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Abstract: Known human coronaviruses are believed to have originated in animals and made use
of intermediate hosts for transmission to humans. The intermediate hosts of most of the human
coronaviruses are known, but not for HCoV-NL63. This study aims to assess the possible role
of some major domestic livestock species as intermediate hosts of HCoV-NL63. We developed
a testing algorithm for high throughput screening of livestock sera with ELISA and confirmation
with recombinant immunofluorescence assay testing for antibodies against HCoV-NL63 in livestock.
Optimization of the ELISA showed a capability of the assay to significantly distinguish HCoV-NL63 from
HCoV-229E (U = 27.50, p < 0.001) and HCoV-OC43 (U = 55.50, p < 0.001) in coronavirus-characterized
sera. Evaluation of the assay with collected human samples showed no significant difference in mean
optical density values of immunofluorescence-classified HCoV-NL63-positive and HCoV-NL63-negative
samples (F (1, 215) = 0.437, p = 0.509). All the top 5% (n = 8) most reactive human samples tested by
ELISA were HCoV-NL63 positive by immunofluorescence testing. In comparison, only a proportion
(84%, n = 42) of the top 25% were positive by immunofluorescence testing, indicating an increased
probability of the highly ELISA reactive samples testing positive by the immunofluorescence assay.
None of the top 5% most ELISA reactive livestock samples were positive for HCoV-NL63-related viruses
by immunofluorescence confirmation. Ghanaian domestic livestock are not likely intermediate hosts of
HCoV-NL63-related coronaviruses.
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1. Introduction

The importance of cronaviruses as emerging zoonotic viruses became evident after the
international public health threat caused by severe acute respiratory syndrome coronavirus (SARS-CoV)
in 2002/2003 [1]. Thereafter, there have been several studies that looked for novel coronaviruses aimed
at assessing their zoonotic potential [2–5]. Coronaviruses are members of the order Nidovirales
and family Coronaviridae which are made up of single-stranded positive sense RNA genomes and
infect both mammalian and avian hosts. They are divided into four genera namely Alphacoronavirus,
Betacoronavirus, Gammacoronavirus, and Deltacoronavirus [6,7]. In 2003, a coronavirus belonging to
the Alphacoronavirus genus was discovered in an infant in the Netherlands and was designated
human coronavirus NL63 (HCoV-NL63) [8]. This, among other coronaviruses, namely human
coronavirus 229E (HCoV-229E), human coronavirus OC43 (HCoV-OC43), human coronavirus
HKU1 (HCoV-HKU1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV
predominantly cause respiratory disease [1,9,10]. Human coronavirus NL63 has a worldwide
distribution and is known to be associated with both upper and lower respiratory tract infections
in both adults and children with seroconversion occurring at a very early age [11,12]. Most of the
known human coronaviruses are believed to have originated from mammalian reservoirs such as bats
and used other mammalian hosts as intermediate hosts before ending up in the human population.
Some of these, like HCoV-229E and MERS-CoV, used camelid species [13–16], while SARS-CoV went
through Himalayan palm civets as intermediate hosts [17,18]. Further, HCoV-OC43 is reported to
have originated directly from cattle [19]. Unlike these groups of coronaviruses, HCoV-NL63 and
HCoV-HKU1 have no known intermediate mammalian hosts. Human coronavirus NL63 is known
to use the same receptor as SARS-CoV [20], and may therefore, like some SARS-CoV-related viruses,
be capable of infecting swine [21]. This assertion is, however, yet to be explored through surveillance
data. Different serological studies have mainly employed enzyme-linked immunosorbent assay
(ELISA) and immunofluorescence assay (IFA) approaches for investigating HCoV-NL63 [22–25]. Most
of these assays are designed for specific purposes ranging from seroprevalence studies to studies of the
HCoV-NL63 genome [12,26], and would therefore vary in parameters like sensitivity and specificity.
There is no single assay that is widely accepted as the standard for serological detection of HCoV-NL63,
and this presents a challenge in the general validation of new assays. Coronaviruses have the potential
to recombine to produce new viruses [27], and as such, knowledge of potential hosts other than
humans that can be infected by two human coronaviruses is important to provide information on
potential sources of novel human coronaviruses that may later spillover into human populations and
cause disease. Knowledge of potential intermediate hosts of human coronaviruses will also provide
information on the evolution of coronaviruses in general and interspecies transmission events that lead
to emergence. The purpose of this study was therefore to assess the potential of domestic livestock
species as intermediate hosts for HCoV-NL63.

2. Materials and Methods

2.1. Study Sites

Commercial and household livestock farms across Ghana were targeted and a purposive sampling
strategy was adopted. Target farms were shortlisted and visited to engage and sensitize the farm
owners, family, and workers as well as the entire community. During the sensitization visits,
the objectives of the study, the study design, and information on use of data was provided to
potential participants. Participants were allowed to ask questions and were further encouraged
to seek clarification on issues they were not convinced about.
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2.2. Characteristics of Study Participants

The respondents in the study were sampled from both commercial and household farms.
The median age of participants in the study was 34 years (range 13 to 77 years) and majority of
participants were below the age of 40 years (n = 153, 61.7%). No ages were recorded for 5 people who
either did not know or were not willing to indicate their ages. The ratio of male to female participants
in the study was 194 (78.2%) males to 51 (20.6%) females, and the sexes of 3 people (1.2%) were not
recorded (Table 1).

Table 1. Characteristics of human samples collected in the study.

Characteristic Number Percent

Age categories (years)
10–44 171 69
45–80 72 29

Missing 5 2.0

Sex
Male 194 78.2

Female 51 20.6
Missing 3 1.2

2.3. Collection of Serum Samples

Serum samples were obtained from livestock farmers and their family members to be used as
reference samples for assay evaluation. This was done after consent was obtained from the participants.
For livestock, 10 mL of whole blood was collected and for the humans 5 mL was collected. This was
done by trained veterinary technicians and clinical phlebotomists, respectively. Blood samples were
then transported to the laboratory where they were centrifuged to obtain serum and immediately
frozen with liquid nitrogen.

2.4. Algorithm for Determination of Seropositivity and Considerations for Testing

We developed a whole-virus enzyme linked immunosorbent assay (ELISA) to test for HCoV-NL63
in livestock as part of a two-stage testing algorithm also involving a recombinant immunofluorescence
assay. For a sample to be considered positive for HCoV-NL63, it had to be in the top 5% most reactive
samples as determined with the whole-virus ELISA and also positive in a confirmatory test with a
more specific recombinant immunofluorescence assay (rIFA) [28]. This was the procedure adopted for
swine, sheep, and goat sera. This ELISA relied on bovine products in the form of fetal calf serum in
cell culture and milk powder for blocking and dilution of sera, and as such, cattle sera were tested
directly with the recombinant immunofluorescence assay that had been optimized with less bovine
products in the testing process to minimize background signals. Few donkey samples were obtained,
and these were also tested directly with the recombinant immunofluorescence assay. A selection of
coronavirus-characterized serum samples was used for assay optimization and the study samples for
evaluation. All serum samples were heat inactivated at 56 ◦C for 30 min before testing.
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2.5. Development of Whole Virus ELISA

2.5.1. HCoV-NL63 Virus Culture for ELISA Antigen

High-titer virus stocks of HCoV-NL63 were produced by growing the wild-type virus (kindly
provided by Lina Gottula from the lab of Prof. Christian Drosten) on Rhesus monkey kidney epithelial
cells (LLC-MK2). This was done by firstly growing the cells to about 80% confluence in 162 cm2 cell
culture flasks. A 1:17 dilution (v/v) of high-titer virus stock in 10-mL serum-free medium (Gibco™,
Thermo Fisher, Waltham, MA, USA) was prepared and used to infect the cells for 1 h at 37 ◦C. Fresh
Dulbecco’s Modified Eagle Medium (Gibco™, Thermo Fisher, US) supplemented with 10% Fetal calf
serum (FCS) was added after infection. The flasks were incubated at 37 ◦C in 5% CO2 and harvested
on day seven.

2.5.2. Virus Concentration by Ultracentrifugation

High-titer virus stocks were produced by ultracentrifugation using a 20% sucrose cushion.
Centrifugation was done on an SW 32 Ti rotor (Beckman Coulter, Brea, CA, USA) at 32,000 rpm
for 4 h in vacuum and at 4 ◦C. The virus pellet was resuspended in 1 mL 1× phosphate buffered saline
(PBS) and kept at 4 ◦C for 24 h to enable the pellet dissolve fully.

2.5.3. Virus Inactivation

The ultracentrifuge-purified virus was inactivated in a 6-well tissue culture plate with 0.1%
beta-Propiolactone (ACROS OrganicsTM, Thermo Fisher, US). This was done overnight at 4 ◦C and
further incubated at 37 ◦C in a cell culture incubator to hydrolyze the beta-Propiolactone. The virus
was then grown on LLC-MK2 cells and checked by quantitative real-time PCR for virus growth.

2.5.4. Viral Protein Quantification

The amount of protein in the virus stock was quantified using the Bradford assay as previously
described [29]. Briefly, the viral protein and a two-fold serial dilution of a protein standard (bovine
serum albumin, Carl Roth, Karlsruhe, Germany) in Sodium carbonate (NaCO3) buffer were mixed with
Bradford solution (Coomassie PlusTM, Thermo Fischer, US) and incubated at room temperature for
10 min. Protein quantity was subsequently measured on a spectrophotometer (Eppendorf, Hamburg,
Germany) at 595 nm.

2.5.5. Western Blot Analysis

For Western blot analysis, 21 µL of the ultracentrifuge purified viral protein was treated with 7 µL
of NuPAGE® Laemmli sample buffer (4×) (Thermo Fisher, US) and heated on a heating block at 99 ◦C
for 5 min with rocking at 400 revolutions per minute. This was then used for sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) along with a recombinant HCoV-NL63 virus derived
from transfected LLC-MK2 whole cell lysate. The separated proteins were then electroblotted onto a
polyvinylidene difluoride (PVDF) membrane of 0.2 µm pore size (Thermo Fisher, US) and blocked
with 5% milk powder dissolved in 0.1% PBS-Tween® 20 (PBS-T). Following incubation with rabbit
anti-Nucleocapsid and rabbit anti-Membrane primary antibodies (kindly provided by Lia van der Hoek,
Department of Medical Microbiology, University of Amsterdam), the membrane was washed with
PBS-T and incubated with horseradish peroxidase (HRP)-conjugated goat anti-rabbit immunoglobulin
G (Cell Signaling Technology, Danvers, MA, USA) for 1 h at room temperature. The membrane
was subsequently analyzed with a chemiluminescent substrate, SuperSignal West Femto Maximum
Sensitivity Substrate kit (Thermo Fisher, US) according to the manufacturer’s instructions.
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2.5.6. Optimization of ELISA Protocol

Conditions for sample testing were determined by testing several combinations of conditions
using the protocol of an in-house recombinant MERS-CoV ELISA as reference (Appendix A) and
adopting the most optimal conditions. Dilution series of antigen ranging from 12 µg/mL to
0.1875 µg/mL and conjugate ranging from 1:500 to 1:4000 were tested to determine the optimal
coating concentration and optimal conjugate dilution, respectively. The determined optimal conjugate
dilution for human testing was used as a starting concentration for determination of optimal conjugate
dilution for livestock testing. Coronavirus-characterized sera previously tested for HCoV-NL63 by a
recombinant immunofluorescence assay were used as positive and negative test sera and were tested
in replicates at a starting dilution of 1:100 then compared to 1:200 for assay optimization. These sera
were also in combination either positive or negative for HCoV-229E and HCoV-OC43 (Table 2) and
were used to assess potential cross reactivity with other coronaviruses. These serum samples were
obtained from the lab of Prof. Christian Drosten. Different substrate exposure times were also tested to
determine the most optimal duration.

Table 2. Profile of Coronavirus-characterized sera.

Serum ID Origin
rIFA Testing

HCoV-NL63 HCoV-229E HCoV-OC43

Serum 1 Germany + + +
Serum 2 China − − +
Serum 3 Germany − + +
Serum 4 Germany − + +

HCoV: Human coronavirus; ID: Identification; rIFA: Recombinant immunofluorescence assay; +: Positive;−: Negative.

2.5.7. Final ELISA Testing Procedure

In brief, viral protein was coated into 96-well Nunc MicroWellTM plates (Thermo Fisher, US) by
diluting the stock to 0.75 µg/mL in NaCO3 buffer (0.1 M, PH 9.6) and coating with 50 µL per well with
overnight incubation at 4 ◦C. The plates were washed 5 times with 0.1% PBS-T then blocked with 5%
milk powder (Carl Roth, Germany) in PBS-T for one hour at room temperature and the wash repeated.
Serum to be tested were diluted 1:200 in 1% milk powder in PBS-T. After one-hour incubation at room
temperature, plates were washed 5 times with PBS-T and goat anti-human antibody labelled with
Horseradish peroxidase enzyme (Dianova GmbH, Hamburg, Germany) at a dilution of 1:2000 was
added. For livestock testing, HRP-coupled donkey anti-sheep, goat anti-swine, and donkey anti-goat
antibodies (Dianova GmbH, Hamburg, Germany) were used for sheep, swine, and goat testing,
respectively, also at a 1:2000 dilution. The conjugate was incubated at room temperature for 30 min after
which plates were washed 5 times with PBS-T and an enzyme substrate, 3,3′,5,5′-Tetramethylbenzidine
(TMB) (Mikrogen Diagnostik, Neuried, Germany) was then added. This was kept in the dark for 15 min
and stopped with 2 Molar sulphuric acid (H2SO4) and the absorbances read at 450 nm and 630 nm on
a Biotek synergy 2 (BioTek Instruments Inc., Winooski, VT, USA) multi-detection plate reader.
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2.6. Recombinant Spike Immunofluorescence Testing

Screening by recombinant immunofluorescence assay was conducted as previously described [30].
Briefly, Vero B4 cells were transfected with pCG1 eukaryotic expression vectors bearing the complete
HCoV-NL63 spike sequence. Transfected cells were incubated overnight after which cells were
harvested and spotted onto multi-test slides (12 spots, 5 mm diameter, Dunn Labortechnik GmbH,
Asbach, Germany), fixed with ice-cold acetone/methanol and stored dry at 4 ◦C until use. Serum
samples were tested at a 1:40 dilution for 1 h at 37 ◦C, which was optimal for reducing nonspecific
reactions and maintaining sensitivity. Secondary detection was performed with Alexa Fluor
488-conjugated goat anti-human antibody (Dianova GmbH, Hamburg, Germany) for human testing.
For livestock testing, Alexa Fluor 488-conjugted goat anti-bovine, goat anti-horse, goat anti-swine,
donkey anti-sheep, and donkey anti-goat antibodies (Dianova GmbH, Hamburg, Germany) were
used to test cattle, donkey, swine, sheep, and goat sera, respectively. These secondary antibodies
have previously been confirmed to work on the tested species [28,31]. Each sample was spotted onto
transfected and non-transfected cells to help distinguish autofluorescence from fluorescence due to
immune reactions.

2.7. Ethical Issues

Ethical approval for the study was obtained from the committee on human research, publications
and ethics of the school of medical sciences, Kwame Nkrumah University of Science and Technology
(Protocol number CHRPE49/09). Permission for livestock sampling was also obtained from the wildlife
division of the Ghana Forestry Commission (Approval Number: AO4957).

2.8. Data Analysis

Descriptive graphs were generated using Microsoft Excel and IBM Statistical Package for Social
Sciences (SPSS) version 20. After subtraction of plate background, differences in rIFA-categorized
mean optical densities were assessed by one-way analysis of variance (ANOVA) and percentiles were
used to determine the most ELISA reactive samples for both human and livestock samples using
SPSS. A Mann–Whitney U test was used to compare the mean ranks of optical density values of
HCoV-NL63-rIFA-characterized sera for assay optimization. The number of samples with optical
density values above the 75th, 80th, 85th, 90th, and 95th percentile optical density values constituted
the top 25, 20, 15, 10, and 5 percent most reactive samples respectively. Map data was plotted with
Tableau public 10.5 and a livestock distribution beeswarm plot was generated using R statistical
package version 3.4.3.

3. Results

3.1. Distribution of Samples Collected

A total of 248 people was sampled from five different regions of Ghana. The majority of people
sampled were in the Ashanti region (n = 83, 33.5%) and the fewest in the Brong Ahafo region
(n = 16, 6.5%). A total of 1321 serum samples from 397 pigs, 422 sheep, 320 goats, 163 cattle, and
19 donkeys was collected in the study. The majority of swine samples (n = 182, 45.8%) and sheep
samples (n = 159, 37.7%) was collected from the Ashanti region. The Northern region was the source
of majority of the goat samples (n = 117, 36.6%) as well as all 19 donkey samples and majority of the
cattle samples were obtained from the Volta region (n = 76, 46.6%) (Figure 1).
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3.2. Analysis of Virus Protein

Western Blot Analysis

Western blot analysis was performed to confirm the identity and immunogenicity of two major
structural proteins of HCoV-NL63 in the concentrated virus antigen. The viral antigen obtained after
ultracentrifugation and inactivation showed the nucleocapsid protein (N) around the 40 kilodalton
mark and membrane (M) protein around the 25 kilodalton mark (Figure 2). The band sizes for the
nucleocapsid protein for the transfected LLC-MK2 whole cell lysate-derived control was at a similar
position (~40 kilodaltons) but was more prominent than that of the test virus protein. The membrane
protein of the control was, however, less prominent than that of the test virus protein (Figure 2)
indicating a likelihood of higher composition of whole virion particles in the concentrated virus
protein antigen. The approximate molecular masses of the two structural proteins and their detection
by the respective primary antibodies confirmed their identity and immunogenicity.
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Figure 2. Identification of HCoV-NL63 Nucleocapsid (N) and Membrane (M) proteins. Western blot
analysis of the purified HCoV-NL63 antigen (lane 1) compared to HCoV-NL63 protein recovered
from transfected LLC-MK2 whole cell lysate (lane 2). Lane M shows the molecular weight standard
in Kilodaltons.

3.3. Determination of ELISA Testing Conditions

A variable range of plate coating concentrations were assessed to determine saturation point in
order to inform selection of an appropriate coating concentration. There was a two-fold reduction in
average optical density (OD) measured using the HCoV-NL63-rIFA-positive test serum on coating
concentration range 0.75 µg/mL to 0.1875 µg/mL (Figure 3A) depicting the range of consistent
detectable variation. There was no consistent variation in average OD of the HCoV-NL63-rIFA-positive
serum sample tested with coating concentrations exceeding 0.75 µg/mL (Figure 3A), and as such, this
value was chosen as the coating concentration for the assay.

An increase in the mean OD of a combined 5- and 15-min incubation time for serum 1 from 1:4000
to 1:500 dilution was observed. There was no increase in mean OD from 1:4000 to 1:2000, but from
1:2000 to 1:500 dilution for serum 4 (Figure 3B). The 1:2000 dilution was selected for testing human
samples due to the low reactivity of the negative serum 4 despite the increase in reactivity of the
positive serum 1.

The 15-min substrate incubation time produced higher reactivity for serum 1 with a median
(interquartile range) OD of 0.338 (0.236 to 0.344) compared to the 5-min incubation time with 0.187
(0.163 to 0.191). The reactivity was similarly higher for the 15-min incubation time with a median
(interquartile range) OD of 0.06 (0.025 to 0.099) than the 5-min incubation time with 0.022 (0.016 to
0.024) for serum 4 (Figure 4). The 15-min incubation time was selected for higher sensitivity.

The 1:2000 conjugate dilution was also found to be optimal for livestock sera testing in terms of
reactivity to noise comparison with a higher difference in mean OD between livestock sera and wells
tested with conjugate only compared to other dilutions (Figure 5A).

A 1:200 serum dilution was chosen for serum testing as this gave a better discrimination between
the positive and negative serum samples compared to a 1:100 dilution (Figure 5B). The further dilution
of the serum provided better detection of the target protein in the positive serum and lower reactivity
in the negative serum as observed in Figure 5B.
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Figure 3. Mean optical densities of HCoV-NL63-rIFA-positive serum with coating concentrations
ranging from 12 µg/mL to 0.1875 µg/mL (Panel (A)). Mean optical densities for the combined 5- and
15-min substrate incubation times for HCoV-NL63 rIFA-positive (Serum 1) and negative (Serum 4) sera
with different conjugate dilutions (Panel (B)). Error bars depict 95% confidence intervals.
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3.4. Potential Cross Reactivity with Other Coronaviruses

The ability of the assay to specifically detect and significantly differentiate HCoV-NL63 in samples
co-infected with other coronaviruses was assessed. Likelihood of false detections in samples that
were HCoV-NL63 negative but positive for other coronaviruses was also assessed. Different degrees
of cross-reactivity with HCoV-229E and HCoV-OC43 were observed with a higher level seen with
HCoV-229E than with HCoV-OC43 (Figure 6). There was a statistically significant difference (U = 27.50,
p < 0.001) as determined by the Mann–Whitney U test in mean ranks of optical density between serum 1
(mean OD = 0.33) which was positive by rIFA for both HCoV-NL63 and HCoV-229E and serum 3 (mean
OD = 0.27) which was negative for HCoV-NL63 but positive for HCoV-229E (Figure 6A). The difference
in optical density values of serum 1 which was positive for HCoV-NL63 and HCoV-OC43 and serum 2
(mean OD = 0.19) which was negative for HCoV-NL63 but positive for HCoV-OC43 (Figure 6B) was
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also statistically significant (U = 55.50, p < 0.001). This indicates the assay’s capability of distinguishing
HCoV-NL63 from these coronaviruses.Viruses 2019, 11, x FOR PEER REVIEW  10 of 19 
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3.5. Evaluation of ELISA with HCoV-NL63-rIFA Test of Human Samples

After testing the 248 human samples using the immunofluorescence assay, 217 samples were
determined to be unequivocal positives and negatives by two independent assessors. These were
samples that did not produce significant background noise and autofluorescence to hinder result
determination and were used in analysis. Out of this number, 183 (84.3%) were positive and 34 (15.7%)
were negative. Optical density values for the human sample testing ranged from 0.27 to 0.73 for the
HCoV-NL63-rIFA-positive samples and 0.30 to 0.63 for HCoV-NL63-rIFA-negative samples (Figure 7).
A comparison of the mean OD values of rIFA positive (0.47 ± 0.10) and negative (0.46 ± 0.09) groups
showed no statistically significant difference between the groups as determined by one-way ANOVA
(F (1, 215) = 0.437, p = 0.509). Assay validation parameters like sensitivity and specificity could
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not be reliably estimated as a result of the lack of an available gold standard assay for HCoV-NL63
serology. A gradual increase in the ratio of HCoV-NL63-rIFA positives to negatives with an increase
in cut point OD by percentiles was observed. All the top 5% most ELISA reactive samples were
HCoV-NL63-rIFA-positive as compared to the top 25% most reactive samples of which only 84% were
HCoV-NL63-rIFA-positive (Table 3) indicating a higher probability of the most ELISA reactive samples
testing positive by immunofluorescence testing.
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Table 3. Proportions of rIFA positives among the most ELISA reactive human samples by percentile
cut point.

Cut Point
Percentile

Cut Point Optical
Density

Number of Samples with
OD above Cut Point

rIFA Result

Positive n (%) Negative n (%)

75th 0.54 50 42 (84) 8 (16)
80th 0.55 38 33 (86.8) 5 (13.3)
85th 0.58 26 23 (88.5) 3 (11.5)
90th 0.61 18 16 (88.9) 2 (11.1)
95th 0.64 8 8 (100) 0 (0)

OD: Optical density; rIFA: Recombinant immunofluorescence assay; n: Number; %: Percentage.

3.6. HCoV-NL63 in Livestock Samples

In order to determine the livestock ELISA reactivity patterns and the most reactive sheep, goat,
and swine samples, these livestock species were subjected to screening with the developed ELISA.
The optical density values for the livestock testing ranged from 0.0 to 0.32 for sheep, 0.02 to 0.68 for
goats, and 0.04 to 0.74 for swine (Figure 8). None of the most reactive swine, sheep, and goat sera
as determined by the 95th percentile OD cut point tested positive by rIFA. Donkeys (n = 19) and
cattle (n = 163) that were tested for HCoV-NL63 by rIFA were all negative as well (Table 4). Given
the relatively large number of samples tested across species and the lack of positivity, these livestock
species sampled in Ghana are not likely to be intermediate hosts for HCoV-NL63.
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Table 4. Confirmation of most reactive livestock samples with HCoV-NL63-rIFA.

Livestock Number 95th Percentile
Cut Point

Number of Samples with
OD above Cut Point rIFA Result

Goat 320 0.44 16 All negative
Swine 397 0.53 19 All negative
Sheep 422 0.15 21 All negative

Donkey 19 - - All negative
Cattle 169 - - All negative

OD: Optical density; rIFA: Recombinant immunofluorescence assay.

4. Discussion

For the purpose of sero-surveillance in an effort to detect antibodies from Ghanaian cattle, sheep,
goats, swine, and donkeys against HCoV-NL63-related viruses, an indirect, whole-virus ELISA was
developed in this study as part of a two-stage testing algorithm. This was done in order to assess
the possibility of any of the previously mentioned species being an intermediate host for this virus.
The recombinant immunofluorescence assay described in this study is a robust, sensitive, and specific
assay [32]. The assay is, however, time consuming and requires an experienced person to interpret
results, and as such, is not suitable for use on a large scale. Purification of HCoV-NL63 antigen
through the sucrose medium is a method that has previously been used for HCoV-NL63 [24] and
other coronaviruses [33,34] and has been found to be an effective method of antigen purification and
concentration as was seen in this study as well. Although the sucrose cushion is not as effective as
the density gradient for the separation of complete from incompletely assembled virion particles [35],
the sucrose cushion used in this study appeared to be sufficiently effective for this purpose.

The signal comparison for the positive and negative test samples was adequate for discrimination
despite the negative sample being positive for HCoV-229E; which belongs to the same serologic group
as HCoV-NL63, and for HCoV-OC43 which belongs to the other group of the two serologic groups
of human coronaviruses. Lack of cross-reactivity between HCoV-NL63 and the more closely related
HCoV-229E as well as with HCoV-OC43 has been reported by other studies that employed recombinant
ELISAs targeting the nucleocapsid protein [12,36]. Despite the fact discrimination was possible in the
present study using the whole virus antigen, some degree of cross-reactivity was also observed.
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Apart from cross-reactivity with the other coronaviruses, antibodies may cross-react with other
unrelated proteins in the serum. The sera used in optimizing the ELISA and the tested samples had
different demographic characteristics and as such the level of reactivity may differ in the tested samples
compared to the samples used for optimization. This is however useful given the assay was to be
eventually used for testing sera from different species to the one used for optimization and evaluation.
The highly reactive samples, however, are more likely to be positive for the target of interest as was
observed in this study and other studies as well [32,37].

The number of known positive and negative samples used in evaluation affects the likely
diagnostic sensitivity and specificity of a candidate assay [38]. In the present study, fewer negative
than positive samples were obtained for the evaluation of the assay as a result of the sample being
taken from a cross-section of the population where the eventual test subjects were also obtained albeit
of a different species. The fewer negatives obtained in the cross-section and used in the evaluation is
likely to result in a less accurate assessment of diagnostic specificity. The purpose of the present assay
did not, however, require a highly accurate measure of specificity, but interest was geared towards
sensitivity. These parameters were, however, not estimated due to the lack of a gold standard assay.

Being the main immunogenic structural proteins of coronaviruses, the nucleocapsid, spike,
and membrane proteins are important in assay development [39–41]. The nucleocapsid protein is
produced abundantly during infection and is employed in assay development because it is a potent
immunogen [40,42]. One study on SARS-CoV showed the nucleocapsid induced the production
of antibody levels comparable to the whole virus and slightly higher than the spike protein [43].
The reactivity pattern observed in the present study with the full virus antigen will comprise a
collective effect of specific and non-specific interactions of serum antibodies with the three main
immunogenic structural proteins and other protein moieties. Although the nucleocapsid protein is
the most abundantly produced during infection with HCoV-NL63 [44,45], the membrane protein is
more abundant in the complete virion particle than nucleocapsid protein [46,47]. This was seen in the
Western blot analysis after ultracentrifugation with the sucrose cushion which evidently concentrated
more complete virion particles. The immune responses observed are likely to be mainly due to the
membrane protein because of its abundance in the whole virus antigen.

For simple in-house preparations, the indirect ELISA is a good choice and also provides high
sensitivity and flexibility [48,49]. The limitations with this process include possibility of high
background signal due to the binding of all proteins to the wells of ELISA plates and non-specific
binding of the secondary antibody [50]. The competitive ELISA technique has an added advantage of
no requirement for sample clean-up and a high sensitivity to differences in composition of complex
mixtures of different antigens even in the presence of relatively small quantities of the specific detection
antibody [51,52]. Whole virus antigen preparations like the one used in this study have generally been
found to be more sensitive than recombinant antigen targets [53,54] but tends to be less specific as a
result of higher likelihood of non-specific binding of co-purified cellular proteins and non-target viral
proteins [55,56].

Although several bat species have been found to harbor several alpha and betacoronaviruses
believed to be the ancestors of endemic human coronaviruses including HCoV-NL63 [13,23], bats may
not have been a direct source of virus transmission to humans given that, CoVs such as SARS-CoV and
MERS-CoV both make use of terrestrial mammals which are more likely to have contact with humans
instead of bats as transmission hosts. Again, HCoV-229E is more closely related to their relatives
in camels as compared to those in bats, indicating a probability of camels being intermediate hosts
between bats and humans [14,57]. Human coronavirus NL63 uses the angiotensin-converting enzyme
(ACE) 2 receptor for infection of target cells similar to SARS-CoV [20] and has been found to be able to
replicate in swine cells in vitro [58]. No antibodies to HCoV-NL63 were found in any of the pigs tested
in the present study as evidence of the fact that the ability to replicate in swine cells does not imply
capability to infect an actual animal since several other barriers need to be surmounted for this to
happen. Based on the results of the present study it may be concluded that cattle, sheep, goats, donkeys,
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and swine may not be intermediate hosts for HCoV-NL63. However, there have not been any reports
of HCoV-NL63-related viruses circulating in Ghanaian bats, and as such, a spillover opportunity may
not be present, and hence no likely infection. Surveillance of local livestock populations can also be
performed for antibodies in areas where such HCoV-NL63-related viruses have been detected like in
Kenya to confirm this [57].

Coronaviruses have been shown to have the potential to mutate and genetically recombine when
two viruses infect the same cell [59], as seen for instance with recombination events between canine
coronavirus and transmissible gastroenteritis virus and canine coronavirus and feline coronaviruses
that have brought about new coronaviruses [60,61]. These new viruses may have a different host range
particularly if changes occur in the spike region or different pathology in the same host and as such
knowing the possible intermediate hosts of coronaviruses that infect humans is important as these
provide information on the evolution of the virus as well as possible mixing vessels for these viruses.
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Appendix A

MERS ELISA-Testing protocol

- Coating: Coat Antigen on Nunc MicroWell™ MaxiSorp™ Plates (Sigma–Aldrich, M9410 Sigma)
diluted in NaCO3 buffer (0.1 M, PH 9.6) 50 µL/well O/N at 4 ◦C

- Antigen: 0.1% β-propiolactone-inactivated MERS CoV (3 µg/mL in NaCO3 buffer)
- Washing: 5× with 100 µL/well PBS/0.1% Tween [PBS/T]
- Blocking: 100 µL/well PBS/T-5% milk powder→ 1 h
- Washing: 5× with 100 µl/well PBS/0.1% Tween [PBS/T]
- Sera: Test dilutions at 100 µL/well: 1:50, 1:200, 1:800 (Screening human sera: 1:400 should be fine)

for 1 h.

◦ Dilution in PBS/T-1% milk powder
◦ Negative controls: ONLY PBS/T-1% milk
◦ Positive control: 1:800

- Washing: 5× with 100 µL/well PBS/0.1% Tween [PBS/T]
- Conjugate: anti-human IgG HRP labeled 1:4000 in PBS/T-1% milk for a maximum of 1 h

(100 µL/well)
- Washing: 5× with 100 µL/well PBS/0.1% Tween [PBS/T]
- Substrate: 100 µL/well (TMB, Microgen). Keep out of light. The reaction is stopped with 2 M

H2SO4 (100 µL/well).

◦ The time is dependent on the sera. Positive human sera should be detectable within
3–5 min. In case there is no signal after 30 min, you can be sure the test is negative.

- Read: ELISA-Reader protocol “Screening ELISA”:

◦ 450 nm yellow color
◦ 630 nm background plates
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- Calculation: The 630 nm values (plate background) were subtracted from the 450 nm (sample) values

◦ Negative control: secondary antibody only, or better if possible, a negative serum
(Should also be negative for other Coronaviruses like HCoV-OC43)

◦ Subtract negative control mean value from the other values
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