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Abstract: Reinforced concrete (RC) beams are basic elements used in the construction of various
structures and infrastructural systems. When exposed to harsh environmental conditions, the
integrity of RC beams could be compromised as a result of various deterioration mechanisms. One of
the most common deterioration mechanisms is the formation of different types of corrosion in the
steel reinforcements of the beams, which could impact the overall reliability of the beam. Existing
classical reliability analysis methods have shown unstable results when used for the assessment of
highly nonlinear problems, such as corroded RC beams. To that end, the main purpose of this paper
is to explore the use of a structural reliability method for the multi-state assessment of corroded
RC beams. To do so, an improved reliability method, namely the three-term conjugate map (TCM)
based on the first order reliability method (FORM), is used. The application of the TCM method
to identify the multi-state failure of RC beams is validated against various well-known structural
reliability-based FORM formulations. The limit state function (LSF) for corroded RC beams is
formulated in accordance with two corrosion types, namely uniform and pitting corrosion, and with
consideration of brittle fracture due to the pit-to-crack transition probability. The time-dependent
reliability analyses conducted in this study are also used to assess the influence of various parameters
on the resulting failure probability of the corroded beams. The results show that the nominal bar
diameter, corrosion initiation rate, and the external loads have an important influence on the safety
of these structures. In addition, the proposed method is shown to outperform other reliability-based
FORM formulations in predicting the level of reliability in RC beams.

Keywords: reinforced concrete beams; pitting corrosion; general corrosion; reliability analysis;
three-term conjugate FORM

1. Introduction

RC beams are widely used in the construction of many structures and infrastructure
such as buildings and bridges [1–3]. However, as infrastructures age, the strength of RC
beams could be compromised, particularly in a corrosive environment [4–6]. To avoid
any risk of damages or failure, deteriorated beams can be replaced or rehabilitated [7,8].
Funding limitations, however, could hamper the ability to repair or replace the beams
when needed [9–11]. Therefore, it is of paramount importance to quantify the service
life and reliability of RC beams that are subjected to aggressive environmental conditions
which could lead to corrosion of the reinforcing steel. Corrosion is one of the main issues
for structures made of steel that can have a high risk of failure according to several
studies [12–17]. The development of an appropriate formulation to capture the behavior
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of RC beams subjected to different corrosion forms with an accurate structural reliability
framework will enable owners and field engineers to make more risk-informed decisions
to increase the service life of the structure by performing the required maintenance actions.

Considering the complex behavior of RC beams under corrosion effects, the accu-
rate estimation of the failure probability (Pf) is required [18]. Among the most useful
approaches for quantifying the safety levels of the structures is using structural reliability
analysis (SRA), which can be performed using the so-called performance function or limit
state function (LSF) [19]. Performance function or LSFs are explicit design equations that
include various basic variables to describe the failure mode or the structural behavior.
Accounting for uncertainties in these variables can be realized by assigning specific sta-
tistical distributions to these functions to represent their randomness [20]. Thereafter,
different SRA approaches can be applied to predict the failure probability (Pf) under the
pre-selected condition of the structure. Various techniques have been developed over
the years to conduct safety assessments of different structures, which can be grouped
into simulation- and analytical-based approaches [21–23]. The Monte Carlo simulation
(MCS) is a popular simulation technique that used to solve many problems in different
engineering fields [24,25]. However, MCSs can be computationally expensive, especially
when the LSF is obtained from a finite element model (FEM) [26]. To overcome the MCS
problem, reduction techniques are employed to reduce the number of simulations, such
as the importance sampling technique (IS), subset simulation (SS), line sampling (LS) and
directional sampling (DS) techniques [27,28]. Even though, these reduction techniques
were found to be efficient, their accuracies are moderate for LSFs that are highly nonlinear
or characterized by large dimensions. Accurate convergence of these techniques also
requires prior information of the failure regions.

In contrast, analytical approaches, including the first and second order reliability
method (FORM and SORM), only require an estimate of the most probable point of failure
on the LSF surface (MPP); hence, they are computationally more efficient and accurate [29].
Despite their attractiveness, various drawbacks can be associated with the use of FORM
and SORM. For example, the FORM can provide unstable estimations related to problems
with variables that are characterized by non-normal distributions, similar to those of RC
beams. Modified versions of the FORM approach have been developed over the years to
enhance its ability to accurately estimate the MPP to fail on the surface of the performance
function [30,31]. These improvements include two types of enhancements: steepest descent
and conjugate search directions [32]. Steepest descent techniques are formulated based on
a step size with values inferior to 1, including, as an example, the relaxed HL-RF (RHL-RF),
the finite-step length (FSL) method, the directional STM (DSTM), and the adjusted finite
step length method [33]. These approaches are better than the classic algorithm, though
computationally inefficient for moderately complex LSFs. On the other hand, conjugate
search direction techniques, which use a finite-step size, include methods such as the
conjugate chaos control (CCC) method, the relaxed conjugate reliability (RCR) approach,
and the adaptive conjugate method [32]. These approaches have proven to be more efficient
for the SRA than the first group; however, the main effort is to accurately formulate the
conjugate scalar factor in FORM. Therefore, the FORM-based conjugate search direction
may be a reliable approach to solve the estimation of the safety levels of RC beams using
the SRA with a new formulation of the conjugate scalar factor.

To overcome these drawbacks, the development of an efficient, reliable technique that
is able to provide accurate results is critical for reliability analyses of RC beams. Besides,
accurate estimation of the reliability requires robust formulation of the LSF pertaining to
the corrosion formation in the beams. Consequently, an improved reliability method based
on FORM is introduced in this study for the reliability analysis of RC beams, where the
LSF is formulated under two types of corrosions: uniform and pitting corrosion. Moreover,
various investigations are carried out to evaluate the effect of the basic random variables
selected in the analysis on the outcome of the results. The paper is structured as follows:
Section 2 describes the problem formulation and the limit state of the reinforced concrete
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beams development under the two corrosion forms; Section 3 introduces the proposed
reliability framework, while the numerical validation of the proposed method abilities is
investigated; Section 4 reports the probabilistic forms of the design variables for the case
study; Section 5 represents the results of the performed reliability analysis with detailed
discussions; and the conclusions, limitations, and recommendations for future work are
presented in Section 6.

2. Mathematical Formulation of the Corroded Reinforced Concrete Beam

The development of an appropriate model for the LSF that describes the failure mode
of reinforced concrete beams under two types of corrosion forms (uniform and pitting
corrosion) is addressed in this section. These two corrosion forms can affect the reinforced
concrete beams in two successive processes, beginning with corrosion initiation prior to
corrosion propagation, in which these two processes can be explained as follows:

(1) First, the time to corrosion initiation starts with corrosion activation on the steel bars,
in which initiation begins when the received corrosive ions contact the bar’s surface.

(2) Second, the time of the corrosion propagation; in this period, the corrosion de-
fects/cracks are propagated and the cross-sectional areas of the reinforcing steel
bars decreases, leading to bond strength reduction and subsequent structural perfor-
mance degradation.

2.1. Limit State Function Formulation

According to Stewart, the LSF of a typical simply supported corroded RC beam sub-
jected to distributed loads, as illustrated in Figure 1, can be defined under the flexural
failure mode by the maximum bending moment at mid span [34–36]. It should be men-
tioned that the beam with a rectangular cross-section is usually reinforced with a specific
number of bars, each with an equal diameter. Thus, the LSF in this study can be given as
follows [37,38]:

G(M) = ηA(t) fy(t)
(

d− K
As(t) fy(t)

b fc

)
− λMu (1a)

fy(t) = (1− α
As − As(t)

As
) fy (1b)

where η and α are empirical coefficients representing the model uncertainty related to the
flexural and tension resistance of the bars, respectively; As is the cross-sectional area of
the reinforcing steel mm2; t refers to the time, fc and fy represent the concrete compressive
strength and the steel yield stress in MPa, respectively; d denotes the effective height in
mm; b is the section width in mm; K is the resistance ratio; λ is the load coefficient; and Mu
is the applied moment (kN-m). Noting that the cross-section areas are highly dependent
on the corrosion process forms (i.e., general and pitting corrosion), these two forms can be
mathematically formulated for the reinforced bars as explained in the following sections.
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2.2. Uniform Corrosion Model

The mathematical model for the time-dependent loss of the bar cross-section subjected
to uniform corrosion can be expressed using Equation (2) as follows [39,40]:

As(t) =
π(D0 − 2Pav)

2

4
(2)

where D0 represents the nominal bar diameter (mm); t is the elapsed time since corrosion
initiation (year); and Pav denotes the progression of the average pit depth over time
(mm/year), which can be calculated using:

Pav = 0.0116 icorr (t) t (3)

In Equation (3), icorr (t) represents the rate of corrosion (µA/cm2), which can be
computed as:

icorr(t) = 0.85 icorr(1) t−0.29 (4)

where icorr(1) refers to as the corrosion rate (µA/cm2) at the beginning of corrosion propa-
gation, which can be calculated using:

icorr(1) =
37.8(1− wc)−1.64

c
(5)

In Equation (5), C denotes the cover of the concrete (cm); wc is the water–cement ratio
of the concrete, which can be calculated using Equation (6) as a function of the concrete
compressive strength (i.e., the Bolomey’s formula) [41]:

wc =
27

f ′cy + 13.5
, f ′cy = f ′c + 7.4 MPa (6)

2.3. Pitting Corrosion Model

The mathematical model for the time-dependent loss of the bar cross-section due to
pitting corrosion can be expressed using Equation (7) as follows [42,43]:

Ap(t) =


A1 + A2 P(t) ≤ D0√

2
As − A1 + A2

D0√
2
≤ P(t) ≤ D0

As P(t) > D0

(7)

where P(t) denotes the time-dependent maximum penetration of the pitting corrosion,
which can be estimated using Equation (8); As is the free-corrosion cross-section area; and
A1 and A2 are the corroded cross-sections calculated based on Equation (9):

P(t) = 0.0116 icorr(t) R t (8)

As =
πD2

0
4

A1 = 0.5
[

θ1

(
D0
2

)2
− b
∣∣∣∣D0

2 −
P(t)2

D0

∣∣∣∣]
A2 = 0.5

[
θ2P(t)2 − b P(t)2

D0

]
b = 2P(t)

√
1−

(
P(t)
D0

)2
, θ1 = 2arcsin

(
b

D0

)
, θ2 = 2arcsin

(
b

2P(t)

)
(9)

In Equation (9), R represents the ratio between the pitting corrosion and the average
depth as R = P(t)

Pav
, and is called the pitting factor. Thus, the resulting cross-section area of

the steel bar under pitting corrosion can be calculated as follows:

As(t) = As − Ap(t) (10)
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Unlike uniform corrosion, the pits from corrosion can evolve into fatigue cracks,
causing complete fracture of the rebar. According to a previous study by Masoud et al. [44],
the fatigue life of RC beams can be reduced significantly due to pit corrosion. Thus, the
fatigue life due to cracks originating from pits should be investigated. To determine the
number of cycles to failure (N) for a cracked element, linear elastic fracture mechanics
(LEFM) can be employed. The Paris law can be used to define the relationship between
the rate of crack propagation (da/dN) as a function of the stress intensity factor range (∆K)
as follows:

da
dN

= C∆Km (11)

where N denotes the number of fatigue cycles with stable crack growth; while C and m are
material constants. The expression of the stress intensity factor for mode I (opening mode)
can be given as function of the nominal stress (σ), the crack size (a), and the correction
factor (F) as follows [45]:

KI = Fσ
√

πa (12)

In Equation (12), F can be computed for a circular steel reinforcing bar with pit
corrosion as follows [46]:

F =

1.84
π

[
tan ( πa

4r )
πa
4r

]0.5

cos (πa
4r )

{
0.752 + 2.02

(πa
4r

)
+ 0.37

[
1− sin (

πa
4r

)
]3
}

(13)

In case the value of the stress intensity factor (KI) reaches the fracture toughness (KIC),
which is associated with the critical crack value attained, fracturing will occur. The limit
state function can be modeled as the difference between the fracture toughness and the
stress intensity factor (Equation (14)), where a is replaced by P(t) using Equation (8), and
the value of KIC can be obtained from experimental tests by first determining the Charpy
V-notch values [47].

LSF(X, t) = KIC − KI (14)

Equations (2)–(14) are utilized and integrated into the LSF to calculate the meta-
loss in the cross-sectional areas due to uniform and pitting corrosion and to estimate the
probability of failure caused by cracks originating from pits for the RC beam.

3. Proposed Reliability Approach

As stated before, two formulation types based on the normalized sensitivity vector are
used to enhance the performance of the analytical FROM approach, including the steepest
descent and conjugate sensitivity vector-based improvements [48]. The HL-RF is the most
well-used steepest descent technique for structural reliability. However, this technique
shows inaccurate convergence or periodic solutions for highly nonlinear problems [49]. To
overcome these drawbacks, extended versions of the FORM-based steepest decent sensitiv-
ity vector have been developed, including the chaos control (CC) [50,51], the relaxed HL-RF
(RHL-RF) [33], the finite-step length (FSL) [52], the adjusted finite step length (AFSL) [53],
and the non-negative constraint method (NCM) [54] approaches. These formulas have
enhanced the original FORM abilities and robustness; however, their efficiency is limited
to moderately nonlinear limit state functions. On the other hand, the conjugate sensitivity
vector-based improvements have shown more promising results regarding the efficiency
performance of the FORM method for moderate and highly nonlinear complex limit state
functions. This includes using the adaptive conjugate scheme (ACS) [48], the conjugate
chaos method (CC) [55], the limited conjugate method (LCM) [56], and the relaxed con-
jugate approach (RCA) [57] in comparison with the first category (i.e., steepest descent
formulas such as CC and FSL) for solving various structural reliability analysis problems.

Consequently, as the FORM-based conjugate sensitivity vectors are efficient formula-
tions for estimating the failure probability, Keshtegar and Zhu developed a novel three-term
conjugate map for structural reliability analyses with robust and efficient formulation [58].
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This method can be used for applicable engineering problems for the evaluation of the
safety levels. Thus, in this study, the conjugate sensitivity vector is developed for the
reliability analysis of corroded RC beams. Specifically, the three-term conjugate finite-step
length is introduced for the reliability analysis of RC beams under two types of corro-
sion with large uncertainties. The three-term conjugate sensitivity vector is formulated
using two factors for adapting the normalized vector in FORM to adjust the gradient and
conjugate gradient vectors.

Figure 2 illustrates the principle of FORM in two-dimensional standard normal space
(U). Figure 2 shows the main steps for the estimation of the value of the reliability index, β,
using the proposed TCM method. Thus, to determine the new point (Uk+1) in the FORM
technique, the conjugate discrete map is used as follows:

Uk+1 = βkαk

βk =
∇T g(Uk)Uk−g(Uk)
∇T g(Uk)αk

(15)

where βk, ∇g(Uk), and g(Uk) denote the reliability index, the performance function
gradient vector, and the LSF at point Uk, respectively. αk represents the normalized
conjugate sensitivity vector and is calculated using the following equation:

αk =
Uk + λdk
||Uk + λdk ||

(16)

where λ denotes the finite-step length λ ≥ 0 and dk represent the conjugate vector that
can be computed using the following formulas:

dk = −∇g(Uk) + θkdk−1 + ηk∇g(Uk−1)

ηk −min
{

0.9 ||∇g(Uk) ||2
||∇g(Uk−1) ||2

, ||∇g(Uk)|| 2

||dk−1 ||2

}
θk =−

∇g||g(Uk)|| 2

||∇g(Uk−1 ||) 2

(17)

In Equation (17), θk and ηk are the two conjugate factors that are used to adjust the
new conjugate vector.

Materials 2021, 14, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 2. Illustration of the proposed framework process using the three-term conjugate map 
(TCM) algorithm, modified from [58]. 

Figure 2 schematically illustrates the iteration process of the FORM based on the pro-
posed three-term conjugate sensitivity vector, where three points 𝑔(𝑼 ), 𝑔(𝑼 )  and 𝑔(𝑼 ) are shown on the LSFs. From the drawn normalized sensitivity vector, the con-
jugate vector can control the FORM robustness and accuracy using two adjusting factors. 
The factors are used to combine the current gradient and the previous conjugate gradient 
vectors to achieve a more robust solution. Besides, 𝜶𝑘  is not paralleled with the previous 
conjugate gradient vectors. Thus, this can reduce the risk of oscillating solutions for highly 
nonlinear problems. 

Using the above relations of the classic FORM in this current work, the three-term 
conjugate sensitivity vector is used to compute the reliability index through the following 
steps: 
1. Establish the performance function 𝑔(𝑼) = 0 and specify the basic random variables 

of the problem. 
2. Set k = 0, d0 = 0 and 𝜂0 = 0 and specify the convergence limit criteria, ε (𝜀 = 10  

was adopted in this work). 
3. Transfer the basic random variables from X space to U space. 
4. Compute the values of ∇𝑔(𝑼𝑘) and 𝑔(𝑼 ). 
5. Determine 𝜆0 = 100∇𝑔 𝑼|𝑼=𝜇  at k = 0. 

6. Compute the conjugate factors as 𝜃𝑘 = −‖∇𝑔(𝑼𝑘)‖2/‖∇𝑔(𝑼𝑘−1)‖2  and 𝜂𝑘 −𝑚𝑖𝑛 0.9‖∇𝑔(𝑼𝑘)‖2/‖∇𝑔(𝑼𝑘−1)‖2, ‖∇𝑔(𝑼𝑘)‖2/‖𝒅𝑘−1‖2 . 
7. Compute kd  using the three-term formulation as 𝒅𝒌 = −∇𝑔(𝑼𝑘) + 𝜃𝑘𝒅𝒌−𝟏 +𝜂𝑘∇𝑔(𝑼𝑘−1). 
8. Compute the normalized conjugate sensitivity vector, i.e.,  𝜶𝑘. 

9. Determine the results for the new iterations as 𝛽𝑘 = ∇𝑇𝑔(𝑼𝑘)𝑼𝑘−𝑔(𝑼𝑘)∇𝑇𝑔(𝑼𝑘)𝜶𝑘   and 𝑼𝒌+𝟏 =𝛽𝑘𝜶𝑘. 
10. If ‖𝑼𝒌 − 𝑼𝒌−𝟏‖ ≥ 𝜀, then k = k + 1 and go to Step 3; else, stop and print 𝑿∗ = 𝑿𝒌+𝟏, 𝑼∗ = 𝑼𝒌+𝟏, 𝛽𝑘 and 𝑃𝑓 Φ(𝛽𝑘). 

4. Probabilistic Form of the Basic Random Variables for the Corroded RC Beam 
After examining the applicability and the performance of the proposed reliability 

analysis method, namely TCM (see Section 3), and the formulation of the LSFs of the re-

Figure 2. Illustration of the proposed framework process using the three-term conjugate map (TCM)
algorithm, modified from [58].

Figure 2 schematically illustrates the iteration process of the FORM based on the
proposed three-term conjugate sensitivity vector, where three points g(Uk−1), g(Uk) and
g(Uk+1) are shown on the LSFs. From the drawn normalized sensitivity vector, the con-
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jugate vector can control the FORM robustness and accuracy using two adjusting factors.
The factors are used to combine the current gradient and the previous conjugate gradient
vectors to achieve a more robust solution. Besides, αk is not paralleled with the previous
conjugate gradient vectors. Thus, this can reduce the risk of oscillating solutions for highly
nonlinear problems.

Using the above relations of the classic FORM in this current work, the three-term
conjugate sensitivity vector is used to compute the reliability index through the follow-
ing steps:

1. Establish the performance function g(U) = 0 and specify the basic random variables
of the problem.

2. Set k = 0, d0 = 0 and η0 = 0 and specify the convergence limit criteria, ε (ε = 10−6 was
adopted in this work).

3. Transfer the basic random variables from X space to U space.
4. Compute the values of ∇g(Uk) and g(Uk).
5. Determine λ0 = 100

||∇g(U|U=µ) ||
at k = 0.

6. Compute the conjugate factors as θk = −∇g||(Uk) ||2/ ||∇g(Uk−1) ||2 and ηk −
min

{
0.9 ||∇g(Uk) ||2/ ||∇g(Uk−1) ||2, ||∇g(Uk) ||2/ ||dk−1 ||2

}
.

7. Compute dk using the three-term formulation as dk = −∇g(Uk)+ θkdk−1 + ηk∇g(Uk−1).
8. Compute the normalized conjugate sensitivity vector, i.e., αk.

9. Determine the results for the new iterations as βk =
∇T g(Uk)Uk−g(Uk)
∇T g(Uk)αk

and Uk+1 = βkαk.

10. If ||Uk −Uk−1|| ≥ ε , then k = k + 1 and go to Step 3; else, stop and print X∗ = Xk+1,
U∗ = Uk+1, βk and Pf ≈ Φ(βk).

4. Probabilistic Form of the Basic Random Variables for the Corroded RC Beam

After examining the applicability and the performance of the proposed reliability
analysis method, namely TCM (see Section 3), and the formulation of the LSFs of the
reinforced concrete beam that was subjected to two different types of corrosion form
(uniform and pitting corrosion; see Section 2), the reliability analysis was performed on a
case study in which the influence of various variables, such as the bar diameters, the applied
load, the corrosion initiation, and the compressive concrete resistance, was investigated.
The reliability analysis was carried out based on the limit states function using Equation (1),
while the effect of corrosion types on the RC beam was modeled using Equations (2)–(14).
The random basic variables involved in the reliability analysis of the reinforced concrete
beam are reported in Table 1. The associated mean, coefficient of variation (CoV), and the
attributed distribution were extracted based on the previous studies in this field [59–64].

Table 1. Descriptive statistical properties of the basic random variables of the reinforced concrete beam.

Variable Description Mean CoV Distribution

fc Concrete compressive resistance (MPa) 30 0.18 Normal
fy Steel yield tension (MPa) 400 0.11 Log normal

D0 Bar diameter (mm) 18 0.05 Normal
Mn Applied moment (kN-m) 120 0.12 Gumbel
b Section width (mm) 350 0.07 Normal
d Effective height (mm) 500 0.07 Log normal
C concrete cover (mm) 50 0.12 Normal
η Model coefficient 1 0.1 Normal
α Yield empirical coefficient 0.005 0.12 Log normal
K Resistance ratio 0.6 0.05 Normal
λ Load coefficient 1.05 0.1 Normal
R The maximum to the average corrosion ratio 6 0.2 Gumbel
T Corrosion initiation time (years) variable 0.35 Log normal
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5. Application, Results and Discussion

Using the proposed TCM approach, the structural reliability analysis of a reinforced
concrete beam is carried out under both forms of corrosion (uniform and pitting corrosion),
including brittle failure mode using the formulated LSFs in Section 2. The results of the
reliability analysis were described in term of failure probability (i.e., reliability index).
Moreover, the influence of several parameters on the reliability of the reinforced concrete
beam was investigated, including the nominal diameter of the bars, D0 (mm), the corrosion
rate at the beginning of corrosion propagation, icorr(1) (µA/cm2), the concrete compressive
resistance, fc (MPa), and the applied moment (i.e., external load), Mu (kN-m). A comparison
of the time-dependent failure probability due to uniform and pitting corrosion forms and
fracture mode is illustrated in Figure 3. It should be mentioned that the selected value of
the nominal diameter of the bars, D0, was 18 mm, while the other variables were selected
as indicated in Table 1. According to the obtained reliability results, the probabilities of
failure for the RC beam due to uniform corrosion are higher than that of pitting corrosion.
This conclusion can be attributed to several reasons, including, for example, the higher
likelihood of uniform corrosion to occur on the steel surface than pitting corrosion. From a
mathematical point of view, this relates to the developed models in this field, where more
restrictions and a classical fitting technique were used to develop the above models and
correlations. However, the occurrence probability of fracture due to the transition from a
pit to crack defect shows a different risk of pitting corrosion on the RC beam, where for
small pits/cracks, the probability of failure due to fracture is small compared to uniform
corrosion, but with the progression of time, the fracture failure probabilities increase rapidly.
This indicates that despite the lower failure probabilities due to pitting corrosion, failure
probabilities can substantially increase due to the fracture. Overall, Figure 3 clearly shows
that increasing both pitting and uniform corrosion with time will lead to large reduction in
the strength of the RC beam. As an example, for a failure probability of 0.004, the beam
can reach a service life time of 53 years in the case of uniform corrosion, 70 years in the
case of pitting corrosion, and only 20 years to complete fracture due to cracks propagating
from pits.
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Figure 3. Time-dependent failure probability of steel bars subjected to general and pitting corrosion.

5.1. Effect of the Steel Bars Diameters (D0, mm)

To address the influence of the nominal diameter, D0, of the steel bars on the failure
probability (Pf) of the reinforced beam structure, four different diameters were used as the
mean values: 16 mm, 18 mm, 20 mm, and 27 mm. The time-dependent reliability analysis
results are shown in Figure 4a–c for the uniform, pitting, and fracture-based failure modes,
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respectively. It should be noted that these results are illustrated in terms of the ratio of
the time-dependent failure probability with corrosion (i.e., uniform, pitting or fracture) to
the failure probability at the beginning of corrosion initiation (t = 1). Therefore, the higher
this ratio, the higher the impact caused by the mode of failure. As expected, an increase
in the nominal diameter of the bars resulted in a reduction in the failure probability (i.e.,
PD0=27 mm

f < PD0=20 mm
f < PD0=18 mm

f < PD0=16 mm
f ). In addition, after 50 years of

service life, the influence of the diameter is amplified. Another observation is that the
values of the ratio PCorrosion

f /PIntiation
f for the case of pitting corrosion are much higher than

for uniform corrosion, while the probability of failure due to fracture, caused by pitting
corrosion, is found to be the highest.
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Figure 5 illustrates a comparative study between the permitted predictable service life
of the RC beam under the studied corrosion forms (uniform and pitting) and the fracture
failure mode based on a safety threshold equal to β = 3 in terms of reliability index. In
addition, the four cases based on the differing nominal diameters (D0) were considered.
Therefore, using this threshold, the predictable allowed service life of the RC beam under
uniform corrosion for a D0 of 16 mm, 18 mm, 20 mm and 27 mm are 16, 24, 36 and 90 years,
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respectively. For the case of pitting corrosion, the results are 42, 46, 56 and 90 years in the
same respect. The lowest predicted service life is captured in the fracture failure mode due
to pit-to-crack failure as 16, 21, 32 and 40 years using 16 mm, 18 mm, 20 mm and 27 mm,
respectively. After achieving the predicted service life, maintenance and repair actions
should be taken to prevent failures and the associated consequences.
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Figure 5. Influence of the nominal diameter of the bar (D0) on the reliability index results for the (a) uniform corrosion form,
(b) pitting corrosion form, and (c) fracture failure mode.

5.2. Effect of the Corrosion Imitation Time (icorr(1), µA/cm2)

Similar to the previous section, the influence of the initiation corrosion rate (icorr(1))
was also investigated. Figure 6 depicts the time-dependent reliability results versus four
cases of icorr(1): 0.7 µA/cm2, 2 µA/cm2, 5 µA/cm2, and 10 µA/cm2, respectively. According
to the results, the initiation corrosion rate (icorr(1)) has an important influence on the time-
dependent failure probability of the reinforced concrete beam for the cases of icorr(1) = 5 and
10 µA/cm2, especially after 7 years of service. Therefore, the higher the value of (icorr(1)),
the higher the probability of failure. Pitting corrosion affects the failure probability more
than the case of uniform corrosion. For the cases of icorr(1) < 2 µA/cm2, it seems that this
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parameter has less influence on the reliability results, noting that this parameter is highly
influenced by the surrounding environment conditions of the RC beam. Thus, it is very
important to quantify the related condition of the structures for the accurate prediction of
the safety levels.
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corrosion form, (b) pitting corrosion form.

5.3. Effect of the Concrete Compressive Resistance (fc, MPa)

Figure 7 illustrates the reliability results of the presented problem under four different
cases of concrete compressive resistance (fc) in the range of 30 to 45 MPa for the two
corrosion forms. Unlike the influence of the nominal diameter and the initiation corrosion
rate, the compressive resistance of the concrete was found to have almost the same impact
on the failure probability results for the four proposed values. However, it is shown that this
parameter has an increasing linear influence with respect to time for the uniform corrosion
form, and an almost exponential influence for the pitting corrosion form, especially after
T > 60 years.
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5.4. Effect of the Applied Moment (Mu, KN-m)

The final investigated effect was the external moment applied onto the RC beam
subjected to uniform or pitting corrosion. Figure 8 illustrates the failure probabilities
versus the applied moment within a range of 100 and 180 KN-m for different stages of
service life for the beam at 1, 5, 15, and 50 years. As expected, the higher the applied
load, the higher the failure probability for both corrosion forms, and for all the stages of
the structure life. In addition, the corroded reinforced beam is more vulnerable when the
service life reaches 50 years. It can also be observed that the influence of general corrosion,
in accordance with the external moment, is uniform, where the older the structure, the
higher the failure probability. However, for pitting corrosion, the results show that the
effect was similar in accordance with age, which can be explained by the high risk to fail
due to the concentrated penetration (pit) of the corrosion (unlike the general (uniform)
corrosion on the bar’s surface).
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6. Conclusions

To investigate the behavior of the safety levels of reinforced concrete beams that are
subjected to uniform and pitting corrosion conditions in terms of failure probability, a
new reliability method was utilized in this research. Thus, an improved version of the
FORM method using a new conjugate sensitivity vector based on improvements to the
three-term conjugate map was utilized. In addition, the flexural LSF was formulated based
on previous research correlations and an empirical model to describe both the uniform
and pitting corrosion forms. Moreover, the risk of the fracture due to pitting corrosion
defects was formulated as the difference between the fracture toughness and the stress
intensity factor.

The performance of the proposed TCM approach was validated against several struc-
tural reliability methods using complex and highly nonlinear examples. The obtained
results indicated that the TCM method outperforms the others in terms of robustness,
efficiency, and accuracy. The time-dependent reliability results showed that increasing the
nominal diameter of the bars will decrease the failure probability, while it was found that
the influence of uniform corrosion is more severe that pitting corrosion if the fracture mode
is not considered. As an example, for D0 = 18 mm and a threshold of β = 3, the concrete
beam structure achieves an allowed service life of 24 and 46 years for the cases of uniform
and pitting corrosion, respectively, and only 21 years in the case of brittle fracture failure
mode. Investigating the failure due to brittle fracture shows the high impact of pitting
corrosion on the safety of RC beams.

Based on these results, the effect of the surrounding environment conditions that help
in the growth and development of corrosion forms, as well as the applied external loads,
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have the greatest impact on safety levels for reinforced concrete beams. This research
concluded that more advanced approaches should be used to redevelop the LSF variables,
especially the ones based on empirical correlations and fitting approaches such as the
corrosion growth parameters. The influence of the external loads on corrosion diffusion
should be examined in future works, which will aid in describing corrosion phenomena
with more real-world conditions. Among the suggested approaches is the use of artificial
intelligence methods and optimization techniques.
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