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A B S T R A C T

Exposure to violence (ETV) has been linked to epigenomics mechanisms such as DNA methylation (DNAm). We
used epigenetic profiling of blood collected from 32 African American young adult males who lived in Washington
DC to determine if changes in DNAm at CpG sites affiliated with nervous and immune system were associated
with exposure to violence. Pathway analysis of differentially methylated regions comparing high and low ETV
groups revealed an enrichment of gene sets annotated to nervous system and immune ontologies. Many of these
genes are known to interact with each other which suggests DNAm alters gene function in the nervous and im-
mune system in response to ETV. Using data from a unique age group, young African American adult males, we
provide evidence that lifetime ETV could impact DNA methylation in genes impacted at Central Nervous System
and Immune Function sites.
Method: Methylation analysis was performed on DNA collected from the blood of participants classified with
either high or low lifetime ETV. Illumina®MethylationEPIC Beadchips (~850k CpG sites) were processed on the
iScan System to examine whole-genome methylation differences. Differentially methylated CpG-sites between
high (n ¼ 19) and low (n ¼ 13) groups were identified using linear regression with violence and substance abuse
as model covariates. Gene ontology analysis was used to identify enrichment categories from probes annotated to
the nearest gene.
Results: A total of 595 probes (279 hypermethylated; 316 hypomethylated) annotated to 383 genes were
considered differentially methylated in association with ETV. Males with high ETV showed elevated methylation
in several signaling pathways but were most impacted at Central Nervous System and Immune Function affiliated
sites. Eight candidate genes were identified that play important biological roles in stress response to violence with
HDAC4 (10%), NR4A3 (11%), NR4A2 (12%), DSCAML1(12%), and ELAVL3 (13%) exhibiting higher levels in the
low ETV group and DLGAP1 (10%), SHANK2 (10%), and NRG1(11%) having increased methylation in the high
ETV group. These findings suggest that individuals subjected to high ETV may be at risk for poor health outcomes
that have not been reported previously.
1. Introduction

For many African Americans (AA), experiencing violence, discrimi-
nation, and environmentally induced stressors, such as childhood neglect
or abuse, are well documented (Jacobs et al., 2014; Pew Research Center,
2016). AAs carry a disproportionate burden of incidence, morbidity, and
(F. Saadatmand).
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mortality from chronic diseases such as hypertension and obesity (Allport
et al., 2019; Barengolts et al., 2019; Yang et al., 2019; Li et al., 2019;
Faucher et al., 2019; Assari et al., 2019; Nagy et al., 2020; Goode et al.,
2017; Go et al., 2014) in addition to exposure to violence (ETV) which
has also been shown to have a negative impact on health (Griggs et al.,
2019; Goldmann et al., 2011; Woodson et al., 2010; Paranjape and
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Kaslow, 2010; Mitchell et al., 2010; Paranjape et al., 2009; McGee et al.,
2001; Moffitt and Klaus-Grawe Think, 2013; Olofsson et al., 2012).
Therefore, it is worthwhile to examine if lifetime exposure to violence is a
contributing factor in AA health disparity. Lifetime ETV is defined in this
study as the cumulative effects of ETV during childhood, before age 18,
and exposure to community violence after age 18. The key questions we
would like to understand in this study is how lifetime exposure to
violence, especially during the most vulnerable periods of childhood and
adolescence, translates into changes at a molecular level. One possible
mechanism is through methylation changes since ETV has been shown to
affect the epigenome (Olofsson et al., 2012). Cytosine DNA methylation
(DNAm) in humans occurs primarily at CG dinucleotides, which are also
called CpG sites (Alberts, 2008). Over half of the promoters in human
genes contain CpG islands which are CpG-rich regions that are binding
sites for regulatory factors that modulate gene transcription. The most
studied type of epigenetic regulation is by DNAm of the promoter regions
(Mansell et al., 2019). DNAm generally acts as an On-Off switch that
turns genes On when the DNA in not methylated and Off when the DNA is
methylated (Alberts, 2008). Cytosine methylation occurs at the 5th po-
sition of the base which faces into the major groove of the DNA helix.
Since transcription factors bind to the major groove of DNA, DNAm at
CpG islands often blocks transcriptional activators from binding to the
promoter regions (Alberts, 2008). That is one of the reasons why DNAm
usually turns genes off. Another reason why DNAm turns genes off is that
methyl-DNA-binding proteins, such as MeCP2, which is mutated in Rett
Syndrome patients, binds to methylated cytosines and acts as a tran-
scriptional repressor (Lyst et al., 2013). Blood is usually the surrogate
tissue used in humans to DNAm changes caused by environmental or
social stressors because other tissues are not generally available in
humans (Ebrahimi et al., 2020). In mouse studies, epigenetic changes in
the blood often correspond to epigenetic changes in the brain, thus
justifying a surrogate tissue approach in humans (McKay et al., 2011). In
recent years, contrasting results have been reported about the use of
blood to study brain alterations. However, blood can be used to study
peripheral rather than central biomarkers.

One remarkable finding over the past couple of decades is that recent
epigenetic studies, including those focused on DNAm, have found an
association between adverse life experiences (such as exposure to com-
munity and family violence, discrimination, and trauma) and modulation
of gene regulatory regions that can change behaviors, influence person-
ality, and increase the risk for mental health disorders and psychosocial
stressors (Vick and Burris, 2017; Barker et al., 2018; Jovanovic et al.,
2017). Other studies have demonstrated the association between DNAm
and perceived discrimination among African American women (Barce-
lona de Mendoza et al., 2018), with the highest rates of perceived
discrimination (35%) by African American in comparison to other
women (Jacobs et al., 2014). Results from another recent DNAm study in
Brazil showed altered gene expression across the lifespan of those who
experienced repeated community and domestic violence (Serpeloni et al.,
2020). A meta-analysis conducted across five studies exploring the as-
sociation between DNAm, disadvantaged neighborhoods, and cardio-
vascular disease risk indicated an association between DNAm changes in
expression to the stress- and inflammation-related genes and disadvan-
taged neighborhoods, and risk of cardiovascular disease (Giurgescu et al.,
2019). In a longitudinal study, childhood victimization predicted
elevated levels of C-Reactive Protein (CRP) at age 18 with an association
that was specific to women (Baldwin et al., 2018). Increased epigenetic
aging and heart rate in children ages 6–13 who experienced direct, but
not witnessed, violence has also been shown (Jovanovic et al., 2017).
Additionally, increased levels of DNAm at CpG sites across the genome
have also been associated with socioeconomic status (SES) in a cohort of
young adults (McDade et al., 2019). While several studies have investi-
gated the relationship of epigenomic changes and stressful life events,
such as exposure to violence, in disadvantage neighborhoods, there is no
study that investigate the genomewide changes among African American
young adults. To address this issue, we explored the relationship between
2

DNAm and exposure to different levels of violence, using genome wide
DNAm data extracted from whole blood. To our knowledge, there are no
published studies that have examined how lifetime exposure to violence
is associated with DNAm across the epigenome among AA young adult
males. We hypothesized that higher levels of lifetime exposure to
violence would result in DNAm changes involved in the immune
response in African American young adult males.

2. Methods

2.1. Participants and procedure

This study selected 32 males who scored in the highest (n ¼ 19) and
lowest (n ¼ 13) 30% of 638 African American males and females (aged
18–25) from economically and socially disadvantaged neighborhoods of
Washington DC on a self-reported scale measuring lifetime exposure to
violence (Lifetime ETV) for epigenetic profiling. The Lifetime ETV scale
combined 34 items measuring ETV during childhood (before age 18) and
35 items on exposure to community violence since adulthood. This study
compares the high and low ETVmale groups to determine if ETV resulted
in changes to DNAm sites affiliated with immune function. This study
controlled for drug use in the past 30 days. The IRB was approved by
Howard University Office of Regulatory Research Compliance (IRB-13-
PED-06).

To qualify for inclusion in the study, respondents had to be between
the ages of 18 and 25 as of their most recent birthday, self-identify as
African American or Black, screen as HIV negative (to exclude those with
HIV compromised immune systems from the larger study on immune
function), and currently live in one of the predominantly disadvantaged
wards inWashington, DC. The full study entailed a comprehensive survey
about participants’ ETV before and after the age of 18, adverse life ex-
periences, discrimination, current and childhood socioeconomic char-
acteristics, current health problems and symptoms, current drug use,
sleep quality measures, depressive symptom measures, and current HIV
risk behaviors.

While mouse epigenetic studies of behavior can involve brain tissues,
such tissues are impossible to collect in humans except from human brain
banks. Instead, people who study epigenetic regulation of behavior in
humans utilize a surrogate tissue such as blood or saliva which can be
collected in non-invasive manners (Solomon et al., 2018; Murata et al.,
2019). Other tissues have been collected in humans for epigenetic
studies, such as fat or muscle biopsies (Taylor et al., 2019), but such
collections are much more invasive than collecting blood or saliva and
consequently more difficult to collect. Despite the limitation of surrogate
tissues in humans, several studies have identified epigenetic biomarkers
in genes that correlate with stressful conditions in humans (Sen et al.,
2015a, 2015b; Intarasunanont et al., 2012).

2.2. Survey of exposure to childhood and community violence

To measure exposure to childhood violence, exposure to community
violence as adults, the survey included questions from previously
developed and tested instruments. The childhood exposure to violence
scale contained 34 questions that asked participants to respond to cir-
cumstances that might have happened during their childhood from birth
through age 18. The response options were “1 time,” “2 times,” “3 times,”
“4 times,” “5 times or more,” “no times,” and “prefer not to answer.” This
scale has a test-retest reliability coefficient of 0.90 and Cronbach’s α¼
0.85 (Finkelhor et al., 2010, 2015; Stith and Hamby, 2002; Little and
Hamby, 2001). Community exposure to violence as adults was measured
by 35 items. Participants were asked to describe the violence that they
experienced, saw, or heard about since they turned 18. The responses
were “never,” “once or twice,” “a few times,” “many times,” or “prefer
not to answer.” This scale has an internal consistency of 0.85, test-retest
reliability of 0.90, and Cronbach’s α¼ 0.61, 0.79, and 0.86, respectively
for violence experienced, seen, and heard (Richters and Saltzman, 1990).



Table 1
Descriptive characteristic and lifetime exposure to violence of participants (N ¼
32).

Variables Mean (SD) or percent

Age 18-25 20.7 (2.4)
Income
< $14,999 81.3%
$15,000-$29,999 12.5%
$30,000þ 6.2%

Education
Did not finish HS 21.9%
High school or GED 62.5%
Finished vocational or trade school 3.1%
Attend or graduated college 12.5%

Unemployment 28.1%
Source of childhood family income
People who worked 71.9
Welfare or public assistance 12.5
Worked and welfare 15.5

Childhood Household Income
< $14,999 40.6
$15,000-$29,999 18.8
$30,000-$39,999 9.4
$40,000-$49,999 12.5
$50,000 and more 18.8%

Rented Residence (% yes) 59.4%
Lifetime childhood ETV 72.0%
Lifetime community ETV as adults 75.0%
Lifetime childhood and community ETV 78.1%
Ever drank alcohol (yes) 62.5%
Ever smoked cigarette (yes) 53.1%
Ever used marijuana (yes) 68.7%
Felt lonely past week 34.4%
Restless sleep past week 46.9%
Felt fearful past week 34.4%

Fig. 1. Volcano plot of differentially methylated CpG sites. CpG sites with an
absolute Delta β of 10% (p-value � 0.05) are depicted in yellow. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)
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2.3. Genomic DNA extraction method

High molecular weight genomic DNA was extracted from 300 μL of
whole blood from participants using the Qiagen DNAeasy DNA extraction
kit for blood and tissue (Qiagen Sciences Inc.) according to the manu-
facturer’s protocol. The concentration and integrity of the DNAs were
measured using a NanoDrop 2000c Microvolume Spectrophotometer.
The DNA samples (200 ng aliquots) were used in genome-wide DNAm
analysis by the Genome Sciences Core at Wayne State University.

2.4. Global methylation analysis

Methylation analysis was performed using Illumina®Methylatio-
nEPIC Beadchips prepared as described in the Illumina® Infinium® HD
Assay Methylation Protocol Guide (15019519 v01) before processing on
the Illumina iScan System. Input DNA (250 ng) was bisulfite treated
using the Zymo EZ DNAMethylation Kit. Zymo’s HumanMethylated and
Non-methylated DNA controls are treated with samples. Controls are PCR
amplified and run on a gel to confirm both methylated and unmethylated
bands are present. After bisulfite conversion was confirmed, the bisulfite
treated DNA was manually prepared for sequence-specific array-based
hybridization using whole-genome amplification (WGA), enzymatic
endpoint fragmentation and chemical precipitation. The WGA product
was re-suspended and captured by array hybridization. Arrays were then
mounted in the Tecan GenePaint automated slide processor on the Tecan
Freedom Evo® robotic liquid handling system for primer extension and
staining. The amount of fluorescence was measured and used to deter-
mine the methylation level of the CpG sites.

2.5. Differential methylation analysis

Raw data from the Infinium assays underwent quality control including
staining, extension, hybridization, and bisulfite conversion checks (Aryee
et al., 2014). After probe correction to remove probes with low intensity
and normalization (Triche et al., 2013), differentially methylated
CpG-sites (expressed as M values) between high (n¼ 19) and low (n¼ 13)
groups were identified using linear regression with violence and substance
abuse as model covariates (Ritchie et al., 2015). Substance abuse was
calculated by averaging self-reported alcohol, marijuana, cocaine, glue,
and heroin use during the thirty-day window prior to the survey. Average
Delta β values indicating the differential methylation were calculated by
subtracting the average β value of high violence from that of low violence
groups. The differentially methylated probes with gene annotation (|Delta
β| � 0.1; p-value � 0.05) were further analyzed for significant biological
pathways using gene ontology analysis (Huang et al., 2009).

3. Results

3.1. Descriptive characteristic of participants

Descriptive characteristics and childhood SES variables of partici-
pants are summarized in Table 1. The mean age of the participants was
20.7 � 2.4 and they were all unmarried (1 was engaged). 21.9 % did not
finish high school and 62.5% reported completing high school or GED.
81.3 % made less than $15,000 a year and 68.8% grew up in families
with incomes <$40,000 a year and 28.1% were unemployed. 72% were
exposed to violence during childhood, two-thirds were exposed to com-
munity violence during their young adulthood and 78.1% were exposed
to both childhood and community violence. 62.5% of participants had at
least one drink during their lifetime, 53.1% had ever smoked a cigarette
and 68.7% had ever used marijuana. About 47% had restless sleep, and
34.4% felt lonely and fearful in the past week.

The results of genome-wide DNAm analysis of 19 participants with
high ETV showed significantly higher DNAm at multiple loci/genes in
comparison with the 13 participants with low ETV. Of the 866091 probes
on the EPIC Beadchips analyzed, 476292 passed QC across all 32
3

samples. Probes that had a greater than 10% change in β (p-value� 0.05)
between the groups of high and low Lifetime exposure to violence were
classified as differentially methylated sites (DMS) (Fig. 1). In total, 595
probes annotated to 383 genes were considered DMS. (See Appendix A.
supplementary table showing all 383 genes).

Gene Ontology analysis of genes annotated to DMS (top 30 in Table 2),
revealed 85 significant categories (FDR� 0.05) with several related to the
nervous system: nervous system development (GO:0007399), anterograde
trans-synaptic signaling (GO:0098916), chemical synaptic transmission
(GO:0007268), synaptic signaling (GO:0099536), trans-synaptic signaling
(GO:0099537), neurogenesis (GO:0022008) and central nervous system
development (GO:0007417). Only one category, inflammatory response to
antigenic stimulus (GO:0002437), was related to immune function.

Interaction analysis of the 90 genes categorized as related to the
nervous system or immune response revealed interactions between 53



Table 2
Top 30 Gene Ontology categories from genes annotated to DMS.

Term Description Fold
Enrichment

FDR

GO:0022610 biological adhesion 2.219861 3.03E-09
GO:0007155 cell adhesion 2.196325 6.84E-09
GO:0098742 cell-cell adhesion via plasma-

membrane adhesion molecules
4.655715 1.21E-06

GO:0007275 multicellular organism development 1.486545 1.44E-06
GO:0044707 single-multicellular organism process 1.40827 2.12E-06
GO:0032501 multicellular organismal process 1.350336 2.27E-06
GO:0048731 system development 1.51563 4.27E-06
GO:0007156 homophilic cell adhesion via plasma

membrane adhesion molecules
5.364321 5.8E-06

GO:0044700 single organism signaling 1.356961 2.52E-05
GO:0048856 anatomical structure development 1.392844 3.19E-05
GO:0023052 Signaling 1.345472 4.49E-05
GO:0007399 nervous system development 1.744177 4.96E-05
GO:0044767 single-organism developmental

process
1.382599 5.69E-05

GO:0032502 developmental process 1.372452 6.16E-05
GO:0009887 organ morphogenesis 2.203251 7E-05
GO:0098609 cell-cell adhesion 2.060874 0.000116
GO:0007154 cell communication 1.325265 0.000152
GO:0007267 cell-cell signaling 1.827299 0.00051
GO:0030198 extracellular matrix organization 3.032487 0.001149
GO:0043062 extracellular structure organization 3.023435 0.001197
GO:0040011 Locomotion 1.776931 0.001277
GO:0051239 regulation of multicellular

organismal process
1.543705 0.001295

GO:0048513 animal organ development 1.482196 0.001522
GO:0001501 skeletal system development 2.502209 0.002694
GO:0048870 cell motility 1.803652 0.002756
GO:0051674 localization of cell 1.803652 0.002756
GO:0007165 signal transduction 1.292314 0.003003
GO:0098916 anterograde trans-synaptic signaling 2.294712 0.003452
GO:0007268 chemical synaptic transmission 2.294712 0.003452
GO:0099536 synaptic signaling 2.294712 0.003452
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genes in 3 clusters* (Fig. 2). Our interaction network analysis identified
several gene network pathways some that clustered in the central ner-
vous system or immune response pathways. Neuregulin 1 (NRG1) which
promotes excitatory neurons has been implicated in schizophrenia (Mei
and Xiong, 2008) but also is involved in pro-regenerative immune
response (Alizadeh et al., 2018). NR4A2 is expressed in both T cells
(Raveney et al., 2013) and dopamageneric neurons (Luo et al., 2008). The
4

large cluster contains several genes involved in innate immunity
including Doublecortin Like Kinase 1 (DCLK1) a regulator of IL17,
tripartite motif-containing protein 3 (TRIM3), myelin basic protein
(MBP), complement C3 (C3),NR4A3 (Nagaoka et al., 2017; Odagiu et al.,
2016; Boulet et al., 2019) and TNF (Zhang et al., 2018; Ozato et al., 2008;
Nakagawa et al., 2003; Kerepesi et al., 2006; Francisco et al., 2015).
Additional immune related genes include RELA Proto-Oncogene (RELA)
a NF-KB subunit expressed in the macrophage (Pittet et al., 2011),
HDAC11 which regulates interferon signaling (Cao et al., 2019) and
HRAS a critical component of protective immunity (Iborra et al., 2011).
Genes with neurological functions include controllers of neuronal
apoptosis (APLP1 (Tang et al., 2007), NDRG4 (Wen et al., 2019)),
neuronal differentiation (TMP-2 (Perez-Martinez and Jaworski, 2005)),
excitatory neurons (FGFR2 (Stevens et al., 2010)), neuronal migration
(DAB2IP (Lee et al., 2012)), hippocampal neurons (PRKCH (Buchser
et al., 2010)), V2b neurons (FoxN4 (Li et al., 2005)) and axonal growth
(RasGRF1). Several genes have ties to neurological disorders including
autism (SMAD9 bmp regulator SKI/SMAD4 (Zhang et al., 2017),
CACNB2 (Breitenkamp et al., 2014), STX1A (Durdiakova et al., 2014)
(Nakamura et al., 2008), UNC13A (Lipstein et al., 2017) RBFOX1 (Lee
et al., 2016))), Alzheimer’s disease (Elavl3 (Ogawa et al., 2018)
(Scheckel et al., 2016), DLGAP1 (Hadar et al., 2016), SHANK2 (Eltokhi
et al., 2018), HLA-DRB5 MS (Caillier et al., 2008)), bipolar disorder
(PAX-5 B-cell differentiation downregulated in bipolar disorder (Ohtsuka
et al., 2013)) and Parkinson’s disease (HDAC4 (Wu et al., 2017)). The
genes that did not cluster included a site annotated to the protocadherin
family (PCDH) which is highly expressed in the nervous system and has
epigenetic alterations influencing PCDH regulation which has been
implicated in neurological disorders (El Hajj et al., 2017). Although only
one immune category was enriched in the GO analysis, several of the
genes in the nervous system categories also have immune functions.
Within the two smaller clusters protein tyrosine phosphatase sigma
(PTPRS) is expressed in dendritic cells and has been shown to regulate
interferon (Bunin et al., 2015) while both UNC5A and DSCAML1 are
receptors that belong to the immunoglobin family (Lai Wing Sun et al.,
2011; Ly et al., 2008). SLC6A9 is a glycine transporter and glycine is
important in immune modulation (Zhong et al., 2003) as well as an
inhibitory neurotransmitter in the central nervous system (Legendre,
2001; Umeda et al., 2019).

We also carried out heatmap analysis of the methylation findings for 8
candidate genes identified from our genome-wide methylation analysis
Fig. 2. Interaction network for genes annotated to
differentially methylated sites related to nervous
system and immune response. Genes with hyper-
methylated sites are depicted in red.
*Not all of the genes from the nervous system or
immune response category have known interactions.
For example, UNC5A and DSCAML1 are connected to
each other but no other gene. It’s not currently
known if these genes function in a coordinated way.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the Web
version of this article.)



Fig. 3. Heatmap for selected genes showing methylation levels (hypomethylation - blue; hypermethylation - orange) across individual subjects classified into the low
(green) and high (red) ETV categories. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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to play important biological roles in stress response to violence (Fig. 3).
We observed variable methylation levels within and across the low and
high violence groups. Overall, we observed that for NR4A3, NR4A2,
DSCAML1, HDAC4, and ELAV3 there was relatively higher methylation
in the low violence group compared to high violence group. In contrast,
for DLGAP1, NRG1, and SHANK2, there was relatively lower methylation
in the low violence when compared to the higher violence exposure.

4. Discussion

There are several environmental determinants associated with health
disparities in the USA including exposure to violence. Exposure to
violence can directly influence health through biological mechanisms
and can be measured as indicator of stressors. The well characterized
biological pathway whereby environmental exposure to violence are
transmitted through the body to elicit physiological response is via the
so-called hypothalamic-pituitary-adrenal axis (HPA axis) system. Signals
from the central nervous system in the form of chemical signals or
electrical potential are sent to the HPA axis signifying the release of
corticotrophin releasing hormone (CRH). The CRH in turn stimulates
biosynthesis and release of adrenocorticotrophic hormone that triggers
the production of glucocorticoids (cortisol) which are the stress response
markers (Welberg et al., 2001).

However, the underlying biological mechanism whereby exposure to
violence may alter stressor in the body is unknown. In this study we
carried out genome-wide DNAm analysis and found that individuals with
high levels of self-reported violence victimization had significant
hypermethylation of key CpG sites located in the genes influencing
nervous system development, cell adhesion, and cellular signaling as
compared to those similarly situated individuals without high violence
exposure. Previous studies have shown that experiencing community and
domestic violence was associated with gene methylation involved in the
neural development in adolescents (Serpeloni et al., 2019), and epi-
genomic mechanisms possibly associated with risk for health problems
later in life in maltreated children. Additionally, increased levels of
DNAm at CpG sites across the genome were found to be associated with
low socioeconomic status (SES) in a cohort of young adults (McDade
et al., 2019).

In our current studies we have observed that high exposure to
violence is significantly associated with increased DNAm of genetic
networks involved in the central nervous system and the immune system.
Several studies suggest that epigenetic mechanisms such as DNAm
5

changes plays dynamic roles in gene expression throughout the life of
neurons and in neurodegenerative diseases including Rett syndrome,
fragile X syndrome and Alzheimer’s disease (Christopher et al., 2017).
Similarly, there are emerging evidence to suggest that aberrant epige-
netic DNAm may participate in defects in immune-mediated pathologies
(Calle-Fabregat et al., 2020).

In our previous studies we observed that young men and women
exposed to violence experienced adverse physical and mental health
outcomes including depression, and sleep disturbances (Saadatmand
et al., 2017). In women, exposure to violence significantly affected sleep
as a result of direct personal violence. In contrast, men exposed to direct
personal violence such as gun violence or witnessing violent death had
considerably greater impact upon depression and depressive mood. In
our more recent study (Saadatmand et al., 2019) we reported that
exposure to violence was significantly associated with marijuana use in
both men and women. In an exploratory study, Uddin, et al. (Uddin et al.,
2013), also suggest that sex differences in DNAm may contribute to sex
differences in the prevalence of PTSD and depression.

Thus, our current observation of differential methylation of several
genes in the central nervous system and the immune signaling pathway
suggests that this is a potential biological mechanism for disrupting
normal biological processing including sleeping patterns, depressive
moods and drug use with regards to the exposure to violence. In a review
of epigenetic findings in both animal and human studies, Lockwood et al.
(2015), concluded that epigenetics could play an important role in
depression and suicide in humans. A review of previous research con-
cludes that DNAm plays a central role in learning and memory processes
and in drug addiction (Bali et al., 2011). Results from a study showed a
distinct DNAm pattern in insufficient sleep with differences related to
compromised neuroplasticity and neurodegeneration (involving genes,
such as ERC2, MAGI2, CAST, and CDK5R1) (Lahtinen et al., 2019).

Naumova et al. (2012), found that children raised in an institution
since birth showed greater epigenome-wide DNAm compared with
high-poverty children living with their families, particularly in genes
related to immune regulation and cellular signaling. More recently,
based on a cross-sectional sample of high-risk youth, Cecil, et al. (Cecil
et al., 2016), sought to characterize the DNAm ‘signatures’ of different
forms of maltreatment, using an epigenome-wide approach. They found
that physical maltreatment showed the strongest associations with
DNAm, implicating multiple genes previously associated with psychi-
atric and physical disorders (e.g., GABBR1, GRIN2D, CACNA2D4,
PSEN2).
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Of particular interest is the identification of genes including Neuro-
regulin 1 (NRG1) and nuclear receptor subfamily 4 Group A member 2
(NR4A2) from our GO analysis to be involved in both the nervous system
and immune signal pathways. In support of our observation, a recent
study by Uddin et al. (2018), identified methylation at 2 CpG sites in an
epigenome-wide association studies to be associated with PSTD. One
study also found methylation of NRG1 to be associated with inflamma-
tion (Song et al., 2016). Taken together, these observations suggests that
aberrant methylation of key regulatory genes in the central nervous
system and immune signal pathways maybe a potential mechanism for
inducing chronic inflammatory changes in various psychiatry disorders
including depression, anxiety, and PTSD. Based on their study, Safe et al.
(2016), suggest that NR4A2 is important for regulating both inflamma-
tion and resolution of inflammatory signaling in activated immune cells
and glial cells.

Furthermore, our results showed a gene interaction analysis of the 90
significant genes categorized as related to the nervous system or immune
response revealed interactions in 3 clusters. The findings of this study
suggest that young African American men who are exposed to high levels
of lifetime violence maybe at risk for many health risks and diseases that
have not been reported in literature related to this age group. However,
we note that no clinical data are available about the participants’ psy-
chiatric symptoms. This will be pursued in a future study.

4.1. Study limitations and strengths

The results of this study should be considered in light of several
limitations. First, the sample was only from the baseline phase of a lon-
gitudinal study andwe cannot infer casual associations between exposure
to violence and DNAm. Second, this study was based on 32 DNA samples
of young African American, living in Washington DC, who were exposed
to low and high exposure to violence and might not have enough power
analysis. However, given the lack of study on DNAm among young Af-
rican American, and the high cost associated with the DNAm testing, this
study is novel in its approach and the importance of studying the impact
of life adversities, such as exposure to violence on DNAm. This study
might be a blueprint for a larger study of examining how environmental
influences such as exposure to violence become biologically embedded
and find causal pathways between DNAm and exposure to violence
among young African American males and females.

5. Conclusion

While replication is required, this study suggests that overall genes
that are differentially methylated are involved in pathways including
neurological apoptosis, differentiation and migration, axonal growth,
and neurological disorders including autism, Alzheimer’s, bipolar dis-
order, and Parkinson’s disease. Future studies will investigate how
methylation of these gene network drives health disparities. These ana-
lyses lay groundwork for building a portrait of the potential contribution
of violence exposure on methylation processes in young African Amer-
ican men.
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