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Background: Mitochondrial genome has been used across multiple fields in research,

diagnosis, and toxicogenomics. Several compounds damage mitochondrial DNA

(mtDNA), including biological and therapeutic agents like the human immunodeficiency

virus (HIV) but also its antiretroviral treatment, leading to adverse clinical manifestations.

HIV-infected and treated patients may show impaired mitochondrial and metabolic

profile, but specific contribution of viral or treatment toxicity remains elusive. The

evaluation of HIV consequences without treatment interference has been performed

in naïve (non-treated) patients, but assessment of treatment toxicity without viral

interference is usually restricted to in vitro assays.

Objective: The objective of the present study is to determine whether antiretroviral

treatment without HIV interference can lead to mtDNA disturbances. We studied clinical,

mitochondrial, and metabolic toxicity in non-infected healthy patients who received HIV

post-exposure prophylaxis (PEP) to prevent further infection. We assessed two different

PEP regimens according to their composition to ascertain if they were the cause of

tolerability issues and derived toxicity.

Methods: We analyzed reasons for PEP discontinuation and main secondary effects

of treatment withdrawal, mtDNA content from peripheral blood mononuclear cells and

metabolic profile, before and after 28 days of PEP, in 23 patients classified depending on

PEP composition: one protease inhibitor (PI) plus Zidovudine/Lamivudine (PI plus AZT +

3TC; n = 9) or PI plus Tenofovir/Emtricitabine (PI plus TDF + FTC; n = 14).

Results: Zidovudine-containing-regimens showed an increased risk for drug

discontinuation (RR = 9.33; 95% CI = 1.34–65.23) due to adverse effects of

medication related to gastrointestinal complications. In the absence of metabolic

disturbances, 4-week PEP containing PI plus AZT + 3TC led to higher mitochondrial
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toxicity (−17.9 ± 25.8 decrease in mtDNA/nDNA levels) than PI plus TDF + FTC

(which increased by 43.2 ± 24.3 units mtDNA/nDNA; p < 0.05 between groups).

MtDNA changes showed a significant and negative correlation with baseline alanine

transaminase levels (p < 0.05), suggesting that a proper hepatic function may protect

from antiretroviral toxicity.

Conclusions: In absence of HIV infection, preventive short antiretroviral treatment

can cause secondary effects responsible for treatment discontinuation and subclinical

mitochondrial damage, especially pyrimidine analogs such as AZT, which still rank as the

alternative option and first choice in certain cohorts for PEP. Forthcoming efforts should

be focused on launching new strategies with safer clinical and mitotoxic profile.

Keywords: ART, HIV, mitochondria, mtDNA, PEP

HIGHLIGHTS

- PEP regimens are metabolically safe.
- PEP antiretrovirals, in absence of HIV infection, is able
to induce mitochondrial toxicity. Currently recommended
PEP regimens show less mitochondrial toxicity than the
old ones containing pyrimidine analogs such as AZT and

GRAPHICAL ABSTRACT| Post-exposure prophylaxis (PEP) myotoxicity.

3TC. However, AZT is still used in certain clinical and
geographical settings.

- AZT-containing regimens showed a higher risk of
drug discontinuation.

- Reduction of mitochondrial toxicity of PEP
regimens may improve tolerability and
toxicity issues.
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- Current and forthcoming efforts to elaborate global policy
guidelines should consider mitochondrial toxicity of PEP as an
important issue for compliance and patient care.

- PEP-treated patients convey an outstanding opportunity to
assess antiretrovirals toxicity in vivo.

- mtDNA is confirmed as the gold standard for mitochondrial
toxicogenomics in antiretroviral management.

INTRODUCTION

Mitochondria are the energy and heat power plants of the
cell (Nunnari and Suomalainen, 2012). These organelles harbor
their own enzymatic machinery and all the structures required
for the transcription and translation of their own genome, the
mitochondrial DNA (mtDNA) (Anderson et al., 1981). Any
disbalance in mitohormesis can lead to disease (Boczonadi and
Horvath, 2014; Suomalainen and Battersby, 2017; Eisner et al.,
2018). Thus, genetic but also epigenetic modifications in the
mitochondria can be associated with a variety of metabolic
modifications described in a multitude of adverse conditions,
including cancer and neurodegenerative diseases as well as
biological processes as aging (Moosavi and Motevalizadeh
Ardekani, 2016; Weinhouse, 2017; Raimundo and Krisko, 2019).
Moreover, the study of mitochondrial genome has been used in
fields as population genetics, forensic science, clinical diagnosis,
and toxicogenomics (Castro Antönia and Ramon, 1998; Budowle
et al., 2003; Chinnery and Hudson, 2013).

A multitude of evidence demonstrates that any toxic agent
interfering at genetic or epigenetic level with mtDNA can
potentially disrupt mitochondrial function and induce metabolic
disturbances and their associated clinical consequences (Alston
et al., 2017; Matilainen et al., 2017).

Historically, several compounds have been found to damage
mtDNA, including biological and therapeutic agents. This is the
case with both the human immunodeficiency virus (HIV) and
its antiretroviral treatment (ART) (Miro et al., 2005; Margolis
et al., 2014; Smith et al., 2017). HIV induces mitochondrial-
driven apoptosis, indirectly reducing mtDNA content (Mbita
et al., 2014). Moreover, ART—especially nucleoside reverse
transcriptase inhibitors analogs (NRTIs)—interferes with the
replication of the viral genome, but secondarily by off-targeting
the replication of the mtDNA through the inhibition of mtDNA-
polymerase-γ (Brinkman et al., 1999; Kakuda, 2000; Nolan and
Mallal, 2004; Feeney et al., 2010; Zhang et al., 2014). This
process subsequently triggers mtDNA depletion and derived
mitochondrial and cell dysfunction, which has been postulated as
the basis for associated clinical toxicity (Carr and Cooper, 2000;
Lim and Copeland, 2001).

Zidovudine (AZT), the prototype NRTI class drug, is
a pyrimidine analog linked to long-term secondary effects.
Included in this group, and combined with AZT is Lamivudine
(3TC), with lesser harmful effects (World Health Organization,
2018). Both of these drugs in long-term usage result in different
secondary effects such as myelosuppression or myopathy, among
others (Kinloch-de Loës et al., 1995; Quercia et al., 2018).

To avoid these adverse effects, other NRTIs such as Tenofovir
(TDF) emerged (Scherzer et al., 2012; Margolis et al., 2014;
Yap et al., 2019). TDF in combination with Emtricitabine
(FTC), another NRTI, constitutes the main 2xNRTI combination
included in the ART proposed by the main institutions (Centers
for Disease Control Prevention, 2016; Battegary et al., 2018;
World Health Organization, 2018). FTC is a dideoxycytidine
analog with a structure similar to 3TC, being considered as
bioequivalent drugs even from the toxic point of view (Birkus
et al., 2002; Margolis et al., 2014).

In vitro studies have ranked the potencies of these four
NRTIs to inhibit mtDNA synthesis as follows: Zidovudine
> Lamivudine = Emtricitabine = Tenofovir (Kakuda, 2000;
Birkus et al., 2002). Therefore, mtDNA quantification has been
established as the hallmark of antiretroviral toxicity and the gold
standard for assessing mitochondrial toxicity even in new ART
regimens (Margolis et al., 2014).

Current guidelines associate two different NRTIs with
other antiretroviral families such as integrase inhibitors or,
alternatively, with protease inhibitors (PI), which have also
been associated with metabolic alterations (Mallon et al., 2005;
Domingo et al., 2010; Hammond et al., 2010). To control
these subclinical events, a glucose, lipid, and hepatic profile is
usually monitored in clinical settings to manage chronic HIV-
infected and treated patients aiming to avoid further clinical
manifestations (AIDSinfo, 2018).

Although ART has dramatically reduced acquired immune
deficiency syndrome (AIDS) development, major concerns have
been ascribed to its mitochondrial and metabolic toxicity,
especially primary ART (Martinez et al., 2001; Garrabou et al.,
2009; Hargreaves et al., 2016). Despite current available drugs
and regimens are almost free from toxicity, some of these
primary antiretrovirals, including AZT, are still used in certain
geographic or clinical settings (World Health Organization,
2018). Both mitochondrial and metabolic disturbances caused
by the virus and its ART were postulated as one of the bigger
etiological bases of adverse events including hyperlactatemia,
hepatic failure, decreased bone mineral density, neuropathy,
myopathy, lipodystrophy, and metabolic syndrome (Brinkman
et al., 1999; Carr and Cooper, 2000; Pfeffer et al., 2009; Caron-
Debarle et al., 2010; Hammond et al., 2010; Güerri-Fernández
et al., 2018). However, the contribution of each one of these
entities (the virus or its treatment) to associated adverse clinical
manifestations is difficult to elucidate in HIV-infected and
treated patients. While viral consequences without therapeutic
interference have been historically evaluated in naïve patients
(Miró et al., 2004), assessment of isolated ART toxicity without
viral interference usually requires in vitro assays (Kakuda, 2000).
Therefore, the in vivo consequences for ART for mitochondrial
and metabolic toxicity in an HIV-free environment requires
novel experimental approaches and cohorts of patients that have
been scarcely evaluated to date.

Despite the main goal of ART being the treatment of
HIV infection, these drugs may also be used to prevent
vertical mother-to-child transmission or can also be administered
as pre-exposure or post-exposure prophylaxis (PrEP or PEP,
respectively, Yap et al., 2019). PEP involves counseling,

Frontiers in Genetics | www.frontiersin.org 3 May 2020 | Volume 11 | Article 497

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Bañó et al. Post-exposure Prophylaxis (PEP) Mitotoxicity

assessment of risk of exposure to the infection, HIV testing, and
the prescription of a 1-month course of antiretroviral drugs with
appropriate support and follow-up (Katz and Gerberding, 1997;
Chauveau et al., 2019). While the necessity of PEP is undeniable,
it is still limited by a low-adherence, non-negligible secondary
effect and some tolerability issues of unknown etiology (Beymer
et al., 2017; Chauveau et al., 2019), showing worse tolerability
than the ART prescribed for long-term HIV-infected patients
under chronic treatment (Rabaud et al., 2005). Such diversity
of secondary effects and differential level of mitotoxicity has
been attributed to different PEP regimens depending on their
composition, but there is little molecular data supporting such
differential safety/toxic profile (Groener et al., 2011).

This toxicity has prompted clinical organizations to gradually
change the composition of PEP regimens. Between 2008
(Ibarguren et al., 2008) and 2014 (Azkune et al., 2011; World
Health Organization, 2013), the PEP regimen consisting of PI
plus AZT + 3TC was replaced by a new regimen containing
PI plus TDF + FTC. This change in PEP policies offered the
perfect occasion to compare these two regimens, which still rank
as first-choice treatments in certain patients’ cohorts or countries
(Supplementary Table 1).

Due to HIV prevalence, the use of PEP is highly advisable
when an acknowledged risk of HIV transmission is detected, and
there is the need for understanding the secondary or toxic effects
of this treatment. PEP-treated patients offer an outstanding
opportunity to determine the short-term mitochondrial and
metabolic effects of PEP in vivo, without viral interference.
Hence, we designed the present study to assess whether the
28-day PEP regimens can cause clinical, mitochondrial, or
metabolic toxicity and whether there are any variances between
the different PEP regimens, thus confirming the usefulness of
mitochondrial toxicogenomics for antiretroviral management.

MATERIALS AND METHODS

Design, Criteria, and Participants
We performed a multicentric observational study in HIV-1-
exposed and uninfected patients to evaluate mitochondrial and
metabolic disturbances before and after a 28-day PEP treatment
comparing two different regimens: PI plus AZT + 3TC (n = 9)
or PI plus TDF+ FTC (n= 14).

Patients were recruited in two hospitals: the Hospital Clinic
of Barcelona (Barcelona, Spain) and the Hospital of Granollers
(Granollers, Spain).

All participants initiated their PEP regimen within 48 h
after a non-occupational sexual exposure to HIV and provided
informed consent to be enrolled in the study, which was approved
by the Ethical Committee of our institutions.

The inclusion criteria were adults over 18 years old
with no clinical evidence of primary mitochondrial disease,
or concomitant treatment with potential toxic drugs for
mitochondria (antipsychotics, statins or antibiotics, among
others) and the full completion of the 28-day treatment (per-
protocol analysis).

Although the initial sample of the study included a total
of 30 participants, 7 of them were lost or excluded from the

study. These excluded participants requiered changes of their
PEP regimen due to the manifestation of intolerability recorded
during the clinical interview.

Epidemiological, virological, and therapeutic characteristics
of the HIV-exposed participants were equivalent in both PEP
arms. There were no statistically significant differences between
both groups with respect to gender and age distribution. These
treatment groups were composed by men exclusively, with mean
age ranging from 33 to 34 years. The duration of treatment was
consistent in both groups, as all patients received full-length PEP
regimen and, once concluded, all participants were negative for
HIV antibody testing.

Epidemiological, Clinical, and Metabolic
Data
As aforementioned, epidemiological, virological, and therapeutic
parameters including age, gender, HIV antibody (ELISA), PEP
regimen, and treatment intervention were gathered during the
study. Similarly, data regarding tolerability, adherence, and
reasons for PEP discontinuation were collected in the follow-up
on account of clinical interviews.

Glucose, lipid, and hepatic profile data included information
about blood glucose (measured using the glucose-oxidase
method), triglycerides, and total cholesterol (by enzymatic
approaches), as well as aspartate and alanine aminotransferase
hepatic enzymes (AST and ALT), which were quantified by
atomic absorption spectrophotometry (Siemens Diagnostics R©,
New York).

Collection of Blood Samples
Fasting samples of 20ml of venous blood were collected in
VacutainerTM EDTA tubes. For each subject of the study (and
for both groups), two sets of samples were obtained, one
just after HIV exposure and before PEP, and another after
a 28-day course of treatment. Blood was first centrifuged at
room temperature for 15min at 1,500g to reduce platelet
contamination through plasma removal. Peripheral blood
mononuclear cells (PBMCs) were immediately isolated by
means of Ficoll density gradient centrifugation procedure
(Histopaque R©-1077, Sigma Diagnostics, St. Louis, MO)
(Cossarizza, 2003; Mallone et al., 2011). After isolation, PBMCs
were resuspended in phosphate-buffered saline and stored frozen
at−80◦C until analysis.

Nucleic Acid Isolation From PBMC and
Quantification of mtDNA
An aliquot of PBMC was used for extracting total DNA
using a standard phenol-chloroform procedure. For mtDNA
quantification, a fragment of the mitochondrial conserved
gene mt12SrRNA and the nuclear constitutive gene nRNAseP
were amplified simultaneously and in duplicate by multiplex
quantitative Real-Time PCR. We used Applied Biosystems
technology (CA, USA) in a 96-well plate and results were
expressed in relative units as the ratio between mtDNA to
nuclear DNA (mt12SrRNA/nRNaseP), as previously validated
(Côté et al., 2011) and reported by our group (Moren et al., 2015;
Catalán-García et al., 2016; Barroso et al., 2019) and other groups
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FIGURE 1 | Non significant differences in mtDNA content were observed within each therapeutic group intervention (before and after each treatment), but significant

differences were found between the different PEP regimens (PI plus AZT + 3TC vs. PI plus TDF + FTC). Results were expressed as the ratio of mitochondrial

12SrRNA gene with respect to the constitutive nuclear RNAseP gene.

(Villarroya et al., 2011; Navarro-Sastre et al., 2012; Carreño-Gago
et al., 2019).

Statistical Analysis
Results were expressed as mean ± standard error of the mean
(SEM) or in percentage of change ± SEM with respect to
the baseline measurement. Longitudinal differences between
both study time points (in each treatment arm) and cross-
sectional differences between treatment intervention groups (PI
plus AZT + 3TC vs. PI plus TDF + FTC) were determined
with the non-parametric Kolmogorov–Smirnov test for paired
and independent measures, respectively. Correlation analysis
between all quantitative parameters was determined using the
non-parametric Spearman test. Statistical analysis was performed
using the Statistical Package for Social Sciences version 23.0
(SPSS, Chicago, Illinois, USA). Statistical significance was set at
a p < 0.05.

RESULTS

As previously stated, from the initial 30 participants of the
study, 7 discontinued PEP before 4 weeks due to gastrointestinal
secondary effects including bloating, diarrhea, nausea, and/or
vomiting. Consequently, longitudinal mitochondrial and
metabolic toxicity profile could not be assessed in these 7
patients due to lack of follow-up. From these patients, 6
were treated with PI plus either AZT + 3TC and 1 with a
PI plus TDF + FTC (relative risk or RR for PI plus AZT +

3TC vs. PI plus TDF + FTC discontinuation = 9.33; 95%
CI= 1.34–65.23).

After 6 months of HIV exposure, all subjects that continued
the study (n = 23) remained uninfected and blood analysis for
HIV antibodies were all confirmed as negative.

There were no statistically significant intragroup differences
between initial and final mtDNA levels within each PEP regimen:

baseline 133.5± 19.8 mtDNA/nDNA copies vs. final 115.7± 22.4
levels for PI plus AZT + 3TC regimen and initial 136.5 ± 20.9
vs. final 177.3 ± 22.8 copies for PI plus TDF + FTC regimen.
However, when comparing differences between groups, mtDNA
content was significantly reduced in the PI plus AZT + 3TC
regimen vs. the PI plus TDF + FTC group: −17.9 ± 25.8% vs.
43.2± 24.3%, respectively, p < 0.05 (Figure 1).

There were no statistically significant differences before and
after treatment in glucose, lipid, or hepatic metabolic profiles
in both groups, either concerning glucose, triglycerides,
total cholesterol, AST, or ALT levels, regardless of the
PEP regimen followed, as summarized in Table 1 and
Supplementary Figures 1, 2.

Some metabolic parameters were correlated, showing
their strong dependence to maintain physiologic homeostasis
(Supplementary Table 2). In addition, mtDNA levels after
treatment were negatively correlated to initial ALT levels
(R2 = 0.090 and p < 0.05) regardless of the PEP regimen
(Figure 2).

DISCUSSION

HIV infection and ART toxicity (especially of NRTIs) have been
postulated as the etiopathological basis of several side effects in
HIV-infected and chronically treated patients (Carr and Cooper,
2000; Kohler and Lewis, 2007). Both have been demonstrated
to induce mtDNA depletion and derived mitochondrial and
metabolic dysfunction (Garrabou et al., 2009; Margolis et al.,
2014) even after short periods of treatment (Carr, 2000; Pilon
et al., 2002). However, the differential contribution of each agent
(HIV or ART) to the observed mitochondrial toxicogenomic
profile that is present in HIV-infected patients under ART
is difficult to elucidate. Isolated HIV-induced mitochondrial
damage has been studied in HIV-infected and untreated
individuals (naïve), but ART-related mitochondrial toxicity has
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TABLE 1 | Glucose, lipid, and hepatic profile of all participants before and after PEP treatment.

HIV-exposed patients

PEP regimen with PI plus AZT + 3TC (n = 9) PEP regimen with PI plus TDF + FTC (n = 14)

Before After Before After P-value

Glucose (mg/dl) 93.4 ± 5.4 86.5 ± 3.8 79.5 ± 3.2 94.6 ± 10.0 NS

Triglycerides (mg/dl) 98.5 ± 24.5 106.5 ± 20.8 135.9 ± 19.0 122.6 ± 22.0 NS

Total cholesterol (mg/dl) 181.5 ± 15.9 180.3 ± 17.3 155.3 ± 6.7 181.3 ± 16.4 NS

AST (U/L) 31.4 ± 3.1 30.9 ± 3.6 20.7 ± 1.4 21.6 ± 2.3 NS

ALT (U/L) 29.4 ± 4.8 32.0 ± 5.4 19.7 ± 1.1 27.9 ± 4.7 NS

No differences were observed in metabolic parameters after the therapeutic intervention or between regimens. All values are expressed as mean ± SEM. ALT, alanine transaminase;
AST, aspartate transaminase; AZT, Zidovudine; FTC, Emtricitabine; HIV, human immunodeficiency virus; NS, non-significant; PEP, post-exposure prophylaxis; PI, protease inhibitor; SEM,
standard error mean; TDF, Tenofovir; 3TC, Lamivudine.

FIGURE 2 | Spearman Rho coefficient was significant and showed a negative

correlation for basal levels of ALT and mitochondrial DNA after treatment

intervention in both PEP groups (PI plus AZT + 3TC or PI plus TDF + FTC),

suggesting that proper basal hepatic function protects from further drug

toxicity (p-value = 0.015). ALT a, Alanine transaminase baseline levels; AZT,

Zidovudine; mtDNA b, mitochondrial DNA after treatment; PEP, post-exposure

prophylaxis.

been poorly explored in uninfected subjects on account of
ethical concerns.

HIV-exposed patients subjected to PEP prophylaxis convey
a unique opportunity to test ART toxicity without HIV
interference. Additionally, we took advantage of the use of
different PEP regimens to compare different clinical, metabolic,
and mitochondrial ART toxicity profiles.

Regarding PEP efficacy, all tested alternative treatments
showed identical immunotherapeutic efficacy in preventing HIV
infection, both in the present study and in the literature (Sultan
et al., 2014).

Regarding clinical manifestations and despite its short
length (28 days according to up-to-date guidelines), serious
complications were raised: the low compliance, the appearance

of several secondary or toxic effects, and the little commitment
of some patients led to further discontinuation of AZT-
containing regimens, herein demonstrated. As previous reported,
the main secondary effects for both of these regimens that
led to discontinuation were gastrointestinal symptoms (Chowta
et al., 2018). These clinical side effects make PEP prone to
become a difficult treatment to be fully completed. However, few
toxicological studies have been done to assess molecular causes of
differential safety/toxic profile of PEP regimens or antiretroviral
toxicity in human subjects without HIV interference.

With respect to mitochondrial toxicity, a previous study
performed in 18 individuals reported a decrease in the
mitochondrial transmembrane potential over a 4 weeks of
HIV-PEP, suggesting that PEP toxicity may be confirmed in
larger cohorts (Groener et al., 2011). We herein tested the
mitochondrial target of nucleoside analog toxicity, considered
the gold standard for monitorization of antiretroviral toxicity,
that is mtDNA content.

According to our findings, when comparing PEP regimens
including PI plus AZT + 3TC with respect PI plus TDF + FTC,
subclinical mtDNA depletion was higher in those receiving AZT
+ 3TC. This confirms previous reported higher mitochondrial
toxicity for these older drugs derived from in vitro (Kakuda,
2000) or ex vivo studies in HIV-infected and long-term treated
individuals (Gardner et al., 2013; Sun et al., 2014).

Despite that the use of pyrimidine analogs in PEP regimens,
and particularly AZT, is being reduced in developed countries,
it still ranks as the alternative option in the CDC, WHO,
and EACS guidelines for certain patients (Centers for Disease
Control Prevention, 2016; World Health Organization, 2018).
Specifically, (i) it is the alternative treatment in subjects over
13 years old with renal dysfunction (creatinine clearance ≤59
ml/min); (ii) it is the alternative treatment for children aged
2–12 years; or (iii) it is the preferred treatment for children
aging 4 weeks to 2 years old; and (iv) it is the alternative
choice of treatment in adults (Battegary et al., 2018). In these
cases, AZT is chosen with 3TC. Furthermore, in numerous
developing countries, AZT administration in PEP regimens is
still the treatment of choice.

These results, among others (Morén et al., 2012; Margolis
et al., 2014), give light to the capacity for antiretrovirals to target
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and disrupt mtDNA expression even after short treatments.
Translating all these findings into emerging fields such as
epigenetics opens new gates in research to elucidate whether
these changes into gene expression can cause drug resistance,
metabolic disturbances, and different secondary effects that can
lead to drug discontinuance and its subsequent treatment failure
(Nyce et al., 1993; Lucarelli et al., 1996; Bozzi et al., 2008;
Koczor et al., 2015). It has been shown that some miRNAs
that participate in the regulation of mitochondrial translation
are mitochondrial-genome-encoded miRNAs (Stimpfel et al.,
2018). Consequently, mtDNA depletion produced by NRTIs,
as AZT by itself, may reduce miRNA content, thus having
effects in mitoepigenetics (Koczor et al., 2015). Additionally,
some studies propose a possible surrogate effect in neonates
under AZT-containing regimens, as they show an altered nuclear
heterochromatin organization that persisted after the treatment
was terminated (up to 9 years of age) (Senda et al., 2007; Zuena
et al., 2013; García-Otero et al., 2019). Whether all these levels of
regulation of mtDNA expression are additionally influencing the
toxicity of tested PEP regimens in our work should be addressed
in further studies.

Finally, the metabolic profile of PEP-treated patients did not
show any differences either in basal or endpoint levels between
groups, indicating that in a 28-day interval, there are no visible
effects on glucose, lipid, or hepatic enzyme levels regardless of
PEP composition. Interestingly, lower initial ALT levels have
been associated with higher content in mtDNA after PEP in
both groups. While all patients had standard liver enzyme levels,
these results point out the association between mitochondrial
toxicity and hepatic function, probably because proper basal
liver function protects from further drug toxicity by promoting
hepatic drug detoxification.

Noticeably, this study has several constraints. The most
relevant limitation may be its small sample size. Because of
the singularity of these individuals, the lack of compliance,
and the need for fast sample processing (to immediately isolate
fresh PBMC), it was difficult to gather all the participants for
the study in a short period of time. In fact, we needed to
perform a multicenter study to include the minimum sample
size required to reach our aim. However, we cannot discard
a type II error due to the small sample size of the cohorts
herein tested, which may be bypassed in further studies with
bigger sample sizes and controlled designs. Additionally, the
fact that male patients exclusively composed our sample may
be considered as the second limitation of the study. However,
in current clinical settings, this characteristic may reflect the
differences in prevalence of HIV infection according to gender in
general population and eradicates potential gender interference
in observed results. Regarding the source of sample, we
acknowledge that mitochondrial parameters may be exacerbated
in more energy-dependent tissues than PBMCs. Likewise, we
are aware that assessing specific PBMC composition would be
of interest to assess potential interference of cell populations in
observed findings, as well as preventing platelet contamination
(Tin et al., 2016; Sun et al., 2018). However, we should take
into consideration that PBMCs have been demonstrated to be
a reliable and non-invasive model to perform mitochondrial
studies and that is the present gold standard for mitochondrial

toxicity evaluation (Garrabou et al., 2009; Moren et al., 2015;
Barroso et al., 2019). Additionally, the potential follow-up of
patients for an extended period of time over PEP administration
and additional measures for evaluation of mitochondrial toxicity
or specific cell toxicity profiling may be of interest for
further approaches.

CONCLUSIONS

The results herein presented indicate that, first, short-term ART
in the absence of HIV infection can inducemitochondrial toxicity
and, second, in the context of HIV-PEP, new antiretrovirals
regimens including PI plus TDF + FTC show less mtDNA
depletion and therefore are less harmful to mitochondria than
the old ones with PI plus AZT + 3TC. The latter regimen also
showed a higher risk of drug discontinuation due to a lack
of tolerance, while capable of maintaining identical therapeutic
activity. Whether mitochondrial toxicity relies at the base of
adverse PEP effects has to be further demonstrated. However,
considering the reported association between mitochondrial
toxicity and clinical adverse effects in chronic antiretrovirals-
treated HIV individuals, these results should be considered to
elaborate guidelines to potentially reduce tolerability and toxicity
issues of PEP.

Fortunately, efforts are being raised to elaborate global policy
makers and coordinate program managers, researchers, and
activists around the world at a moment of a paradigm shift of
the global response to HIV (24), where toxicity of PEP regimens
should be considered and AZT should be discouraged.

PEP-treated patients convey an outstanding opportunity to
assess antiretroviral toxicity in vivo and mtDNA is confirmed
as the gold standard for mitochondrial toxicogenomics in
antiretroviral management.
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