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Abstract 

Telomeric DNA are TTA​GGG​ tandem repeats, which are susceptible for oxidative DNA damage and hotspot regions 
for formation of DNA secondary structures such as t-loop, D-loop, G-quadruplexes (G4), and R-loop. In the past two 
decades, unique DNA or RNA secondary structures at telomeres or some specific regions of genome have become 
promising therapeutic targets. G-quadruplex and R-loops at telomeres or transcribed regions of genome have been 
considered as the potential targets for cancer therapy. Here we discuss the potentials to target the secondary struc-
tures (G4s and R-loops) in genome as therapy approaches.
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Background
Telomeres are nucleoprotein structures at the end of each 
chromosome, which protects the end of the chromosome 
from deterioration or from fusion with chromosomes, 
and the hotspot region for formation of many secondary 
nucleotide structures [1, 2]. Cancer cells get the ability 
to conquer the replication problem via either telomerase 
or Alternative Lengthening of Telomeres (ALT) pathway, 
which involves recombinational mechanisms to over-
come incomplete replication of telomeres [3–5] (Fig. 1). 
Telomeric DNA are TTA​GGG​ tandem repeats, which 
are susceptible for oxidative DNA damage and hotspot 
regions for formation of DNA secondary structures such 
as t-loop, D-loop, G-quadruplex (G4), and R-loop [6–8]. 
Single strand G-rich overhang folds back and invades 
into the double-stranded telomere tract to form a T-loop 
and D-loop structure, protecting the end of chromosome 
from being recognize as double strands breaks (DSBs) [9–
11]. When single-stranded guanine-rich DNA sequences 
fold into stable intramolecular and intermolecular four-
stranded non-B DNA structures, such a structure is so 

called G-quadruplexes, which may play important roles 
in the regulation of gene expression, DNA repair, epige-
netic regulation and telomere biology [12–14]. R-loops 
are the three-stranded nucleic acid structure that con-
tains a DNA: RNA hybrid and displaced DNA strand. We 
recently discovered that ROS-induced DNA damage at 
telomeres triggers R-loop accumulation in a TERRA and 
TRF2-dependent manner [8].

Since Last century cancer chemotherapy gained the 
success relying on highly cytotoxic drugs, which directly 
or indirectly disrupt the transcription and/or replication 
of cellular DNA in both normal cells and tumor cells [15]. 
To avoid the side effects of these toxic agents, investiga-
tors have paid their attentions to design and select the 
more selective drugs through many strategies. In the past 
two decades, unique DNA or RNA structures at telom-
eres or some specific regions of genome have become 
promising therapeutic targets. The G4 and R-loop struc-
tures at telomeres or transcribed regions of genome have 
been considered as the potential targets for cancer ther-
apy. To date, several strategies that target these specific 
structures or proteins involving maintaining these struc-
tures have been developed by a number of laboratories. 
Here, we summarize some recent studies that aimed at 
targeting the secondary structures (e.g. G4 and R-loop) as 
therapeutic approaches for killing cancer cells.
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The distribution of G‑quadruplex structures in genome
In 1962, Gellert.et al. first reported the G-tetrad struc-
ture in guanylic acid with an X-ray diffraction study 
[16]. G4 antibodies were made to detect those struc-
tures within genomic DNA. Schaffitzel et al. firstly used 
a high-affinity single-chain antibody to detect quad-
ruplex structure at the telomere of ciliate Stylonychia 
lemonade [17]. Since then several G4 antibodies have 
been generated by a few groups to visualize those struc-
tures in cells, including Sty49 [18], BG4 [19] and 1H6 
[20]. With the combination of next-generation sequenc-
ing and genomic mapping, several groups have revealed 
that the distribution of unique sequences that possess 
the potential to form stable  G4 structure. The human 
genome contains 376,000 potential G4 structures [21, 
22]. The potential G4 structures are highly occurrent 
in telomeres and promoter regions of oncogenes [23, 
24]. Besides telomeres and promoter regions, riboso-
mal DNA [25], 5′untranslated region of mRNA [26], or 
TERRA [27] are also potent to form the G4 structures.

Targeting G‑quadruplex structures of hTERT
From the genome-wide sequence analyses, potential 
G4 structures are enriched in promoter regions, which 
span 1  kb upstream of the transcription start site in 
humans and other vertebrates genes [24, 28]. Previ-
ous studies have paid great attentions to cancer-related 
genes, e.g. hTERT, c-MYC [29], BLC2 [30], KRAS [31, 
32], and VEGF [33], which contain enriched G4 motifs 
in their promoter regions. A number of G4-targeting 
ligands have been developed to target the promoters 
of these genes as potential biomedical targets for anti-
tumor therapy. One major obstacle impeding the clini-
cal application of G4 ligands is the lack of selectivity. 
Recently, people have entered a new phase of the devel-
opment of next-generation ligands that interact with 
G4. The goal is to improve the ligand selectivity to a 
particular G4 to be targeted, potentially leading to the 
development of molecules with high antitumor activ-
ity and bioactivity with minimal antitumor therapy side 
effects.
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Fig. 1  Targeting G-quadruplex structures in telomerase positive or ALT cancer cells. Left: unresolved G4s block the function of telomerase for 
telomere elongation in telomerase positive cells; Middle: stabilized G4s at some oncogene promoters lead to the repression of those oncogenes; 
Right: Targeting G-loop with G4s ligands or R-loop inhibitors may be a potential therapeutics for ALT cancers
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Elevated hTERT expression is observed in ~ 90% of 
human cancer cells, whereas it is normally silenced in 
most normal cells. Therefore, hTERT has been consid-
ered as the most attractive biomedical target for can-
cer treatment. Investigators have used two approaches 
to suppress the function of hTERT: downregulate the 
expression of hTERT or inhibit the activity of hTERT. 
Some unselective G4 ligands, such as telomestatin [34, 
35] and substituted acridines [36, 37], may bind to a large 
scale of G4 structures, including hTERT, c-kit, KRAS 
or c-MYC promoters (Fig.  1 middle). Those unselective 
ligands may cause bunch of side effects along with their 
cancer therapeutic effects, which limited their clinic 
applications. Recently, Hurley and colleagues used a 
unique approach to address the issue of hTERT down-
regulation on the basis of the mutations in a G4-medi-
ated manner. They have developed a small molecule 
(GTC365) that acts at an early step in the G4 folding 
pathway to redirect mutant promoter G-quadruplex 
misfolding and reduce hTERT activity through tran-
scriptional repression. They also demonstrate the selec-
tively therapeutic potential of this strategy in melanoma 
cells that overexpress hTERT [38]. In addition to hTERT, 
some G4 ligands that more selectivity target to particular 
G4s at the promoter of specific cancer-related genes (e.g. 
C-MYC, BLC2, KRAS, and VEGF) have been reported. 
Tan and colleagues report a new four-leaf-clover-like 
molecule, IZCZ-3, that have about eightfold preference 
for the c-MYC over the G4s in the promoters for other 
genes. More importantly, this ligand showed cytotoxic-
ity against cancer cell lines overexpressing c-MYC but 
not against normal cells, suggesting reduced side effects 
based on G4 selectivity on c-MYC [39]. Other ligands, 
like Furo[2,3-d]pyridazin-4(5H)-one 9 (BLC2) [40], 
Indolo[3,2-c]quinolines (IQc) (KRAS) [41], and SYUIQ-
FM05 (VEGF) [42], has also been reported. Those find-
ings shed a light on the developing of the next-generation 
G4s ligands, which have high antitumor activity and bio-
activity with minimal side effects.

Targeting G‑quadruplex structures at telomeres
The regions of eukaryotic genomes with the highest con-
centration of potential G4 structures are telomeres [21, 
23]. Telomeric G4 structures have been considered as 
attractive anticancer targets for many years. The inves-
tigators have successfully developed a large number of 
compounds that targeting telomere–G-quadruplexes 
[43] after the first G4s ligands (2,6-diamidoanthraqui-
none) [44] being reported. In telomerase positive cells, 
the G-overhang is extended by telomerase, a reverse 
transcriptase enzyme carrying its own RNA template 
(Fig. 1 left). G4s ligands bind to G4s tightly and block the 

telomerase activity through disrupting the base-pairing 
between G-overhang and telomerase RNA [12, 45, 46].

A lot of efforts were devoted to design more selecta-
ble  G4s ligands that adopted at telomere 3′ overhang 
region these years. Some enantiomers, such as Ni–P, 
exhibit an ability to convert a monomeric antiparal-
lel form to a monomeric hybrid form, and inhibit the 
cell growth via disputing the localization of TRF2 and 
POT1 at telomeres [47, 48]. Then, several studies found 
that a large variety of alternative higher-order struc-
tures derived from the canonical telomere G4 might be 
adopted at the 3′- overhang region. Thus, the unique 
structure and motif of these ligands are amenable to the 
gain of specificity for telomere G4s [49–52].

Telomeric R‑loop formation and its relevance with G4 
structure
The overabundance of R-loop as shown in a number of 
neurological syndromes and cancer [53, 54]. The out bal-
ance of R-loop leads to genome instability and replica-
tion stress, which is a molecular symptom of tumor cells 
[55]. Therefore, targeting R-loop has been considered as a 
potential approach to sensitize certain tumors to chem-
otherapeutic treatment. In 1997, Weaver et  al. reported 
that F8-actinomycin D exhibits a unique selectivity 
against leukemia cells [56]. However, DNA:RNA hybrids 
are often formed at transcribed genome, the applica-
tion of those molecules that directly bind to DNA:RNA 
hybrids was limited. Recently, researchers turned to pay 
more attentions on targeting R-loop binding proteins. 
Andrés Aguilera and colleagues reported that trabectedin 
and lurbinectedin induced DNA-RNA hybrids-depend-
ent DNA damage in HeLa cells, impairs DNA replication 
and causes genome instability. The high level of R-loops 
increases cell sensitivity to those antitumor drugs [57]. 
Especially, some homologous recombination deficiency 
cancer cells, which showed the elevated level of R-loop 
formation, were hypersensitive to genotoxic drugs such 
as etoposide, camptothecin, trabectedin and PARP inhib-
itors [58–60]. Furthermore, several other compounds 
have also been reported to increase R-loops, including 
topoisomerase1 inhibitors [61], spliceosome inhibitors 
[62, 63], and RNase H2 inhibitors [64, 65].

G4 structures form in a similar genomic context as 
R-loops. Recent studies indicate the presence of co-exist-
ence of R-loop and G4, known as “G-loop”, which is a 
unique structure where G4 is formed at the displaced sin-
gle-stranded of an R-loop, both in vivo and in vitro [66]. 
In 2004, Nancy Maizels and Colleague first described 
the formation of G-loop in vitro and in Escherichia coli 
using electron microscopy. Recently, several studies 
revealed that G4 ligands (PDS, CX-5461) induce R-loop-
mediated DNA damage and cell death in cancer cells [67, 
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68]. Giovanni Capranico et al. used different G4 ligands, 
including pyridostatin, Braco-19, and FG, to stabilize 
G4 structures and simultaneously increase R-loop levels 
within minutes in human cancer cells. The increased level 
of R-loop leads to the accumulation of γH2AX foci and of 
G2/M cells, which are both hallmarks of genomic DSBs 
and DNA damage response. Importantly, overexpression 
of an exogenous human RNaseH1 rescued DNA damage 
induced by G4 ligands in BRCA2-depleted cancer cells, 
which indicated the G4 ligands can induce DNA damage 
by an R loop-dependent mechanism [67].

Is the telomeric R‑loop structure a potential target 
for cancer therapy?
R-loops play an import role in telomere maintenance 
in telomerase negative cancer cells. In ALT cancer 
cells, R-loop facilitated telomere elongation through 
a recombination mechanism. Arora et  al. first showed 
that the RNA endonuclease RNaseH1 regulates the lev-
els of RNA–DNA hybrids between telomeric DNA and 
the long noncoding RNA TERRA, and is a key media-
tor of telomere maintenance in ALT cells. Then, several 
studies also confirm the function of R-loop in telomere 
maintenance [69, 70]. Our group recently reported that 
the R-loop-CSB-RAD52-POLD3 axis contributes to the 
repair of Reactive oxygen species (ROS) induced telom-
eric damage in ALT cancer [8]. Target R-loop interact-
ing proteins at genome are also possible to enhance the 
cell killing effects. Therefore, targeting telomeric R-loop 
could be the potential treatments for ALT tumors, with 
more studies revealed the molecular details of ALT and 
the mechanisms involved in its engagement (Fig. 1 right).

There are a lot of reasons that the application of tel-
omerase inhibitors in cancer therapy has not got too 
much progress. Although the non-selectivity of those 
inhibitors may the major limitation for their application, 
other reasons cannot be excluded. Two of those reasons 
are that the probability co-existence of telomerase and 
ALT pathway in some specific tumor [71–74], and ALT 
pathway may be activated after suppressing telomerase 
by inhibitors [75]. The information about the activation 
of ALT pathway in telomerase-positive cancer cells that 
treated with telomerase inhibitors is limited. Combined 
strategies that target both telomerase and ALT could be 
proved to be a powerful approach for the treatment of 
such tumors.

Conclusions
Both G4 and R-loops structures are potential targets 
for cancer therapy, however, questions including how 
to improve the selectivity of drugs, how to reduce the 
resistance and side effects, are the major obstacles for 
their future application. Actually, several clinical trials of 

G4 ligands were withdrawn due to these reasons. More 
ligands that have higher affinities to spatial conforma-
tions of G4 structures within unique regions of genomes 
are expected in the future.
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