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Senataxin (SETX) is a putative RNA/
DNA helicase that is mutated in two 

distinct juvenile neurological disorders, 
AOA2 and ALS4. SETX is involved in 
the response to oxidative stress and is 
suggested to resolve R loops formed at 
transcription termination sites or at sites 
of collisions between the transcription 
and replication machineries. R loops are 
hybrids between RNA and DNA that 
are believed to lead to DNA damage and 
genomic instability. We discovered that 
Rrp45, a core component of the exosome, 
is a SETX-interacting protein and that 
the interaction depends on modification 
of SETX by sumoylation. Importantly, 
we showed that AOA2 but not ALS4 
mutations prevented both SETX 
sumoylation and the Rrp45 interaction. 
We also found that upon replication 
stress induction, SETX and Rrp45 
co-localize in nuclear foci that constitute 
sites of R-loop formation generated by 
transcription and replication machinery 
collisions. We suggest that SETX links 
transcription, DNA damage, and RNA 
surveillance, and discuss here how this 
link can be relevant to AOA2 disease.

Senataxin (SETX) is a large protein 
of more than 300 kDa that is considered 
to be the counterpart of the yeast DNA/
RNA helicase Sen1. Indeed SETX carries 
a conserved helicase motif in its C 
terminus, but so far helicase activity has 
only been shown for the S. Pombe protein.1 
Sen1 (tRNA splicing endonuclease) was 
originally discovered as an endonuclease 
that processes tRNA2 but has been 
further characterized as an important 
factor in non-coding RNA processing 
and, for some genes, transcription 

termination.3,4 For example, SETX 
has been suggested to be involved in 
transcription termination at G-rich pause 
sites, which appear to be R-loop hot spots.5 
(R loops are hybrids between nascent 
transcripts and the DNA template.6) 
Additionally, Sen1 and SETX have both 
been implicated in R-loop resolution at 
DNA damage sites.7-10 For example, it is 
now believed that SETX plays a role in 
resolving R loops that form when the 
transcription and replication machineries 
collide. Defects in R-loop resolution are 
known to lead to accumulation of DNA 
double-strand breaks (DSBs), resulting 
in DNA rearrangements and genome 
instability.6,11

Interest in SETX increased in 2004 
when it was found that mutations in SETX 
can lead to two distinct neurological 
disorders, a form of autosomal recessive 
ataxia named AOA2 (ataxia with 
oculomotor apraxia 2)12 and a juvenile 
form of ALS (amyotrophic lateral sclerosis 
or Lou Gehrig disease), ALS4.13 Mutations 
leading to AOA2 are recessive, can be 
homozygous or compound heterozygous, 
and are believed to result in SETX loss 
of function, while mutations responsible 
for ALS4 are dominant and most likely 
gain of function. In both cases, disease 
onset occurs generally at adolescence, 
and patient life span is rarely affected. To 
date, many mutations including missense, 
nonsense, and deletion mutations 
scattered throughout the ORF, are linked 
to AOA2,14 and eight mutations associated 
with ALS4 have been described.13,15-17 It is 
important to note that a growing number 
of SETX mutations have been found 
in patients that display atypical and/or 
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intermediate phenotypes distinct from 
AOA2 or ALS4.15,16,18-21

While a growing number of AOA2 
cases are diagnosed and new SETX 
mutations are revealed, there has been 
limited information about how those 
mutations affect SETX function and how 
they are related to the disease. In an effort 
to address this issue, we studied three 
previously described AOA2 mutations 
(E65K,22 W305C, and P413L12) and 
two ALS4 mutations (T3I and L389S13), 
all lying within the putative protein 
interaction domain of SETX located 
at its N terminus.23 Our approach was 
to first identify proteins expressed in 
brain that interact with this region of 
SETX (Nter-SETX, residues 1–665) 
using a yeast two-hybrid (Y2H) screen 
with Nter-SETX and a human brain 
cDNA library.24 We found that Nter-
SETX interacted with a relatively small 
number of proteins in this assay, and one 
that was detected repeatedly was Rrp45, 
a core component of the multisubunit 
exosome. The exosome is a large complex 
that processes and/or degrades RNAs 
in the nucleus and nucleolus, as well as 
the cytoplasm.25-27 It consists of a core 
of nine subunits (including Rrp45) 
and is associated with two 3′–5say I 
had misremembered the design and 
thought that it  exoribonucleases, Rrp6 
and Dis3, that can have distinct RNA 
specificities.28 This novel interaction—
which, importantly, we also confirmed by 
co-immunoprecipitation (coIP) in human 
cells24—suggested a possible connection 
between RNA transcription and/or 
termination and RNA degradation and/or 
surveillance.29,30 Indeed, while the exosome 
has a large panel of substrates, Rrp45 has 
been suggested to confer a specific role 
in AU-rich mRNAs turnover.31,32 In an 
effort to elucidate the possible function 
of the SETX-Rrp45 interaction, we tested 
whether SETX could be implicated in 
regulation of AU-rich mRNAs. However, 
RNA analysis by RT-qPCR after siRNA-
mediated SETX knockdown did not 
show any significant accumulation or 
degradation of AU-rich mRNAs, and 
other attempts to implicate SETX in 
known exosome functions were likewise 
unsuccessful (unpublished data). Only 
later were we able to gain insight into 

the functional significance of this novel 
interaction.

We next asked whether any of the 
AOA2 or ALS4 mutations might affect 
the Rrp45 interaction, again using the 
Y2H assay. Remarkably, we found that 
the association between SETX and Rrp45 
was abolished or greatly reduced when 
SETX carried any of the three AOA2 
mutations but unaffected by the ALS4 
mutations. How do mutations that are 
as close as P413L and L389S lead to such 
different effects while mutations separated 
by more than 300 aa trigger a similar 
response? It is possible that the residues 
affected by the AOA2 mutations are 
brought together in the 3D structure of 
SETX and that the mutations affect the 
same protein interaction domain of the 
protein. Unfortunately the structure of 
SETX or even the N-terminal domain is 
not available yet.

Unexpectedly, the SETX-Rrp45 
association also depends on the 
sumoylation status of SETX. We 
discovered this after failing to detect 
interaction in vitro with recombinant 
proteins, which led us to consider the 
possible involvement of a posttranslational 
modification. Indeed, each of the tested 
AOA2 mutations severely decreased the 
sumoylated pattern of Nter-SETX in 
human cells, as detected in several assays, 
including western blot with an anti-SUMO 
antibody after immunoprecipitation (IP) 
of transiently expressed Nter-SETX. 
Furthermore, in the coIP of endogenous 
proteins, only sumoylated SETX IPed 
with Rrp45. Those data indicate that the 
interaction between SETX and Rrp45 was 
in fact mediated by SUMO. Additionally, 
we showed, using the Y2H assay, that 
the interaction required a previously 
characterized SUMO interacting motif 
(SIM) in Rrp45.24

We then wondered what might be the 
meaning of this interaction and how we 
could make a connection between RNA 
surveillance deficiency and AOA2. A 
clue came from recent studies in yeast 
and in human cells implicating SETX 
in resolution of R loops that arise when 
transcription and replication machineries 
collide, and which showed the existence 
of SETX/Sen1 foci that increased after 
DNA damage induction.8,9 Inspired by 

these findings, we showed that, following 
stress replication induction in HeLa cells 
by aphidicolin (APH), which blocks 
replication fork progression and enhances 
collisions, SETX and Rrp45 co-localize in 
nuclear foci. Importantly, we also showed 
that the newly defined Rrp45 replication 
stress-induced foci were R loop-dependent 
since overexpression of RNase H1, which 
degrades the RNA moiety of RNA-DNA 
hybrids, eliminated these foci in APH-
treated cells.24 This data led us to the 
conclusion that SETX and the exosome 
might collaborate at sites of R-loop 
formation arising, for example, when 
the transcription and DNA replication 
machineries collide. During transcription, 
SETX, which has been shown to interact 
with RNAPII,33 likely unwinds the RNA-
DNA hybrid, and then, we propose, 
the exosome degrades the RNA moiety 
(Fig. 1). If the exosome is not recruited to 
the collision sites, the released RNA might 
itself have deleterious consequences to the 
cell, or perhaps rehybridize to the DNA, 
regenerating the R loop and leading to 
DSBs. Of course, many questions remain 
regarding this proposed mechanism, not 
to mention its relevance to AOA2, but 
perhaps not ALS4.

Sumoylation is a dynamic process that 
has been shown to control a variety of 
cellular processes. It regulates, for example, 
protein-protein interactions, protein 
stability, localization, and transcriptional 
activity.34-36 Small ubiquitin-like modifiers 
(SUMO) are peptides of ≈11 kDa that are 
covalently conjugated to target proteins 
through the amino side chains of lysine 
residues. Four SUMO paralogues exist in 
mammals (SUMO1–4). While SUMO2 
and SUMO3 are very similar, SUMO1 
shares only 50% sequence identity with 
SUMO2/3,37 and SUMO4 expression 
might be restricted to a few cell types, e.g., 
immune cells.38 Conjugation of SUMO to 
a target protein is similar to conjugation 
of ubiquitin, first requiring activation 
of SUMO by an E1 activating enzyme. 
This is followed by transfer of SUMO 
to an E2 conjugating enzyme, Ubc9 (the 
only known E2), which in turn transfers 
SUMO to the target protein, facilitated 
by an E3 ligase. The target lysine is 
frequently found within the consensus 
sequence ΨKxE/D (Ψ represents 
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hydrophobic amino acids).39 Interestingly, 
SUMO has the ability to form poly-
SUMO conjugates. In fact, SETX had 
already been detected as a sumoylated 
protein40,41 and had been shown to be 
poly-sumoylated, by SUMO2, after heat 
shock.41 Poly-sumoylated SETX shows 
an apparent MW of ≈600 KDa, which 
suggests that SETX actually carries about 
25 SUMO peptides. Our Y2H screen also 
revealed interaction of SETX with two 
other components of the sumoylation 
machinery, Ubc9 and the E3 ligase PIAS1. 
Notably, the E65K AOA2 mutant showed 
the most complete loss of interaction 
with Rrp45, and sumoylation, and also 
lost interaction with Ubc9, implying that 
this mutation prevents sumoylation by 
disrupting Ubc9 binding. How the other 
two AOA2 mutations disrupt sumoylation 
remains to be determined.

Sumoylated SETX in normal cells 
appears to be present at very low levels, as 
it is barely detectable by western blotting 
after IP and, as has already been shown 
with heat shock, is probably increased 
by stress induction. Indeed, it is well 
known that various cellular stresses 
increase sumoylation.37 It is then very 
likely that the stress induced by APH 
treatment leads to a hyper-sumoylation 
of SETX, which in turn is necessary for 
its association with Rrp45. In the brain, 
managing various stresses is thought to be 
more important than in other cell types, 
and sumoylation is known to play crucial 
roles.42,43 It is perhaps then not surprising 
that loss of SETX sumoylation has a direct 
impact on AOA2 cells. In fact, SETX 
sumoylation appears to be an efficient and 

powerful factor in the rapid response to 
DNA damage.44,45 Indeed, proteins from 
the sumoylation machinery, including 
SUMO2/3, PIAS1, and Ubc9, accumulate 
at sites of DSBs, suggesting that SUMO 
conjugation takes place at DNA damage 
sites.46,47 Very interestingly, BLM, another 
helicase from the RecQ family involved 
in DSB repair, and which is defective in 
Bloom syndrome, is also sumoylated, and 
mutations that impaired its sumoylation 
led to greater DNA damage.48 There is now 
more and more evidence that sumoylation 
is important for accumulation of DNA 
repair factors at sites of damage.44,49

Many proteins that have the potential 
to be sumoylated have already been shown 
to be involved in a variety of diseases. 
Neurodegenerative disorders seem to be 
particularly linked to sumoylation.50-52 
SETX should now be added to the growing 
list of disease-associated proteins that are 
sumoylated. Sumoylation of many such 
proteins has been linked to their capacity 
to aggregate in the cell. For example, 
spinocerebellar ataxia type 1 (SCA1) is 
caused by an expansion of polyglutamine 
(polyQ) repeats in ataxin-1. Sumoylation 
of Ataxin-1 can be exacerbated by 
oxidative stress and lead to an increase 
in protein aggregation.53,54 However, 
Ataxin-1 sumoylation is decreased in 
a polyQ expansion mutant.55 Some 
proteins involved in ALS are also known 
to aggregate in patient cells and animal 
models. For example, SOD1 (superoxide 
dismutase 1), which is mutated in about 
20% of familial cases of ALS, has been 
shown to be sumoylated in mutant and 
WT proteins, in both cases possibly 

leading to an increase and stabilization of 
aggregates.56 There is so far no evidence of 
SETX aggregates in AOA2 patient cells.

Neurological diseases have been linked 
for some time with defects in DNA damage 
repair pathways.57-59 Patients suffering 
from ataxia telangiectasia (AT), another 
autosomal recessive ataxia, have mutations 
in ATM (AT mutated), leading to 
deregulation of many pathways involved in 
genomic stability including DSB repair.60 
AOA2 patient cells have also been shown 
to be sensitive to oxidative stress, leading 
to DSBs,61,62 and a number of studies have 
now established a role for Sen1/SETX in 
the DNA damage response, most likely 
by resolving R loops.7-10,24 As already 
suggested by Yuce and West, SETX might 
then be considered to be a DNA damage 
response factor. While it is not known 
where the DNA damage occurs, SETX 
stress-induced foci have been suggested 
to localize at chromosome fragile sites 
(CFS) or repeated sequences.9,63,64 CFS are 
large genomic regions that are particularly 
difficult to replicate, and DSBs can be 
induced at such sites by APH treatment.65 
Replication fork stalling at CFS leads to 
chromosome breakage, accumulation 
of mutations, and genomic aberrations 
creating genomic instability. Large genes 
located at some CFS require such a long 
time until transcription is terminated that 
the probability for the transcription and 
replication machineries to meet is high. 
Such collisions result in the formation 
and accumulation of R loops that are 
most likely responsible for chromosome 
breaks.66 SETX ChIP-seq experiments 
after APH treatment should confirm 

Figure 1. SetX, SUMO, and the exosome: Working together to fight transcription-related DNa damage. SetX is shown already associated with rNapII, 
to resolve any r loops that may form naturally during transcription. Upon transcription and/or replication stress, created for example when rNapII and 
DNa polymerase collide, SetX becomes sumoylated. Sumoylated SetX then interacts and/or recruits the exosome through its interaction with rrp45. 
SetX resolves the r loop, perhaps inducing rNapII release from DNa template, while the exosome then degrades the released rNa, to prevent possible 
reformation of the r loop and/or deleterious effects of the prematurely terminated rNa.
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whether SETX is indeed recruited to CFS 
or any other R loop-forming sequences.67

If SETX can be classified as a DNA 
damage response protein, then our data 
imply that the exosome, or at least Rrp45, 
can also be considered to be a DNA 
damage factor. While some evidence of 
the RNA surveillance machinery being 
involved in the DNA damage response 
has been found in yeast,68,69 data in 
humans was lacking before our study. 
While knockdown of exosome subunits 
appears to increase DSBs in human cells 
(unpublished data), further experiments 
will be needed to confirm whether 
the exosome is indeed a DNA damage 
response factor.

SETX appears to have a specific and 
crucial role in preventing DSBs created by 
oxidative stress.61 One of the main features 
of AOA2 is an atrophy of the cerebellum, 
and it is known that cerebellar cells are 
very vulnerable to oxidative stress (OS). 
Indeed cerebellar granule cells appear 
significantly more sensitive to OS than 
do cortical neurons.70 This selective OS 
neuronal vulnerability could explain why 
SETX dysfunction seems to be deleterious 
exclusively in the brain and more prominent 
in the cerebellum of AOA2 patients. OS 
is involved in many pathogenic cellular 
processes and is responsible for a large 
fraction of DNA damage events.71 In 
many cases, this might be linked to 
R-loop formation. Indeed, AOA2 cells 
have also been shown to be sensitive to 
camptothecin (CPT),61 which can also 
generate OS.72 CPT is a topoisomerase I 
(Top1) inhibitor that blocks transcription 
and causes DSBs in an R loop-dependent 
manner.73,74 Top1 is believed to prevent 
collisions between the transcription and 
replication machineries, and thus also 
prevent formation of R loops.75

An important question raised by our 
study is how replicative defects, such as 
transcription-replication fork collisions, 
can be relevant in a neurological disorder 
since neurons are mostly post-mitotic 
cells. We suggest two possibilities. 
First, AOA2 arises at adolescence when 
some neurogenesis is still ongoing 
and replication defects, especially in 
the cerebellum, might be deleterious 
enough to lead to disease. Consistent 
with this, brain cells are known to be 

highly vulnerable to neurotoxicity during 
adolescence.76 Second, increasing evidence 
points to the possibility that neurological 
diseases are not solely the result of 
neuronal dysfunction. Glial cells, which 
“feed” and “support” neurons, appear 
to have considerable responsibilities in 
disease pathology,52,77,78 and defects in the 
response to replicative stress in such cells 
might then be deleterious to neurons. It 
is also important to mention that R loops 
can be generated by various mechanisms,6 
and SETX might play a role in resolving 
them not only when transcription and 
replication meet but also, for example, 
at G-rich sequences such as termination 
sites5 or downstream of unmethylated 
CpG island promoters.79

Our work has highlighted a connection 
between SETX, RNA surveillance, and 
DNA damage that is disrupted in AOA2. 
But of course many questions remain. First, 
we tested only three AOA2 mutations and 
it is very possible, even likely, that all the 
reported mutations do not interfere with 
SETX sumoylation and/or interaction 
with Rrp45. It would be interesting to test 
other mutations, especially some outside 
the N-terminal domain of SETX. Second, 
SETX is a very large protein that probably 
performs many functions, and it is not 
difficult to imagine that mutations affect 
different functions. This would explain the 
variability observed in patients’ symptoms 
with SETX mutations.15,18-21 Are all these 
mutationally-sensitive functions linked to 
DNA repair? Or can other functions of 
SETX, e.g., in transcription termination, 
be relevant to AOA2 or ALS4? Finally, 
how does disruption of sumoylation and/
or exosome interaction caused by the 
AOA2 mutations we studied specifically 
affect the brain during the first two 
decades of life? If SETX/exosome are 
involved in DNA damage repair and 
prevent genomic instability, why do 
AOA2 and ALS4 patients not display a 
heightened incidence of cancer? The use 
of iPS cells obtained from AOA2 patients 
and studies of additional mutations in 
SETX might shed light on these and other 
questions.
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