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Abstract

We estimate and forecast childhood obesity by age, sex, region, and urban-rural residence

in Thailand, using a Bayesian approach to combining multiple source of information. Our

main sources of information are survey data and administrative data, but we also make use

of informative prior distributions based on international estimates of obesity trends and on

expectations about smoothness. Although the final model is complex, the difficulty of build-

ing and understanding the model is reduced by the fact that it is composed of many smaller

submodels. For instance, the submodel describing trends in prevalences is specified sepa-

rately from the submodels describing errors in the data sources. None of our Thai data

sources has more than 7 time points. However, by combining multiple data sources, we are

able to fit relatively complicated time series models. Our results suggest that obesity preva-

lence has recently starting rising quickly among Thai teenagers throughout the country, but

has been stable among children under 5 years old.

Introduction

Disaggregated estimates and forecasts of social, economic, and health outcomes can support

more equitable and effective public policy. Disaggregated estimates and forecasts can be used

to identify groups that are being poorly served, to assess the feasibility of policy targets, to pro-

vide evidence on the effectiveness of interventions, and to help with priority-setting [1, 2].

Disaggregated estimates and forecasts do, however, required disaggregated data. Assem-

bling datasets with the required level of detail can be difficult. Household surveys may have the

variables needed, but sample sizes are often too small to support the desired level of disaggre-

gation. Population censuses have large samples, but are carried out infrequently. Administra-

tive data or big data, such as tax records or cellphone data, have large samples and high

frequency, but often miss parts of the target population, and have substantial measurement

errors [3]. A particular problem for disaggregated forecasting is assembling long time series of
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input data. The greater the level of disaggregation, the more frequently geographical bound-

aries, and definitions of variables and target populations, change [4]. When the time series of

input data are short, forecasting is challenging [5, Section 13.7].

One way to meet the demands for disaggregated data is to combine information from many

different sources [6, 7]. Ideally, the sources should have complementary strengths and weak-

nesses, so that gaps in any one source can be filled by others. In many applications, it is neces-

sary to be opportunistic: to design the models around the data that are available. It is,

nevertheless, important to base the models on an explicit statistical framework, to properly

account for uncertainty [8] and for transparency and replicability.

Bayesian statistical models are particularly well suited to combining multiple sources of

information. The key distinction between Bayesian statistics and frequentist statistics is that

Bayesians are willing to use probability distributions to represent the state of knowledge about

any uncertain quantity [9, 10]. Probabilities act as a common unit of measurement, allowing

Bayesians to combine many sources and types of information within the same model. In the

final model presented in this paper, for instance, we use probability distributions to represent

sampling variability, the plausible range for measurement errors, and the plausible range for

annual variation in obesity rates.

In this paper, we use a Bayesian approach to combining information from multiple sources

to produce disaggregated estimates and forecasts of childhood obesity in Thailand. The appli-

cation is an important one. Obesity has emerged as a major health issue throughout the world,

including in middle income countries such as Thailand [11, 12]. Disaggregated estimates pro-

vide information on the size of the problem, and on risk factors: whether boys are more at risk

than girls, for instance, or whether urban children are more at risk than rural children. Disag-

gregated forecasts help with planning and priority-setting by health agencies by showing the

scale of the problem over the coming years.

Our overall approach is to specify a system model describing the underlying rates and data

models describing the relationship betwen the rates and the available data, and then jointly infer

all unknown quantities. This type of hierarchical modelling is becoming increasingly common

in demography, epidemiology, ecology, and related disciplines [e.g. 13–17], though it is still

uncommon in studies of obesity. Distinctive features of our analysis include the diversity of the

information sources that we combine, the flexibility of our model of prevalences, the integration

of estimation and forecasting, and the important role played by informative prior distributions.

We start the paper with a simple model, and then progressively add extensions. The initial

model is restricted to national-level trends, uses a single data source, and has no provision for

measurement error. The first extension is to bring in two extra data sources and allow for mea-

surement error. The second extension is to use international estimates of obesity trends to cre-

ate informative priors, to reduce uncertainty about rates of change. The third extension is to

add region and urban-rural residence. The fourth extension is to reformulate the prior describ-

ing the accuracy of the administrative data, in response to implausible patterns in the disaggre-

gated results. We conclude the analysis by probing some of our modelling assumptions. In the

final section of the paper, we argue that our methods are applicable to a wide range of estima-

tion and forecasting problems. Data and code to replicate the analysis are available at https://

github.com/johnrbryant/bayescombwho and https://github.com/johnrbryant/bayescomb.

Data

National Health Examination Survey

We use data from the 1991, 1997, 2004, 2009, and 2014 rounds of the Thai National Health

Examination Survey (NHES). The survey is nationally representative, with a complex design
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including stratification and clustering. Interviews are conducted by local health personnel,

who also measure the height and weight of respondents [18, 19]. We restrict our analysis to

respondents aged 2–17 years. The number of respondents in the target ages varies from 661 in

2004 to 9,247 in 2009, with an average of 6,058. Some rounds of the survey omit some ages

within the 2–17 range.

2001 Holistic Development of Thai Children Survey

The 2001 Holistic Development of Thai Children (HDTC) Survey collected data from 17 prov-

inces on topics related to family and childrearing, including heights and weights of children

[20]. We use data on height and weight for 2,127 respondents aged 2–4 years.

Schools data

The Thai Office of Basic Education Commission collects data on the health and socio-eco-

nomic status of students at preschools, elementary schools, and high schools receiving govern-

ment subsidies. The data collected includes heights and weights. Sample sizes are large,

ranging from 6,380,145 students aged 2–17 in 2019 to 6,883,478 in 2013. Using information

on the locations of schools, we construct a variable distinguishing between eight regions of

Thailand, and a variable distinguishing urban areas from rural areas.

Coverage of the schools data is incomplete, with the number of children in the dataset rep-

resenting, on average, only 51% of all children in the corresponding age groups. Coverage is

uneven across regions and age groups, though children aged 2–9 in Bangkok have by far the

lowest coverage, with coverage rates of less than 5%. Measurement of height and weight is also

uneven. Although teachers are supposed to take measurements themselves, anecdotal evidence

suggests that in some schools teachers merely ask children their heights and weights. The indi-

vidual-level weight and height measurements also have some heaping around values ending in

0 and 5.

Population estimates

To obtain population estimates for the period 1990–2010, we start with counts by age, sex,

region, and urban-rural residence from 1% census sample files for 1990, 2000, and 2010 [21],

and then interpolate between census years using splines, with one spline for each combination

of age, sex, region, and urban-rural residence. For the period 2011–2019, we use 2010-base

population projections from the Thai National Economic and Social Development Board [22].

WHO international obesity estimates

We use WHO annual estimates of obesity prevalence among children aged 5–19 for 191 coun-

tries for the period 1990–2016, downloaded from the WHO website [23]. The estimates are

derived from many data sources, and involve considerable imputation, interpolation, and

smoothing. The estimates distinguish between females and males, but not between age groups.

The WHO uses slightly different thresholds for height and weight to define obesity than we do

with the Thai data. All WHO estimates come with confidence intervals.

Ethics statement

This study was approved by the Institute for Population and Social Research Institutional

Review Board (IPSR-IRB), at Mahidol University, Thailand (COE. No. 2019/07–278).
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Direct estimates of obesity prevalence

We start with some direct estimates of obesity prevalence that do not depend on statistical

modelling. We measure obesity using body mass index (BMI), which is defined as weight in

kilograms divided by the square of height in centimeters. A child is classified as obese if the

child’s BMI exceeds the age-sex-specific cutoffs proposed by [24].

Fig 1 shows direct estimates of prevalence based on the NHES, HDTC, and schools data.

We calculate point estimates and 95% confidence intervals from the survey data using stan-

dard design-based methods, as implemented in the R package survey [25]. The schools esti-

mates are simply the number of students who are obese divided by the number of students in

the schools dataset.

The estimates in Fig 1 suggest that obesity prevalence is trending upwards in all age groups,

with the possible exception of children aged 2–4. There is also evidence that obesity is rising

faster among males than among females. The precision of the survey estimates varies across

different combinations of year and age, reflecting differences in sample sizes. Schools data

yields lower prevalence estimates than survey data, except among the youngest children,

though in most cases the trends are in the same direction.

To measure differences between areas within Thailand, we rely entirely on schools data.

Subnational prevalence estimates for females are shown in Fig 2. Results for males, which are

similar to those for females, are shown in the S1 File. There do appear to be small differences

between regions in obesity prevalence. Moreover, with one exception, these differences appear

to be consistent across age-sex groups, with regions that have high prevalences in one age-sex

group having high prevalences in all the other age-sex groups. The exception is Bangkok,

which, according to the schools data, has relatively high obesity below age 10, and relatively

low obesity above age 10.

Fig 1. Direct estimates of national-level obesity prevalence by age, sex, and year from the NHES, HDTC, and schools data. The dots represent

point estimates from the NHES, and the x’s represent point estimates from the HDTC; the vertical lines represent the associated 95% confidence

intervals. The HDTC data does not distinguish females and males, so the figure shows estimates for both sexes combined. The lines for the period

2013–2019 are prevalence estimates from schools data.

https://doi.org/10.1371/journal.pone.0262047.g001
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Model 1: National-level estimates and forecasts, using only NHES

data

Methods

Our first statistical model deals with obesity prevalence, by age and sex, at the national level,

using only the NHES to measure obesity. Within each combination of age group a, sex s, and

time t, we treat the number of children who are obese, y, as a draw from a binomial distribu-

tion with sample size n and probability π. Parameter π is the probability that a randomly-cho-

sen child is obese, and is the main quantity that we wish to infer.

Our model assumes that, within each combination of age, sex, and time, respondents are a

simple random sample of all Thai children. Respondents in the NHES are not in fact sampled

in this way. The complex survey design implies that, even after conditioning on age, sex, and

time, some groups of Thai children have different probabilities of being included in the NHES

sample than others. Following [26, 27], we account for the non-representativeness of the sam-

ple by fitting our model to ‘effective’ counts of respondents rather than to raw counts. Effective

counts equal raw counts scaled by factors that depend on sample weights. An analysis that

treats effective counts as if they come from a simple random sample yields approximately the

same means and variances as a more complicated analysis that explicitly accounts for the com-

plex survey design. The S1 File gives the details.

Our model relating NHES data to prevalence πast is

yEffNast � Binomialðpast; nEffN
ast Þ; ð1Þ

where the ‘EffN’ superscript denotes effective counts from the NHES. Prevalence πast is in turn

modelled, on a logit scale, as a draw from a normal distribution, the mean of which is the

Fig 2. Direct estimates of obesity prevalence by age, region, and urban-rural residence for females, based on schools data.

https://doi.org/10.1371/journal.pone.0262047.g002
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product of row vector xast and column vector β,

logitðpastÞ � Nðxastb; s2Þ: ð2Þ

Transformation to the logit scale implies that values are no longer bounded by 0 and 1. Vector

β contains an intercept, main effects for age, sex, and time, and interactions between age and

sex, age and time, and sex and time. Vector xast, which consists entirely of 1s and 0s, assigns

the appropriate main effects and interactions to each combination of age, sex, and time. The

main effects and interactions capture demographic regularities. For instance, the age main

effect captures the average age pattern across both sexes and all times, and the age-sex interac-

tion captures systematic differences between the age patterns of females and males.

Estimates of the main effects and interactions can be stabilized by adding to the model

information about plausible ranges and patterns. With a Bayesian model, this sort of additional

information can be encoded in prior distributions.

With the sex effect, we use a relatively simple prior distribution,

b
sex
s � Nð0; 1Þ: ð3Þ

This prior captures the idea that, on a logit scale, we might see female-male differences of -0.1

or 1.2, for instance, but not -10 or 120. Bayesians refer to priors like this, which seek only to

rule out highly implausible values, rather than providing tight bounds on a parameter, as

‘weakly informative’ [10, 28].

The prior for the age effect is identical to the prior for the sex effect. The prior for the inter-

cept term has the same form as the prior for the sex effect, but has a standard deviation of 10.

For time, we use a ‘damped linear trend’ prior [29], which is a flexible version of a random

walk with drift,

b
time
t � Nðat; t2

b
Þ ð4Þ

at � Nðat� 1 þ dt� 1; t
2
a
Þ ð5Þ

dt � Nð�dt� 1; t
2
d
Þ: ð6Þ

Time effect b
time
t equals a level term αt plus some random noise, the magnitude of which is gov-

erned by τβ. The level term at time t equals its value in time t − 1, plus some random noise gov-

erned by τα, plus a drift term δt−1. The drift term captures any tendency for upward or

downward trends in obesity to persist over time. Empirical studies of time series models have

found that damping upward or downward trends, rather than allowing them to continue

indefinitely, tends to improve forecast accuracy [30, 31]. In our specification, damping is con-

trolled by parameter ϕ. Parameter τδ governs the amount of random noise in δt.
To complete the prior for the time effect, we need to specify priors for standard deviations

τβ, τα, and τδ, and for ϕ. With each of the τs, we use a half-normal distribution with a standard

deviation of 1. A half-normal distribution has the same shape as a normal distribution with

mean zero, but limited to non-negative values. We restrict ϕ to the range [0.8, 1], and assume

that

� � 0:8

1 � 0:8
� Betað2; 2Þ: ð7Þ

All these priors qualify as weakly informative.

As we discuss below, the flexibility of the damped linear trend prior makes it challenging to

fit. However, less flexible versions of the prior could potentially miss important features of the
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data. It is, for instance, tempting to assume that, within each combination of age and sex, rates

of change are constant over time. Doing so would, however, reduce our ability to detect turn-

ing points, and could produce forecasts that were inappropriately confident.

The prior for the interaction between age and sex has the same structure as the prior for the

age and sex main effects. The prior for the interaction between age and time is a variant on the

prior for time, in which each age group has its own linear trend model, but the variance and

damping parameters are shared across all age groups. The prior for the interaction between

sex and time is a linear trend model. Finally, the σ in (2) has the same half-normal prior as the

τs from the prior for time.

We estimate the model using function estimateModel from open source R package

demest, available at github.com/statisticsnz/R. Function estimateModel uses Markov

chain Monte Carlo methods, customised for demographic estimation. The output from the

modelling is a sample of values from the joint posterior distribution for all unknowns quanti-

ties in the model [28]. We summarise the joint posterior distribution by calculating medians,

50% credible intervals, and 95% credible intervals of the distributions for any unknown quan-

tities we are interested in. The posterior medians serve as point estimates.

The estimation process includes imputing values for years in which there is no data. It is

traditional to refer to this imputation process as interpolation when the values being imputed

lie in the past, and as forecasting when the values lie in the future. In our model, however,

there is no strong distinction between imputation of past values and imputation of future val-

ues, with exactly the same specification being used for both.

Results

The top panel of Fig 3 shows results for prevalence πast from our initial model. Although the

median estimates and forecasts, represented by the white lines, look reasonable, the 50% and

95% credible intervals, represented by the dark and light bands, are implausibly wide in years

not covered by the NHES. From 2020 onwards, the 95% credible intervals essentially cover the

entire range from 0 to 1.

Examining estimates for higher-level parameters (not shown) indicates that most of the

uncertainty about prevalence πast comes from uncertainty about time effects, and about age-

time and sex-time interactions. The parameter in the priors for time effects and interactions

that has the biggest influence on uncertainty is τδ, governing changes in the drift term. Higher

values for τδ imply bigger changes in drift term δt, which, since the results compound over

time, greatly increases the scope for extreme outcomes.

The τδ parameters in the priors for the time, age-time, and sex-time terms are estimated

imprecisely. The 95% credible interval for the τδ in the time term, for instance, is (0.004,

0.563). Values towards the upper end of this range permit huge year-on-year changes in δt.
The reason that τδ and the other parameters in the linear trends priors are estimated impre-

cisely is that, with only five rounds, the NHES provides limited information on change over

time. Five time points is large for a health survey, but tiny for a time series model. For instance,

of the 100,000 time series used in the M4 time series competition—a major empirical compari-

son of time series models—the shortest series had 15 time points [31].

Model 2: Adding HDTC and schools data

Methods

In our first extension, we expand our model to accommodate HDTC and schools data. Fig 4

compares the structures of our first and second models. Both models deal with counts of obese

children, but the nature of these counts differ. In the first model, the counts are of obese
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Fig 3. Estimates and forecasts of national obesity prevalence from three models. The top panel shows results for

Model 1 using NHES data only, the middle panel shows results for Model 2 using NHES, HDTC, and schools data, and

the bottom panel shows results for Model 3 with NHES, HDTC, and schools data plus WHO-based prior distributions

for time terms. The light bands represent 95% credible intervals, the dark bands represent 50% credible intervals, and

the white lines represent medians. The black symbols represent direct estimates from Fig 1. The vertical axis for the top

panel extends from 0 to 1, while the vertical axes for the other panels extend from 0 to 0.7.

https://doi.org/10.1371/journal.pone.0262047.g003
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children in the NHES, which are known with certainty. In the second model, the counts are of

obese children in all of Thailand, which are unknown, and must be inferred. Even in the sec-

ond model, however, total numbers of children at risk of obesity, disaggregated by age and sex,

are treated as known.

The counts of obese children in the second model are inferred from three datasets. Each of

these datasets provides imperfect and incomplete measurements of obese children in all of

Thailand. The NHES dataset in our second model differs from the NHES dataset in our first

model. Rather than being a set of effective counts from the NHES survey, it is a set of estimates

for children in all of Thailand in each year of the survey. These estimates are obtained from

individual-level NHES data using standard methods for complex survey data, as implemented

in the survey package. Similarly, the HDTC dataset consists of an estimate for ages 2–4 in 2001

constructed from the raw individual-level HDTC data. The schools dataset is constructed by

multiplying schools-based prevalence estimates like those in Fig 1 by population estimates for

the corresponding age, sex, and year.

The system model for our second overall model replaces (1) from our first overall model

with

yTrueast � Binomialðpast; nTrue
ast Þ: ð8Þ

In every other way, including all the prior distributions, the system models for Model 1 and

Model 2 are identical.

To construct our data model for the NHES, we rely on features of the design of the survey,

which is a common strategy in Bayesian analyses of multiple data sources [8, e.g. 15]. The

design of the survey implies that the NHES estimates should be unbiased, and that errors in

Fig 4. The structure of our first and second models. Our first model, on the left, allows for a single data source with

sampling errors but not measurement errors. Our second model, on the right, allows for multiple data sources, all with

sampling and measurement errors. Observed quantities are shaded gray; everything else is unobserved, and must be

inferred.

https://doi.org/10.1371/journal.pone.0262047.g004
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these estimates should be approximately normally distributed. Moreover, the standard devia-

tions for these errors can be estimated through design-based methods that exploit information

about the survey including sample weights.

Our data model for the NHES is

yEstNast � NðyTrueast ; k
2
astÞ; ð9Þ

where the superscript ‘EstN’ denotes ‘estimates derived from the NHES.’ We set the κast equal

to the standard deviations that the R package survey produces alongside the estimates yTrueast .

(Code for the design-based calculations s included in the repository https://github.com/

johnrbryant/bayescomb).

Values for yEstNast are available for only some values of yTrueast . For instance, no values for yEstNast

are available for ages 2–4 and 5–9 in 2004, or for any age groups in 2005–2008. The gaps in the

data pose no difficulties for estimation: the data model uses the values of yTrueast that it needs to

predict the corresponding values in the NHES dataset, and ignores the rest.

The data model for the HDTC estimates has the same structure to the NHES model, except

that the subscripts change from ast to at, since the HDTC data does not specify the sexes of the

children. The fact that the data lack a dimension contained in yTrueast also does not pose any diffi-

culties for estimation: within the estimation process, the sex dimension in yTrueast is aggregated

away before the values are supplied to the data model.

The data model for the schools dataset is

log yEstSast � Nðlog yTrueast þ ga; B
2
yÞ ð10Þ

ga � Nð0; B2
g
Þ: ð11Þ

The log of the schools-based estimate equals the log of the true count, plus an age-specific bias

term γa, plus random noise. The use of logs implies that the data model is expressed in terms

of percentage errors, rather than absolute errors. We focus on differences in biases across age

groups because comparisons of direct estimates, shown in Fig 1, suggests that these differences

are large. As illustrated in Fig 2 in the S1 File, dropping the age-specific bias term from the

model produces an implausible jump in obesity prevalences for ages 2–4 when moving from

NHES and THDS data to schools data. In principle, we could extend the model to allow for

systematic differences across other dimensions besides age. However, allowing too much flexi-

bility in data models can make the overall model difficult to fit.

The age-specific bias terms are drawn from a common distribution centered on 0. Parame-

ter By governs the amount of random noise, and parameter Bγ governs variability in age-spe-

cific bias. We use half-normal priors with standard deviations of 1 for By and Bγ.

The likelihood from combining the three datasets has the form

pðdatajtrue obesity countsÞ ¼ pðNHES datajtrue obesity countsÞ

� pðHDTC datajtrue obesity countsÞ

� pðSchools datajtrue obesity countsÞ:

The (unobserved) true obesity counts appear multiple times in the likelihood. The repetition

does not, however, cause any problems. It is analogous to having the same regression coeffi-

cients occur multiple times in the likelihood for a regression model.
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Results

The middle panel of Fig 3 shows results from Model 2. Adding the extra data sources dramati-

cally reduces uncertainty compared with the first model. (Note that the top and middle panels

of Fig 3 use different vertical scales.) The reduction in overall uncertainty results, in large part,

from a reduction in uncertainty about the τδ parameters in the main effect and interactions

involving time. For instance, the 95% credible interval for τδ in the main effect for time in the

second model is (0.001, 0.063), compared with (0.004, 0.563) in first model.

With uncertainty at more reasonable levels, differences in prevalences by age and sex

become more apparent. The estimates for ages 2–4 imply that prevalences rose only slightly

during the 1990s and 2010s. The relatively flat forecasts for ages 2–4 extrapolate these slow

changes into the future. The estimates have more pronounced upward trends among other age

groups, particularly for males. Prevalences rise particularly quickly among males aged 15–17

during the 2010s and 2020s. These changes appear to reflect the rapid growth (from a low

base) in obesity among males aged 15–17 in the schools data.

The results for Model 2 are consistent with the idea that the relationship between actual prev-

alence and prevalence in the schools data varies with age. School-based prevalences more or less

match the modelled estimates at ages 2–4, but are substantially lower among the other age groups.

Model 3: Adding WHO-based priors for time effects

Methods

Although our second overall model gives more sensible estimates of uncertainty than the first,

the second model still appears to overstate the probability of sudden shifts in prevalences, judg-

ing by the wide 95% credible intervals for 2030. This suggests that, even with the addition of

the HDTC and schools data, the parts of the model dealing with change over time could bene-

fit from more data. In the absence of more Thai data on change over time, we turn to data for

other countries—specifically, the WHO estimates of obesity trends in 191 countries.

Our strategy is to fit a simple model covering all 191 countries, and extract from the model

parameter values capturing typical year-to-year variability. We use these parameters to formu-

late informative priors for parameters governing change over time in our Thai model. A prior

is informative if it places relatively tight bounds on a parameter, and thus potentially has a sub-

stantial effect on final estimates.

We convert the WHO point estimates and 95% confidence intervals into effective counts of

children, as described in the S1 File. We then fit the model

yWHO
cst � BinomialðpWHO

cst ; nWHO
cst Þ ð12Þ

logitðpWHO
cst Þ � NðxWHO

cst b
WHO

; s2
WHOÞ; ð13Þ

where c denotes country, s sex, and t time. Vector βWHO contains a country effect, a sex effect,

a country-sex interaction, and a time effect. The sex effect has a normal prior with a standard

deviation of 1. The prior for the country effect is b
ctry
c � Nð0; t2

ctryÞ, with τctry having a half-nor-

mal prior with standard deviation 1. The prior for the country-sex interaction is identical to

the prior for the country effect, except that the c subscript is replaced by a cs subscript. The

time effect has a linear trend prior, with exactly the same specification as the prior for time

effects and interactions in our Thai models.

Having fitted the model to the WHO data, we discard all results except those for the time

effect. In particular, we retain samples from the posterior distributions for time effect parame-

ters τβ, τα, τδ, and ϕ. We use these samples to create informative priors for the corresponding
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parameters in the time effect, age-time interaction, and sex-time interaction in our models for

Thailand.

Based on the sample from the posterior distribution for τβ in the WHO model, for instance,

it appears that the posterior distribution can be closely approximated by the half-normal distri-

bution N+(0, 0.00542). The distribution N+(0, 0.00542) can be used as an informative prior for

τβ in the time effect, age-time interaction, and sex-time interaction in the Thai model. Infor-

mative priors for τα, τδ, and ϕ in the time effect, age-time interaction, and sex-time interaction

can be constructed in similar ways. Details are provided in the S1 File.

An important feature of our use of the WHO data is that we only extract information about

rates of change. The parameters τβ, τα, τδ, and ϕ all deal with year-to-year variation, and not

with absolute levels. Even with the WHO-based priors for time effects, our Thai models con-

tinue to rely on Thai data to determine absolute levels. We assume that even if differences

between the WHO and Thai data in the age groups covered and in the thresholds used to

define obesity make it difficult to pool information about absolute levels, they do not affect our

ability to pool information about rates of change.

The main advantage of the WHO estimates is that they summarise the experiences of virtu-

ally every country in the world. The main disadvantage, for our purposes, is that many coun-

try-specific time series have been subject to substantial smoothing, imputation, and

interpolation. The resulting time series may understate actual year-to-year variation. To allow

for this possibility, we modify the prior distributions for τβ, τα, τδ, and ϕ so that they have

approximately twice the variance of the original WHO-based versions, and use these modified

priors, rather than the original informative priors, in models 3–5. (The S1 File includes a

description of the modification process.) The decision of how much to scale the variances of

the priors is inevitably somewhat arbitrary. We test the sensitivity of our results to alternative

choices later in the paper.

Results

The bottom panel of Fig 3 shows results from Model 3. Comparison of the middle and bottom

panels of Fig 3 suggests that the use of WHO-based priors has virtually no effect on historical

estimates. Use of the WHO-based priors does, however, lead to somewhat narrower credible

intervals for 2030. Exploiting the information about plausible annual variation contained in

the WHO estimates leads to a modest increase in the precision of the forecasts.

Model 4: Disaggregating by region and by urban-rural residence

Methods

In Model 4, we disaggregate the estimates and forecasts by region and by urbal-rural residence.

Eq (8) in the system model is replaced by

yTrueasrut � Binomialðpasrut; nTrue
asrutÞ; ð14Þ

which is identical to (8), except for the addition of the r subscript denoting region and the u
subscript denoting urban-rural residence.

The main effects used to predict logit(πasrut) in Model 4 are the same as those in Model 3,

along with a main effect for region and a main effect for urban-rural residence. The prior dis-

tributions for region and urban-rural residence have the same format as the prior distribution

for country in the WHO model.

The data models for the NHES and HDTC are unchanged. Within the estimation process,

the region and urban-rural dimensions of yTrueasrut are aggregated away before the obesity counts

are supplied to the data models.
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The data model for the schools data is expanded to include r and u subscripts,

log yEstSasrut � Nðlog yTrueasrut þ ga; B
2
yÞ ð15Þ

ga � Nð0; B2
g
Þ: ð16Þ

The revised data model for schools, like the original data model for schools, only allows biases

to vary by age. Biases may in fact vary by region or by urban-rural residence, but with only one

source of data on subnational variation in obesity prevalence, there is limited scope for distin-

guishing between subnational variation in coverage and subnational variation in actual

prevalence.

Results

The top panel of Fig 5 shows results from Model 4. To save space, Fig 5 only includes results

for females in urban areas; results for males and for rural areas are shown in the S1 File. Each

Fig 5. Estimates and forecasts of obesity prevalence for females in urban areas, from models 4 and 5. The top panel

shows results from our first subnational model (Model 4), and the bottom panel shows results from our revised model

(Model 5). The light bands represent 95% credible intervals, the dark bands represent 50% credible intervals, and the

white lines represent medians. The black symbols represent direct school-based estimates from Fig 2.

https://doi.org/10.1371/journal.pone.0262047.g005
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age group in Fig 5 follows a similar trajectory to the corresponding national-level age group in

Fig 3, though these trajectories vary slightly between regions, reflecting patterns in the raw

data in Fig 2. The Northeast region, for instance, has relatively low prevalences in Fig 5, reflect-

ing the relatively low direct estimates of prevalence shown in Fig 2. Model 4 seems, in many

ways, to be giving sensible results.

One implausible feature of the results from Model 4, however, is the sudden departures

from long-term trends that occur in many series in response to the schools data. In Bangkok,

for instance, estimates for ages 2–4 and 5–9 shift sharply upwards during the years where the

schools data are available, while estimates for ages 10–14 and 15–17 shift sharply downwards.

In regions such as Bangkok and Central Thailand, the estimates closely track year-to-year

changes in the schools data.

The sudden departures from long-term trends and the close tracking of the schools data

evident in the top panel of Fig 5 reflect the fitted values for parameters σ and By in Model 4.

Parameter σ, from the subnational equivalent of (2), governs the amount of idiosyncratic varia-

tion in true obesity prevalence. Parameter By, from (15), governs the accuracy of the schools

data after accounting for age-specific biases. The point estimate for σ is 0.132 in Model 4, com-

pared with 0.013 in Model 3, while the point estimate for By is 0.023 in Model 4, compared

with 0.010 in Model 3. These numbers imply that subnational prevalence rates are much less

stable than national rates, while subnational school-based measures of these rates are only

slightly less accurate than national school-based measures.

We would, instead, expect Model 4 to have slightly higher values for σ than Model 3, and

much higher values for By. Some increase in idiosyncratic variation in prevalence rates when

moving from the national level to the subnational level is plausible, but a 10-fold increase is

not. Conversely, given the low coverage rates in regions such as Bangkok, and the complica-

tions introduced by student migration, subnational school-based estimates of obesity preva-

lence could be expected to be substantially less reliable than those national-level estimates.

Some deficiency in Model 4 seems to be leading it to misrepresent variation in true prevalences

and misrepresent the accuracy of the schools data.

Model 5: Adjusting the data model for the schools data

Methods

We obtain our final model, Model 5, by adjusting the data model for the schools data. In

Model 4, and in earlier models, we use the same half-normal prior for By that we use for scale

parameters in the system model. A half-normal prior favours values near zero. In the system

model, using a prior for scale parameters that favours values near zero damps down variation

in parameters, such as the β or π, that are governed by the scale parameter. Damping down

variation in these parameters provides robustness to noise in the data. In the data model for

schools, however, using a prior for By that favours values near zero reduce robustness, instead

of increasing it. Values of By near zero imply that (after accounting for age-specific biases)

most observed variation in schools data reflects real variation in underlying prevalences.

When By is low, variation in the data is propagated through to estimates of underlying preva-

lences. This is not appropriate behavior when, as with the subnational schools data, the data is

likely to have substantial measurement error.

We replace the half-normal prior for By with one that no longer favours values near zero.

We switch from a half-normal prior to a scaled inverse-χ2 distribution, which has a mode

away from zero and a long right tail. For mathematical convenience, we apply the prior to B2
y

rather than to By itself. A scaled inverse-χ2 distribution has a degrees-of-freedom parameter

which, roughly speaking, controls the dispersion of the distribution, and a scale-squared
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parameter which controls the mean. We derive values for these parameters that try to reflect

the plausible range of values for B2
y .

Let pasrut be a direct estimate of obesity prevalence from the schools data, as depicted in Fig

2. Our data model for the schools data implies that

log pasrut ¼ logpasrut þ ga þ uasrut: ð17Þ

where πasrut is the true prevalence, and uasrut has a normal distribution with mean 0 and vari-

ance B2
y . We approximate log πasrut with zasrut η, where η contains the same main effects and

interactions as our subnational system model and vasrut is a vector of 1s and 0s. Substituting

into (17) gives

log pasrut ¼ zasrutZþ ga þ uasrut ð18Þ

¼ z0asrutZ
0 þ uasrut; ð19Þ

where z0asrutZ
0 ¼¼ zasrutZþ ga. We fit the model of (19) using least squares, as implemented in

function lm in R package stats, obtaining a point estimate for B2
y of 0.016.

We set the degrees-of-freedom parameter for the scaled inverse-χ2 prior distribution to 30

and the scale-squared parameter to 0.015. These values imply that there is a 95% chance that

the true value of B2
y is between 0.010 and 0.027.

Results

Results from our revised model, Model 5, for females in urban areas, are shown in the lower

panel of Fig 5. Results for males and for rural areas are included in the S1 File. The estimate

from Model 5 are smoother than those from Model 4. Estimated prevalences still respond to

changes in the schools data, but not nearly as closely, and without the dramatic upward and

downward shifts.

Replacing the prior for By leads, as expected, to lower estimates for σ and higher estimates

for By. The new point estimate for σ is 0.073, compared to 0.132 in Model 4, and the new point

estimate for By is 0.105, compared to 0.023 in Model 4.

Checking the model

An essential part of any modelling workflow is to assess how sensitive the results are to alterna-

tive possible specifications, and to consider whether the model has captured all the substan-

tively-important features of the system under study [32]. A full suite of model checking would

require more space than is available here, but we present two illustrative examples.

Sensitivity to priors for time main effects and interactions

As discussed above, we suspect that the WHO country-level estimates understate annual vari-

ability in obesity prevalence, but are unsure by how much. In Models 3–5, we use priors that,

roughly speaking, entail twice as much annual variability than is implied by the original WHO

estimates. Here we investigate how the results vary with alternative choices. To gain insights

into the way that the priors interact with other parts of the model, we show results for each of

the broader model classes considered in the paper.

Each panel of Fig 6 shows national-level estimates and forecasts, aggregating over sex and

age. Each column of panels shows how result vary with the choice of prior. The priors are

ordered from weakest to strongest. The first column is our original weakly-informative half-

normal prior. The fourth column is the prior obtained by using the unadjusted values obtained
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from the WHO model. The third column is the prior obtained by inflating variances by a fac-

tor of 2. The second column is the prior obtained by inflating variances by a factor of 4. Each

row of the figure shows results for a different overall model specification, starting with the

national-level NHES-only model in row 1, and finishing with the subnational model with the

revised data model for schools in row 4. Panel (1, 1) in the figure corresponds to Model 1;

panel (2, 1) to Model 2; panel (2, 3) to Model 3; panel(3, 3) to Model 4; and panel (4, 3) to

Model 5.

Replacing the default weakly informative time prior with a WHO-based prior reduces fore-

cast uncertainty under all four model specifications, though it has the biggest effect in the

national-level NHES-only model. With the exception of the national-level NHES-only model,

stronger WHO-based priors lead to more linear forecasts, with less tapering-off in growth

rates towards the end of the period. When comparing across WHO-based priors, however, the

choice of prior has only a minor effect on the shape or uncertainty of estimates in years where

there is data.

Fig 6. Comparison of national-level estimates and forecasts of obesity prevalence from different combinations of

model type and priors for variance terms in time main effects and interactions. The estimates and forecasts

aggregate over age, sex, region, and urban-rural residence. Each row of panels represents one model type, and each

column represents one prior.

https://doi.org/10.1371/journal.pone.0262047.g006
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Replicate data checks

A Bayesian statistical model treats the observed data as a draw from a probability distribution.

If the model is a good representation of the process being studied, then it should be possible to

use the model to randomly generate hypothetical datasets that look similar to the real dataset.

Conversely, if hypothetical datasets generated by the model are systematically different from

the real dataset, then the model may be deficient. Bayesians call the technique of comparing

hypothetical datasets with the real dataset “replicate data checks” [28, 32].

Replicate data checks should be targeted at possible weak points in the model. One possible

weak point of Model 5 is that the prior model for the prevalences πasrut assumes a common

time trend across all regions, and across urban and rural areas. Any geographical variation in

the pace at which measured obesity is increasing is assumed to arise from random variation in

probabilities of being obese, random variation in obesity counts given probabilities, and ran-

dom variation in measured counts given true counts. It is possible that this approach implies

too much uniformity across regions and across urban and rural areas.

We use replicate data checks to assess the ability of Model 5 to generate geographical varia-

tion in rates of change. We focus on the schools dataset, since the schools dataset is the only

one that is disaggregated by geography. Each replicate dataset is generated as follows:

1. Randomly select a draw k from the sample from the joint posterior distribution from

Model 5, and obtain values β(k), σ(k), gðkÞa and BðkÞy .

2. Plug β(k) and σ(k) into the prior model for prevalences, and generate values p
ðkÞ
asrut.

3. Plug the p
ðkÞ
asrut into (14), and generate values yðkÞasrut for true numbers of obese children.

4. Plug yðkÞasrut into (15), and generate values yEstSðkÞasrut for school-based estimates of obese children.

Repeating this process K types yields K replicate datasets. The observed and replicate data-

sets are too big to work with directly, so we calculate summary measures of geographical varia-

tion in rates of change for each dataset and compare the summary measures instead. For each

combination of age, sex, region, and urban-rural residence in each dataset, we fit a straight line

through values for yEstSasrut versus time. The slopes of these lines are our summary measures.

Fig 7 shows the results from these calculations. The first column of panels gives results for

the observed dataset, and the remaining columns give results for the replicate datasets. Each

dot represents a slope estimate. To save space, the figure only shows results for females.

What we are looking for in Fig 7 is evidence of systematic differences between the observed

dataset and the replicate datasets. Given that all datasets, including the observed one, have an

element of randomness, we are not looking for complete agreement, but instead for whether

the observed dataset is in some sense an outlier.

Inspection of Fig 7 suggests that the observed dataset is not an outlier. The observed dataset

contains about the same amount of geographical variation in rates of change as the replicate

datasets do. The use of a common time trend across regions and urban-rural residents appears

to be a reasonable approximation.

Discussion

In this paper, we have developed disaggregated estimates and forecasts of obesity among Thai

children. We have found that trends differ substantially by age: prevalences for children under

5 have shown little change since the early 1990s, while prevalences for children aged 15–17

have, in recent years, increased sharply, with a strong prospect of reaching rates of 25% or

more by 2030. Prevalences have varied across different parts of the country, though forecasted
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prevalences show substantial overlap. Supplementing the National Health Examination Survey

data with additional survey and administrative data reduces uncertainty considerably, and

exploiting international data on trends in obesity prevalence reduces uncertainty further. Even

with the extra information, however, the forecasts are still sensitive to alternative assumptions

about the variability in rates of change. Our ability to measure geographical variation is also

constrained by the fact that our only source of information on geographical variation is subject

to measurement error. Further improvements in the estimates and forecasts are likely to

require additional data.

The apparent divergence in trends for children below and above age 5 is new to the study of

obesity in Thailand. Most children in Thailand begin attending some form of schooling

around this age, which suggests that there may be something about the school environment

that leads to higher rates of obesity. In addition, the forecasts that obesity will become common

across all regions of the country, and in both urban and rural areas, suggests that policies to

address rising obesity rates need to be implemented nationally, and not just in places where

obesity is already high.

The analytical framework used in this paper can accommodate a wide range of applications

involving disaggregated estimation and forecasting. The system model, the set of unobserved

counts, and the data models can all be customised to the problem at hand. The resulting mod-

els can be complex. However, the individual components from which the models are com-

posed are often simple and intuitive, and the models can be built up piece by piece.

Combining the assessment of data quality, the estimation of underlying rates, and the forecast-

ing of future values into a single framework allows us to capture uncertainties in a unified and

internally-consistent way.

Fig 7. Using replicate datasets to assess the ability of the model to capture geographical variability in rates of change for

obesity. Each columns shows results from one dataset. Each dot represents the slope from a regression of numbers of obese

children against time. The figure shows results for females only.

https://doi.org/10.1371/journal.pone.0262047.g007
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The ability to combine multiple data sources allows frequent updating of estimates and

forecast. In the case of Thai obesity, for instance, estimates and forecasts of obesity can be

revised each time new schools data becomes available, rather than waiting for a new round of

the National Health and Examination Survey—though regular updates of the NHES data are

still important to adjust for errors in the schools data.

A dictinctively Bayesian part of our analysis is the use of informative prior distributions.

We use an informative prior distribution to describe the plausible range for annual change in

obesity rates, and use an informative prior distribution to describe the likely size of measure-

ment errors in the schools data. In both cases, the informative prior distributions are grounded

in quantitative analyses, and are transparent and replicable. Incorporating informative priors

into the model increases the plausibility and precision of the resulting estimates and forecasts.

Supporting information
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