
structure-forming ability was impaired by CMCDCA and that CMCDCA+SP enhanced this
ability (Figure 4F). Quantifying tube formation revealed that the number of meshes and
total length of the segments were significantly reduced by CMCDCA, which was restored by
CMCDCA+SP.

This result suggests that hepatocytes with CDCA adversely affect LSECs by providing
detrimental factors, but SP could ameliorate LSEC dysfunction by modulating hepatocyte
activity.

4. Discussion

BA-induced hepatic injury was also primarily attributed to excessive ROS production.
Parenchymal/non-parenchymal cells in the liver are primarily affected by ROS and reactive
nitrogen species [36–39]. This process results in structural and functional liver abnormalities.
Therefore, oxidative markers can be used to examine liver damage severity [36–39], and
various antioxidants were used as remedies [40,41].

In this study, CDCA induced excessive generation of IL-8 and ICAM, indicating that
BA-induced hepatocyte injury was associated with the initiation of inflammation. However,
this alteration worsened over time. Moreover, sustained treatment with CDCA affected
cell viability, promoted ALT release, and activated apoptosis signaling. In addition, PEDF
production was greatly reduced.

Previous studies have shown that SP could block oxidative stress-mediated cell death
in adipose-derived stem cells and retinal pigmented epithelial cells [26,30]. SP treatment of
hepatocytes damaged by CDCA clearly decreased ROS production. This led to a reduction
in IL-8, ICAM-1, and apoptosis levels. SP did not affect PEDF levels (Figure S4). That is,
SP-mediated hepatic protection may be shown, possibly by inhibiting hepatic inflammation
and cell death in the liver.

Impaired hepatocyte produces detrimental factors, causing dysfunction of neighbor
endothelial cells. Treating LSEC cells with hepatocyte CM exposed with CDCA significantly
impaired cellular activity and decreased the angiogenic activity of LSECs. This suggests
that CDCA-mediated hepatic cell dysfunction entirely influences the vascular structure,
as well as hepatocytes in the liver, leading to liver failure. In contrast, SP treatment was
sufficiently able to block endothelial dysfunction, by modulating inhibition of hepatocyte
alteration. Because SP was added to hepatocyte with CDCA and CM of hepatocyte was
added to LESEC, it can be estimated that this CM includes SP. However, the half-life of SP
is very short and thus, CM of hepatocyte with SP could not have exogenously treated SP.
Therefore, the protective effect of SP on LSEC might occur, indirectly.

Collectively, SP treatment of damaged hepatocytes blocked cell death and inhibited
inflammatory potential from excessive BA. SP is anticipated to be a candidate for cholestasis
treatment. This study was carried out with an immortalized cell line and the confirmation
of the SP effect on primary cells should be performed and the in vivo efficacy should
be explored.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox11050920/s1, Figure S1: Analysis of cellular size hepatocyte
with CDCA. Figure S2: The effect of CDCA on the secretion of IL-8 on HepG2; Figure S3: SP blocks
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CDCA-reduced E-cadherin expression; Figure S4: The effect of SP on PEDF secretion in HepG2 under
CDCA stimulation.
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