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A B S T R A C T   

MicroRNAs (miRNAs) are associated with certain types of cancer, tumor stages, and responses to treatment, thus efficient methods are required to 
identify them quickly and accurately. Abnormal expression of microRNA-191 (miR-191) has been linked to particular cancers and several other 
health conditions, such as diabetes and Alzheimer’s disease. In this study, a new dual-biosensor based on the zirconium and preasodium-based 
metal-organic framework (Zr/Pr MOF) was developed for the rapid, ultrasensitive, and selective detection of miRNA-191. The synthesized Zr/Pr 
MOF exhibited peroxidase-like activity and fluorescence properties. Our dual method involves monitoring the fluorescence and peroxidase activity 
of metal-organic frameworks (MOFs) in the presence of miRNAs. The Zr/Pr MOF can catalyze hydrogen peroxide (H2O2) to oxidize the chromogenic 
substrate 3, 3′, 5, 5′-tetramethylbenzidine (TMB) to produce blue oxidized TMB (oxTMB), which exhibits ultraviolet absorption at 660 nm. However, 
the addition of a label-free miRNA-191 probe caused a significant change in fluorescence intensity and absorbance, indicating the binding of single- 
stranded miRNAs to the MOF through van der Waals interactions and π-π stacking. The presence of the target miRNA-191 caused the probe to be 
released from the surface of the MOF owing to hybridization, which increased the peroxidase-like activity of Zr/Pr-MOF. Both response signals 
showed acceptable linear relationship and low detection limits. Fluorescence and colorimetry have an LOD of 0.69 and 8.62 pM, respectively. This 
study demonstrates the reliability and sensitivity of miRNA identification in human serum samples.   

1. Introduction 

Research has demonstrated that small, noncoding microRNAs (miRNAs) may play a significant role in the development of diseases 
such as cancer [1]. Studies have indicated that both increases and decreases in the activity of miRNAs can lead to the formation of 
cancer through various pathways [2,3]. Additionally, miRNA expression is linked to certain types of cancer, tumor stage, and response 
to treatment [4]. Therefore, there is a need to develop new and efficient methods for rapid and accurate identification of miRNAs in 
cells, tissues, and fluids, such as serum and plasma [5]. In particular, miR-191 is abnormally expressed in more than twenty different 
types of cancer [6], including acute myeloid leukemia [7], female [8] and male [9] breast cancer, prostate cancer [10], colorectal 
cancer [11], lung cancer [12], and osteosarcoma [13]. In addition, altered expression of miR-191 has been linked to a number of other 
health conditions, such as type-2 diabetes [14], Alzheimer’s disease [15], and idiopathic nephrotic syndrome [16]. In conclusion, 
developing methods to accurately and safely measure miR-191 levels in patients could help fight these underlying diseases [6]. 
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The use of conventional methods, such as northern blotting and reverse transcription-polymerase chain reaction (qRT-PCR), for the 
detection of miRNAs has been widely adopted because of their diagnostic value. These methods, however, are not very sensitive and 
require laborious, complicated, and time-consuming procedures that are challenging to include in standard miRNA analysis. As a 
result, it is essential to create efficient and cost-effective miRNA detection techniques [17]. 

Currently, a number of nanostructured materials, including carbon nanotubes [18], graphene oxide, gold nanoparticles [19], and 
metal-organic frameworks (MOFs) [20], have been exploited as novel tools for constructing nucleic acid-based biosensors. 
Metal-organic framework-based biosensors provide a number of benefits over other materials, including a larger loading capacity, 
conjugated π-electron systems [21], tunable porosity [22], enhanced surface area [23], and lower fabrication costs [24]. The efficacy 
of these biosensors is highly dependent on the detection methods employed, such as electrochemical (EC) [25], electro-
chemiluminescence (ECL) [26], fluorescence (FL) [27], and colorimetry [28]. Fluorescence-based detection assays and colorimetric 
techniques have been employed to develop a simple, extremely sensitive approaches with distinct color variation [29] that does not 
require expensive equipment [30]. The fluorescence of MOFs can eliminate the need for additional fluorescent probes, simplify the 
experimental procedure, reduce the cost of the experiment, and increase detection precision [31]. 

Through the selection of suitable metal ions and ligands, one can precisely tailor the properties of MOFs [32]. Mixed-metal MOFs, 
comprising of a blend of metal ions and organic ligands, provide several advantages over single-metal MOFs. Introducing bimetallic 
centers into the same MOF framework has the potential to create defects and a notable synergistic effect among metal sites. This could 
increase the number of active sites, thereby enhancing electrochemical performance [33]. 

By manipulating the ratio and types of metal ions and organic ligands, MOFs can be designed to have adjustable enzyme-like 
activity and fluorescence properties. The fabrication of MOFs with intrinsic properties is more practical and valuable for many ap-
plications, given the stability of the MOFs and the use of low-cost precursors [34,35]. 

UiO-66, composed of Zr6 clusters and terephthalic acid, can load DNA molecules [36]. Zr-based MOFs have been demonstrated to 
have a strong affinity for phosphate groups in biomolecules and towards double- and single-stranded DNA [37]. 

Recent studies have shown the potential of MOFs to precisely capture and release small molecules [38]. A recent study demon-
strated that MOFs can be used for the precise capture and release of single-stranded nucleic acids. This suggests that MOFs can 
potentially be used to detect miRNAs via RNA-RNA hybridization [39]. Recent research has demonstrated that the π-π stacking effect, 
static and coordinative interactions between the basic group and the aromatic rings of the material, and the phosphate group and metal 
ions all contribute to the absorption of miRNA on material surfaces. This method is highly effective for biosensor analysis [40]. 

In this study, we have developed a dual biosensor based on a zinc and praseodymium metal-organic framework (Zr/Pr MOF) for the 
rapid, ultrasensitive, and selective detection of microRNA (miRNA) molecules. The bimetal MOF was synthesized using a 

Fig. 1. Schematic diagram of colorimetry and fluorescence dual-mode detection miRNA-191.  
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hydrothermal method [41] and was found to exhibit both fluorescent and colorimetric properties when exposed to substrates such as 
TMB and H2O2. The addition of a label-free miRNA-191 probe caused a significant change in fluorescence intensity and absorbance, 
indicating the binding of single-stranded miRNAs to the Zr/Pr MOF through van der Waals interactions and π-π stacking. When a target 
miRNA strand was added, the resulting hybridization led to an increase in both fluorescence intensity and UV absorbance (Fig. 1). 
Hence, for the first time, a dual-mode detection method for miRNA that relies on colorimetric and fluorescence modes has been 
developed utilizing metal-organic frameworks (MOFs) without the need for fluorescently labeled single-stranded DNA (ssDNA). 

2. Experimental section 

2.1. Reagents and instruments 

2.1.1. Materials 
Zirconium (IV) oxynitrate hydrate (Zr), praseodymium (Pr), 1,4-benzene-dicarboxylic acid (H2BDC), N, N-di-methyl formamide 

(DMF), 3,3′,5,5′-tetramethylbenzidine (TMB), dimethyl sulfoxide (DMSO), hydrogen peroxide (H2O2), Tris-EDTA, HCl (for preparing 
TE buffer), Sodium Phosphate Dibasic Heptahydrate, Sodium Phosphate Monobasic Monohydrate (for preparing PB buffer), Sodium 
Acetate, Acetic Acid (for preparing Acetate Buffer) were purchased from Merck Millipore and Sigma-Aldrich (USA). All materials were 
of analytical reagent grade, and deionized water with 18.2 MΩ resistivity was obtained from a Millipore Milli-Q system. Human serum 
samples were provided by Milad Hospital, and all synthetic oligonucleotide sequences included in Table S1 were acquired from 
Metabion International AG (Planegg, Germany). 

2.1.2. Apparatus 
The visible light spectrum was studied using a PerkinElmer Lambda 25 UV–Vis spectrometer in the range 200–800 nm. Scanning 

electron microscopy (SEM) images were obtained using an XL30 ESEM FEG scanning electron microscope. X-ray powder diffraction 
(XRD) spectroscopy was performed using a Philips diffractometer. A Fourier transform infrared (FT-IR) spectrometer (Shimadzu 
8400S) was used to record the FTIR spectra. The fluorescence spectra were measured using an LS-55 fluorometer (PerkinElmer) in the 
wavelength range of 280–600 nm. Energy dispersive X-ray spectroscopy (EDX) was conducted with a Tescan model energy dispersive 
spectrometer, and for the measurement of zeta-potential, a Zetasizer Nano-Z (Malvern Instruments, UK) was applied. 

2.2. Preparation of materials 

2.2.1. Zr/Pr-MOF 
Zr/Pr-MOF was synthesized using a procedure that has previously been reported [41]. Briefly, in this experiment, H2BDC (127.6 

mg) and DMF (3.6 mL), Zirconium (IV) oxynitrate hydrate (0.533 M, 99.0 mg, 0.800 mL water), and formic acid 100% (1.03 ml) were 
added to an aqueous solution of Pr (0.533 M, 117 mg, 0.400 mL water), followed by three steps. The mixture was stirred at 100 ◦C for 
15 min while being heated, centrifuged, washed, and the obtained white solid was dried. 

2.2.2. Preparing Probe/MOF 
The preparation of the probe-MOF included the following steps: 10 μL of the probe miRNA-191 (100 M) was diluted in 10 μl of PB 

buffer (10 mM, pH = 5), which had previously been dissolved in TE buffer (100 M, pH = 7). The solution was then mixed with 10 μL of 
target miRNA-191 solutions of varying concentrations. The resulting solutions were heated to 85 ◦C for 5 min to denature them. The 
temperature was then gradually reduced until it reached room temperature. After the addition of 40 μL of 2.3 mg/mL MOF dispersed in 
deionized water, the above-mentioned solutions were incubated for 60 min at room temperature. 

2.2.3. Peroxidase-like activity of Zr/Pr-MOF 
In PB buffer (10 mM, pH = 5), TMB and H2O2 were used to test the Zr/Pr MOF’s peroxidase-like activity. After 10 min of incubation 

at predetermined intervals, TMB (50 μl, 10 mM) and H2O2 (50 μl, 10 mM) were added to 50 μl of Zr/Pr-MOF solution. The UV–Vis 
absorption was then measured using a standard quartz cell. 

3. Results and discussions 

3.1. Characterizations of Zr/Pr-MOF 

The SEM images of the prepared Zr/Pr MOFs revealed a spherical morphology, which is in agreement with previous studies (fig. 
S2A) [42]. In figure (S2.B), the XRD pattern of UiO-66 MOF was presented, with 2θ of 11.84◦, 17.19◦, 18.74◦, 25.39◦, and 29.94◦

indicating the crystalline structure of the MOFs [43]. The EDX spectrum clearly indicated the presence of C, O, Zr, and Pr in the 
Zr/Pr-MOF structure (fig. S2C). The FT-IR spectrum of the Zr/Pr-MOFs is shown in fig (S2D) and exhibited three peaks related to the 
C––C bond in the benzene ring of H2BDC at 1573 cm− 1, 1403 cm− 1, and 1358 cm− 1. The MOF carboxyl groups were stretched 
symmetrically and asymmetrically, as indicated by the peaks at 1256 cm-1 and 1102 cm− 1. The peak at 779 cm− 1, the ligand was 
visible, and the peak at 480 cm-1 was attributed to Zr–O–Zr vibrations, while the absorption peak at 656 cm-1 was related to the 
covalent link between Pr and oxygen (Pr–O) [35,36]. 
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3.2. Fluorescence of Zr/Pr MOF 

The fluorescence spectra of Zr+4 solution, Pr solution, H2BDC solution, and Zr/Pr-MOFs were recorded to analyze the fluorescence 
performance of Zr/Pr-MOFs. As shown in (fig. S3), H2BDC exhibited a prominent fluorescence peak centered at 380 nm with an 
excitation wavelength of 290 nm, whereas Zr/Pr-MOFs displayed a fluorescence signal at 406 nm. However, the Zr+4 and Pr solutions 
did not show any detectable fluorescence emission despite undergoing fluorescence analysis. The redshift phenomenon can be 
explained by Coordination-Induced Emission (CIE),which originates from the forming process of MOFs by H2BDC and metal ions, 
leading to a red-shifted emission [44,45]. On the other hand, the binding of the ligand with metals in the MOF structure has led to an 
increase in emitted fluorescence. The introduction of the ligand into the MOF, considering our ligand-metal ratio, could potentially 
enhance the stiffness of the ligand within the crystal structure of the MOF. A higher degree of rigidity in the MOF results in reduced 
energy loss from photo-excitation as heat, ultimately improving radiation relaxation [46]. 

The fluorescence spectra of the Zr/Pr MOFs and the Zr/Pr MOFs incubated with ssDNA (MOF-P) with and without target miRNA- 
191 (MOF-P + T) were recorded to analyze the fluorescence performance of the Zr/Pr MOFs. As shown in (Fig. 2A), the Zr/Pr MOFs 
exhibited outstanding fluorescence emission at 406 nm with an excitation wavelength of 290 nm. The intrinsic fluorescence signal of 
Zr/Pr MOFs decreased dramatically following the addition of ssDNA (P) to the MOF solution. However, when the target was added, 
strong fluorescence emission was regained owing to hybridization. Taking advantage of the particular physical and chemical features 
of adjustable MOF structures, the method of comprehending this fluorescence mechanism is simple, as MOFs with special structures 
can adsorb ssDNA-label-free probes through electrostatic, π-π stacking, and hydrogen bonding interactions. When these probes come 
into contact with the MOF surface, fluorescence emission decreases. 

This was due to the FRET mechanism. Förster’s resonance energy transfer (FRET), also known as fluorescence resonance energy 
transfer, involves the transfer of energy between a donor fluorophore and an acceptor quencher. In this work, FRET occurred when the 
energy from the excited Zr/Pr MOF was transferred to the ssDNA, leading to the quenching of the Zr/Pr MOF fluorescence emission. 
This process provides a simple understanding of the fluorescence mechanism and is a promising method for miRNA detection [47]. 
Over time, the fluorescence recovery of the MOF-P + T complex occurs due to the competitive hybridization between the comple-
mentary target and MOF + P. As a result, ssDNA is released from the MOF surface, leading to the formation of a double-stranded 
miRNA and ultimately causing the recovery of fluorescence. 

3.3. Peroxidase-like activity of Zr/Pr-MOF 

Today, research into MOFs (metal-organic frameworks) has been used to discover their potential as enzyme mimics due to the 
presence of organic ligands and metal nodes in their structures [48]. As shown in Fig. 2B, the Zr/Pr-MOFs synthesized in this study 
displayed remarkable peroxidase-mimicking activity, with a distinct UV–Vis peak at ~660 nm. A colorless to green-blue reaction was 
observed when H2O2 and TMB (3, 3′, 5, 5′-tetramethylbenzidine) were added to the MOFs, corresponding to the aforementioned 
UV–Vis peak. It has been established that the organic linker of Zr/Pr-MOFs is critical for inducing catalytic reactions [41], which was 
demonstrated through the dipyridyl-based ligands of Zr/Pr-MOFs that serve as mediators to transfer electrons from TMB to H2O2 (fig. 
S4). 

The presence of the probe caused an observable change in absorbance, indicating the binding of single-stranded (ssDNA) to the Zr/ 
Pr-MOFs through van der Waals interactions and π–π stacking. UV–visible spectroscopy was used to show ssDNA attachment to the Zr/ 
Pr-MOFs. Adding the target led to an increased green-blue color and UV absorbance due to complementary hybridization with the 
probe, causing the release of the ssDNA probe from the MOFs and the formation of double-stranded structures, resulting in an increase 
in peroxidase activity. Zeta potential measurements were performed to verify the binding of the miRNA probe to Zr/Pr-MOFs. With 

Fig. 2. (A) Fluorescence spectra and (B) UV–vis spectra of different systems.  
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deionized water, a positive zeta potential of +3.99 mV was observed for the Zr/Pr MOFs, indicating its positive charge. After 
attachment to the ssDNA, the zeta potential was reduced to − 12.3 mV, which revealed the binding of the miRNA (fig. S5). 

3.4. Optimization of assay conditions 

The effects of time, buffer, and pH on the fluorescence and absorbance signals were investigated to produce superior detection 
outcomes. Time-dependent changes in the emission spectrum of the fluorescent MOFs in the presence or absence of a target are shown 
in fig. S6. Within 60 min, the fluorescence recovery signal of the probe-MOF emission was decreased, suggesting that the incubation 
procedure was a fast one. (fig. S6A). The fluorescence recovery signal increased with longer hybridization times when miRNA-191 was 
present, before remaining almost unchanged after 60 min (fig. S6B). These findings led to the selection of 60 min as the ideal incu-
bation time. 

Studies have been conducted on how buffers affect emission and absorption signals. As salt may have an impact on the MOF surface 
charge [49], four buffers including Tris-HCl, PB, PBS, and acetate were added to the MOFs that had been dispersed in deionized water 
for this purpose. Fluorescence and absorbance were enhanced in the Pb buffer solution, as shown in fig. S7. Next, we examined the 
effect of pH on the peroxidase-like activity and fluorescence intensity (fig. S8). The maximum peroxidase-like activity occurred at pH 
= 5, after which the peroxidase-like activity dramatically decreased. The difference in the fluorescent signal (F/F0) reached its 
maximum at this pH. Therefore, a pH of 5 was determined to be optimal. 

3.5. Analytical characteristic 

Under optimal conditions, a dual strategy of fluorescence and colorimetry was used to measure various concentrations of miRNA- 
191. As shown in Fig. 3. A The fluorescence intensity of the label-free probe-MOF complex increased with the addition of miRNA-191 
in a concentration-dependent manner, which was mainly due to the hybridization of the miRNA target with the probe. Fig. 3. B shows 
the linear relationship between the concentration of the target miRNA and fluorescence intensity in the ranges of 0.001–100 nM (R2 =

0.9956). According to 3.3 × Sb/m, the limit of detection (LOD) was calculated to be 0.69 pM. Fig. 3C and D illustrate the effectiveness 
of the colorimetry strategy for detecting miRNA-191. As shown in Fig. 3D–a strong linear relationship was observed between the 
absorbance rate and the concentration of miRNA-191, from 0.001 to 100 nM (R2 = 0.982). The detection limit was established at 8.62 

Fig. 3. (A) fluorescence spectra with different miRNA-191 concentrations, (B) Linear calibration curves of fluorescence with different miRNA-191 
concentrations, (C) UV–vis spectra with different miRNA-191 concentrations, (D) Linear calibration curves of absorbance with different miRNA-191 
concentrations. 
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pM. 

3.6. Selectivity and stability 

To validate the selectivity of the proposed strategy for miRNA-191 detection, several interferences, such as miRNA-103, miRNA- 
141, miRNA-21, miRNA-155, and a mixture of miRNAs with and without the target, were tested under optimal conditions. Fig. 4A 
shows that the fluorescence recovery of the detection system significantly increased in the presence of miRNA-191 and the mixture 
solution containing the target, whereas the other sequences resulted in negligible fluorescence responses. The results demonstrated 
that none of these non-complementary sequences were able to bind to the particular probe, and no extreme dark green-blue color or 
increase in absorbance was observed, whereas only the target and its mixture enhanced the color and absorption (Fig. 4B). Our 
fluorescence method for miRNA detection has a superior linear range and LOD compared to previous MOF-based biosensors, with the 
exception of electrochemical-based methods, which require complex experimental procedures. The stability of Zr/Pr-MOFs was 
examined by testing its peroxidase-like activity and fluorescence intensity every five days over the course of a month. The results in fig. 
S9 show that the peroxidase-like activity and fluorescence properties remained virtually unchanged for the duration of the experiment, 
indicating that Zr/Pr-MOF displays exceptional stability at room temperature. 

The presented technique’s ability to detect miRNAs was evaluated and compared to previously reported methods based on 
sensitivity and linear range assessments, as shown in Table 1. While certain studies have reported lower limits of detection, the 
proposed method offers several advantages, such as rapid, simple, selective, and dependable detection of miRNAs. These benefits are 
due to the lack of amplification steps, fluorescence dyes, and enzymatic processes necessary for detection. 

3.7. Serum sample applications 

Several concentrations of miRNA-191 (0.1 nM, 0.5 nM, 1 nM, 2 nM, 5 nM, and 10 nM) were spiked in diluted normal human serum 
and examined using this dual method under ideal circumstances to evaluate the viability of real samples. The results, presented in 
Table S2, show satisfactory spiked recoveries in the linear range for both strategies. The fluorescence strategy showed a recovery of 
98.5–102.4% with a relative standard deviation (RSD) ranging from 2.07% to 4.3%. And the colorimetry strategy yielded a recovery of 
98–102% with an RSD ranging from 2% to 3%. Both techniques had linear ranges with acceptable spike recoveries. 

4. Conclusion 

In summary, a bimetallic Zr/Pr MOF with fluorescent and peroxidase-like properties was used to detect miRNA. The MOF catalyzes 
the oxidation of the peroxidase substrate TMB to blue oxTMB. The label-free miRNA probe caused a significant change in the fluo-
rescence intensity and absorbance owing to the binding of single-stranded miRNAs to the MOF through van der Waals interactions and 
π–π stacking. The presence of the target miRNA caused the probe miRNA to be released from the MOF surface owing to hybridization, 
which increased the peroxidase-like activity of the Zr/Pr-MOF. This strategy is based on changes in the fluorescence and colorimetric 
properties of the Zr/Pr MOF in the presence of single- and double-stranded RNA. This process is cost-effective, simple, and fast because 
of its enzyme-free and fluorescent-labeled nature, making it a promising tool for biosensing and medical detection. 

Fig. 4. Selectivity of the designed biosensor miRNA-191 on (A) Fluorescence intensity and (B) Absorbance.  
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