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DNA and other biomolecules are subjected to damaging chemical reactions during normal physiological processes and in states
of pathophysiology caused by endogenous and exogenous mechanisms. In DNA, this damage affects both the nucleobases and
2-deoxyribose, with a host of damage products that reflect the local chemical pathology such as oxidative stress and inflammation.
These damaged molecules represent a potential source of biomarkers for defining mechanisms of pathology, quantifying the risk
of human disease and studying interindividual variations in cellular repair pathways. Toward the goal of developing biomarkers,
significant effort has been made to detect and quantify damage biomolecules in clinically accessible compartments such as blood
and and urine. However, there has been little effort to define the biotransformational fate of damaged biomolecules as they move
from the site of formation to excretion in clinically accessible compartments. This paper highlights examples of this important
problem with DNA damage products.

1. Introduction

Endogenous processes of oxidative stress and inflammation
cause DNA damage that is mechanistically linked to the
pathophysiology of cancer and other human diseases [1]. The
DNA damage is comprised of dozens of mutagenic and cyto-
toxic products [2–4] reflecting the full spectrum of chemical
mechanisms, including oxidation, nitrosation, halogenation,
and alkylation, as described in numerous published reviews
[5–15]. There has been significant interest in developing
DNA damage products as biomarkers of disease risk given
the strong association between DNA damage and disease
pathology [12, 14, 16–22]. However, there has been little
consideration given to the biological fate of DNA damage
products, such as release from DNA as a result of instability,
repair, and reaction with local nucleophiles, and the effect of
this fate on the steady-state level of DNA lesions in cells and
tissues. Further, the use of tissue-derived DNA for biomarker
development poses the problem of accessibility and limits
clinical studies, so researchers are exploring the presence of

DNA damage products in other sampling compartments,
such as urine (e.g., [16, 23]). These efforts have presumed
that DNA repair or cell death leads to dissemination of
DNA damage products in blood, with subsequent excretion
of specific molecular forms predicted to arise from the
various DNA repair or other enzymatic processes. However,
one of the major drawbacks to the use of blood or urine
as a sampling compartment for development of DNA
damage products as biomarkers is the lack of mechanistic
information about the fates of the damage products in terms
of metabolism and distribution. While information about
the metabolic fate and pharmacokinetics of drugs based on
nucleobases has been well defined (e.g., [24, 25]), studies of
the metabolism of DNA damage products have been limited
to a few products such as adducts of ethylene dibromide [26],
the pyrimidopurinone adduct of dG, M1dG [27–29], and the
base propenal and butenedialdehyde species arising from 2-
deoxyribose oxidation in DNA [30–32].

The mechanisms governing the fate of endogenous DNA
damage products can be viewed from two perspectives,
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the first being local reactions that lead to the release of
the damage product, such as chemical instability or DNA
repair, or the reaction of electrophilic damage products
with local nucleophiles. The second perspective is that of
drug and xenobiotic metabolism and distribution. In both
cases, the release of the damage products from DNA results
in their diffusion or transport into extracellular space for
subsequent distribution in the blood circulation to the liver
and excretory organs. Chemical stability governs the extent
and form of distribution of the damage product, with elec-
trophilic species reacting with local nucleophiles and more
stable products circulating throughout the body. The damage
products may be recognized as substrates for the variety
of local or distant metabolic enzymes that cause oxidation,
reduction, hydrolysis, and conjugation (e.g., glucuronic acid,
sulphate, or glutathione), with metabolites excreted in either
urine or bile [33, 34]. We can also view DNA damage
products from the perspective of metabolic toxification and
detoxification. Metabolic reactions are well known to either
reduce the activity of reactive and toxic xenobiotics or to
convert unreactive molecules to reactive intermediates that
are genotoxic, hepatotoxic, or nephrotoxic [33, 34]. This
paradigm applies to DNA damage products that range from
relatively stable (e.g., nucleobase deamination products) to
highly electrophilic (e.g., base propenals from 2-deoxyribose
oxidation in DNA), with metabolic reactions occurring in
cells in which the DNA damage occurs or in the liver or other
metabolic tissues.

This review addresses the current state of understanding
of the metabolic and biological fates of DNA damage
products, with an eye on the implications of these fates for
mechanisms of toxicity and for development of biomarkers
of oxidative stress and inflammation.

2. The Spectrum of Nucleic Acid
Damage Products

As a prelude to understanding the biological fate of damaged
nucleic acids, we must first consider the spectrum of damage
products. Nucleobases in DNA, RNA, and the nucleotide
pool are subject to damage by a variety of chemical mech-
anisms related to normal and pathological processes. The
superoxide (O2

•−) and hydrogen peroxide (H2O2) generated
during aerobic respiration participate in Fenton chemistry
to produce hydroxyl radical (HO•), while the activated
macrophages and neutrophils of chronic inflammation gen-
erate a host of chemically reactive species, including the
oxidants peroxynitrite (ONOO−) and nitrosoperoxycarbon-
ate (ONOOCO2

−), hypohalous acids (HOCl, HOBr), and
nitrosating agents (N2O3) [8]. Damage to nucleic acids and
nucleotides can occur by direct reaction with these agents
or indirectly by reaction with electrophiles generated during
oxidation of lipids, carbohydrates, and proteins. Both the
nucleobase and sugar moieties are susceptible to attack, with
examples of nucleobase damage products shown in Figure 1
and 2-deoxyribose oxidation products shown in Figure 2.
The biological and metabolic fates of nucleobase damage
products will be addressed first and that of 2-deoxyribose
oxidation products later in this chapter.

3. The Biological and Metabolic Fates of
Damaged Nucleobases

The biological fates of damaged nucleotides and nucleic
acids can be viewed from the perspective of either the site
of initial damage or from the final sampling compartment
used for analysis of the damage products. Among the
issues that arise are (1) the reactivity of a damage product
and the chemical form of the lesion that is released from
the site of generation; (2) the mechanism by which the
released damage product reaches the systemic circulation;
(3) the potential for the damage product to be chemically
modified between the steps of formation and excretion; (4)
the mechanism of excretion; (5) the potential for further
chemical modification in the excretory compartment. The
first of these issues, that of reactivity, is best illustrated by
the susceptibility of 8-oxoguanine to further oxidation, as
will be discussed shortly, and the deglycosylation of many
damaged purines, such as 8-nitroguanine [8], and of purines
subjected to N7-nitrosation or alkylation [8], both of which
have been addressed in detail in the literature. Here we
will focus on the metabolic fates of nucleobase damage
products.

3.1. 8-Oxoguanine. The first consideration of the metabolic
fate of a nucleobase damage product is the well-studied 7,8-
dihydro-8-oxoguanine (8-oxo-G; Figure 1) [35]. Perhaps the
most comprehensive consideration of the biological fate of
8-oxo-G in terms of sources of 8-oxo-G-containing species
excreted in the urine is the recent review by Cooke et al.
[36], with a very recent review of the utility of 8-oxo-dG
as a urinary biomarker [23]. Among the nucleobases in
DNA, RNA, and the nucleotide pool, guanine is the most
readily oxidized due to its favorable redox potential [35, 37–
39] with the spectrum of oxidation products depending
on the nature of the oxidant [8, 35] (Figure 1). 8-Oxo-
G is one of the major products common to oxidation of
guanine by most oxidizing agents, and it has thus been
touted as a biomarker of oxidative stress (e.g., [23, 36,
40, 41]. While oxidation of G in DNA is one source of
8-oxo-G, another involves polymerase incorporation of 8-
oxo-dGTP formed by oxidation of dGTP in the nucleotide
pool [42]. Prokaryotes and eukaryotes are equipped with
oxidized purine nucleotide di- and triphosphatases (e.g., E.
coli MutT, 8-oxo-dGTP triphosphatase) to remove damaged
nucleotides from the pool [43].

There are four fates of 8-oxoG in cellular DNA and
nucleotides: further oxidation to more stable products,
which will be discussed shortly, removal from DNA by
repair mechanisms, removal from the nucleotide pool by
nucleotide di- and triphosphatases, and eventual release
from DNA following cell death. Like many nucleobase
oxidation products, 8-oxo-G in DNA is removed by the base
excision repair (BER) pathway [44–47], with the ultimate
release of free 8-oxo-G nucleobase by N-glycosylase activity.
On the other hand, dephosphorylation of 8-oxo-dGTP and –
dGDP ultimately releases 8-oxo-dGMP and 8-oxodG, which
are also the likely forms released from DNA following cell
death.
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Figure 1: Nucleobase damage products.

So, we are faced with the choice of quantifying either
8-oxo-G, 8-oxo-dG, or 8-oxo-dGMP in sampling compart-
ments such as blood and urine. The most abundant of
these species appears to be 8-oxo-dG, which is present in
human urine at concentrations in the micromolar range.
2-Deoxynucleosides are chromatographically well behaved,
and this concentration is amenable to precise and accurate
quantification by liquid chromatography-coupled with mass
spectrometric methods. While the excretion of 8-oxo-dG
may correlate well with conditions of oxidative stress and
inflammation [23], the source of this 8-oxodG has yet to be
established.

Another fate of 8-oxoG in DNA, RNA, and the nucleotide
pool, as well as the fate of 8-oxo-G-containing species
released from cells, is further oxidation to form a variety

of stable end products, as shown in Figure 1. 8-Oxo-G is
significantly more susceptible to further oxidation than G
itself (0.74 V versus 1.29 V relative to NHE [39]) and is
thus susceptible to reaction with oxidants less potent than
hydroxyl radical (2 V versus NHE), such as NO2

• (1.04 V
versus NHE [48]) and alkyl hydroperoxides (∼0.9 V versus
NHE [49]). The oxidation of 8-oxo-dG results in the forma-
tion of several new products (Figure 1), most of which are
more stable than 8-oxo-dG itself and thus potentially better
candidates for biomarkers of inflammation and oxidative
stress. One must again consider the roles of DNA repair,
nucleotide pool cleaning activities, and excretory pathways
in finalizing the fate of 8-oxo-G oxidation products.

Finally, recent studies suggest two other confounding
factors in the biological fate of 8-oxo-G. The first relates to
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alternate sources. A study by Tannenbaum and coworkers
reveals that 8-oxo-G can arise by further oxidation of species
such as 8-nitro-G, which arises from nitrative oxidation
of G by ONOO− and ONOOCO2

− [50]. This and other
analogous chemistries further confound the assignment of
the source of 8-oxo-G-containing species as mechanistic
biomarkers. The second confounder involves an alternative
fate for 8-oxo-G: deamination to uric acid. Hall et al. have
described 8-oxo-G deaminase activity in bacteria [51], which
raises the possibility of similar activities in human cells.
While we have not observed adventitious deamination of G
in our studies of DNA deamination in vitro and in vivo [52–
55], a G deaminase activity cannot be ruled out.

3.2. Etheno Adducts. Another major group of DNA lesions
with a well-established association with oxidative stress and
inflammation involves adducts formed in the reaction of
DNA with electrophiles generated by lipid peroxidation [56–
58]. This group includes the substituted and unsubstituted
etheno nucleobase adducts [58–63] (Figure 1). Extensive
study of the urinary excretion of unsubstituted etheno
adducts has revealed a strong correlation of excretion with
host of human diseases, pathologies, and environmental
exposures related to oxidative stress (e.g., see recent studies
in [16–21, 64]). Nonetheless, there have been few if any
studies aimed at defining the source of the etheno 2-
deoxynucleosides measured in these studies.

By analogy to 8-oxo-G, the fate of etheno adducts
can be viewed from the perspectives of DNA repair and
metabolism. Etheno adducts in DNA are presumed to be
repaired by the BER pathway [65], with the release of the
free-base adducts. However, biomarker studies again focus
on the 2-deoxynucleoside form of the adducts [16–21, 64],
which must arise from pathways other than DNA repair.
The current focus on quantifying etheno adducts as 2-
deoxynucleosides has recently been called into question by
the Marnett group’s pioneering studies of the metabolism
of endogenous DNA adducts [27–29, 66]. With regard to
etheno adducts, they incubated 2-deoxynucleoside forms of
substituted and unsubstituted etheno adducts in rat liver
cytosol and observed an initial deglycosylation of G-derived
etheno adducts followed by oxidation of 1, N2-ε-G to 2-
oxo-1, N2-ε-G and of the corresponding substituted adduct,
heptanone-1, N2-ε-G, to 2-oxoheptanone-1, N2-ε-G (Fig-
ure 3) [66]. This raises the possibility that urinary biomarker
studies may be underestimating the true level of etheno
adducts as a result of loss of the 2-deoxynucleoside forms.
Further, the oxidized free-base forms may also be useful as
biomarkers if they are excreted at high enough levels.

3.3. M1dG. This mutagenic pyrimidopurinone adduct of dG
(Figure 1) forms in reactions of DNA with the lipid peroxi-
dation product, malondialdehyde, and with base propenals
derived from 4′-oxidation of 2-deoxyribose in DNA [56,
67–72]. As an endogenous DNA adduct, M1dG has been
detected at levels ranging from 1 to 1000 lesions per 108

nucleotides in a variety of organisms, including humans
[67, 71, 73–79]. Recent studies suggest that the major source
of M1dG in vivo is base propenals from DNA oxidation [67],
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Figure 3: Oxidation of substituted etheno adducts.

which is consistent with the higher reactivity of base prope-
nals than malondialdehyde [68, 69] and the proximity of base
propenals to dG in DNA. However, contributions from both
malondialdehyde and base propenals are likely to occur in an
oxidant-, cell-, and tissue-dependent manner [72].

In terms of the biological fate of M1dG, the adduct has
been demonstrated to be a substrate for nucleotide excision
repair (NER) [80, 81], which may explain the appearance of
M1dG in human and rodent urine [27–29, 79]. However,
M1dG was detectable in the human urine at levels of 10–
20 fmol per kg per 24 h [79], which is a significantly lower
excretion rate than other DNA lesions such as 8-oxo-dG
(400 pmol per kg per 24 h) [82]. To explore the basis for
this low rate of excretion, Marnett and coworkers undertook
metabolic and pharmacokinetic studies of M1dG in rats [27].
When intravenously administrated to rats, M1dG was rapidly
eliminated from the plasma with a half-life of 10 min [27].
In contrast to the rapid clearance from blood, M1dG was
found in the urine for more than 24 hr after dosing, which
suggested a rapid distribution to tissue followed by slower
phase of excretion. Analysis of the urine revealed a metabolite
of M1dG, 6-oxo-M1dG, likely derived from hepatic xanthine
oxidase activity [27]. Studies in rat liver extracts revealed
further oxidation of 6-oxo-M1dG on the imidazole ring to
give 2,6-dioxo-M1G (Figure 4) [28]. While most of the M1dG
was excreted unchanged in the urine and the problem of low
levels of excretion remains unsolved, these studies point to
the importance of defining the biological and metabolic fate
of damaged biomolecules in efforts to develop biomarkers of
inflammation and oxidative stress.

4. The Biological and Metabolic Fates of
2-Deoxyribose Oxidation Products

In addition to the nucleobases in DNA, the 2-deoxyribose
moiety is also subjected to oxidative damage that merits con-
sideration of biological fate and metabolism [9]. As opposed
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to the concept of simple “strand breaks,” growing evidence
points to 2-deoxyribose oxidation in DNA as a critical
determinant of the toxicity of oxidative stress [9]. Oxidation
of each of the five positions in 2-deoxyribose in DNA occurs
with an initial hydrogen atom abstraction to form a carbon-
centered radical that rapidly adds molecular oxygen to form
an unstable peroxyl radical. The resulting product spectra for
2-deoxyribose oxidation under aerobic conditions are shown
in Figure 2 [9]. Many of these oxidation products are highly
electrophilic, with α,β-unsaturated carbonyl motifs, and are
thus capable of reacting with proximate nucleophilic sites in
DNA, RNA, and proteins to form adducts [9]. This section
of the paper will focus on the biological and metabolic or,
more broadly, biotransformational fates of 2-deoxyribose
oxidation products.

4.1. DNA Adducts of 2-Deoxyribose Oxidation Products. One
fate of DNA oxidation products is reaction with local
electrophiles to form protein and nucleic acids adducts. In
this regard, oxidation of 2-deoxyribose in DNA produces a
variety of reactive electrophilic species (Figure 2) that readily
form adducts with neighboring DNA bases. Oxidation of
both the 2′- and 3′-positions of 2-deoxyribose can lead
to the formation of the 2-phosphoglycolaldehyde residue
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(Figure 2), the latter directly from the oxidation [83, 84]
and the former by an induced and indirect oxidation
mechanism involving an erythrose intermediate [85, 86].
By either mechanism, 2-phosphoglycolaldehyde undergoes
a relatively slow phosphate-phosphonate rearrangement to
generate the ubiquitous lipid and carbohydrate oxidation
product, glyoxal, that reacts with dG and DNA to form
diastereomeric 1,N2-glyoxal adducts of dG (Figure 5) [83].

At the 4′- and 5′-positions, 4′-oxidation generates base
propenals that readily react with neighboring dG to form
the pyrimidopurinone adduct, M1dG, as described earlier
[67–69]. Oxidation of the 5′-position leads to formation
of a 2-phosphoryldioxobutane residue that, possibly fol-
lowing β-elimination to form an α,β-unsaturated trans-
dioxobutene species, reacts with dC�dG>dA to form
bicyclic oxadiazabicyclo-(3.3.0)octaimine adducts (Figure 6)
[87–91].
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4.2. Protein Adducts of 2-Deoxyribose Oxidation Products.
In addition to DNA adducts, the electrophiles derived
from 2-deoxyribose oxidation react with amino acid side
chains in proteins to form a variety of adducts, some with
functional consequences. One of the earliest examples of
protein adducts from 2-deoxyribose oxidation involves the
1′-position. The 2-deoxyribonolactone abasic site resulting
from 1′-oxidation in DNA reacts with DNA repair proteins
to form stable protein-DNA cross-links [92, 93]. This
phenomenon was first demonstrated by Hashimoto et al.
with the E. coli DNA BER enzyme endonuclease III [92]. This
enzyme normally functions in base excision repair pathways
with both an initial N-glycosylase activity against oxidized
pyrimidines and a subsequent incision of the resulting
abasic site by a lyase activity [94]. Upon binding to the
2-deoxyribonolactone abasic site, however, the active site
(lysine 120), which normally forms a Schiff base with the
1′-aldehyde in the ring-opened form of the native abasic
site, performs a nucleophilic attack on the carbonyl group
of the lactone ring (Figure 7). Unlike a Schiff base, the
resulting cross-link is irreversible and complicates the DNA
repair process [92]. DeMott et al. observed similar results
in which a covalent amide bond was formed by the 1′-
carbon of the lactone and the lysine 72 in human polymerase
β [93]. Additionally, the 2-deoxyribonolactone undergoes a
rate-limiting β-elimination reaction to form a butenolide
species with a half-life of 20 h in single-stranded DNA (32–
54 h in duplex DNA), followed by a rapid δ-elimination to
release 5-methylene-2(5H)-furanone [95]. Both the inter-
mediate butenolide and the product methylenefuranone are
electrophilic species capable of reaction with nucleophilic
sites in DNA and protein, and possibly subject to metabolic
reactions such as glutathione conjugation.

Another potential source of protein adducts arises from
the variety of α,β-unsaturated carbonyl and dicarbonyl
products of 2-deoxyribose oxidation in DNA. The potential
here lies in the high concentration of nucleophilic lysine

and arginine residues in histone proteins proximate to the
sites of DNA damage and in the well-established reactivity
of α,β-unsaturated carbonyl and dicarbonyl species with
nucleophilic amino acids, which is perhaps best illustrated
by lipid peroxidation products (e.g., [96–103]. Several
recent studies have identified specific lysine and histidine
adducts of well-defined lipid peroxidation products such
as malondialdehyde [100], 4-hydroxynonenal [99], and
its oxidation product, 4-oxononenal [97] (Figure 8). The
reactions forming these adducts are highly analogous to
reactions that could occur with 2-deoxyribose oxidation
products, as illustrated in Figure 8. For example, the
unsaturated β-elimination product of the 2-deoxypentose-
4-ulose product of 4′-oxidation of deoxyribose is a chemical
analog of 4-oxononenal derived from lipid peroxidation. It
would thus be expected to react with lysines and histidines
in histone and other chromatin proteins to form the bis-
adduct or cross-link observed by observed by Sayre and
coworkers [104] and the stable furan derivative observed
by observed by Blair and coworkers [97], respectively
(Figure 8). Indeed, histones 2A, 2B, and 3 contain 3–5
histidines that have been exploited to cross-link histones
to DNA in the classic studies of Mirzabekov and coworkers
[105, 106].

The malondialdehyde adducts of lysine, arginine, and
histidine represent another protein adduct chemistry with
potential parallels between 2-deoxyribose oxidation and
lipid peroxidation. The reaction of lysine by nucleophilic
substitution yields a moderately stable N-propenal-lysine
species (Figure 8) that can react with another lysine to form
a propyl-bridged cross-link [107], while the reaction of
malondialdehyde with arginine has been shown to produce a
stable pyrimidyl-ornithine species (Figure 8) [107]. In both
cases, the proportions of modified amino acids are high
[108]. Given the analogous reactions of malondialdehyde
and base propenals from 4′-oxidation, it is reasonable to
expect the formation of propyl-bridged cross-links and
pyrimidyl-ornithine species in histone proteins in cells
subjected to oxidative stresses.

A final example of protein adducts derived from 2-
deoxyribose oxidation products involves N-formylation of
lysine by transfer of formyl groups from 3′-formylphosphate
residues (Figure 9) [109], among other possible sources
such as oxidation of formaldehyde adducts of lysine. N6-
formyllysine was detected in histone proteins from a variety
of sources to the extent of 0.04%–0.1% of all lysines in
acid-soluble chromatin proteins including histones, which
suggests that the adduct represents an endogenous secondary
modification of histones [109]. The chemical analogy of
the N-formyl modification to the physiologically important
lysine N-acetylation and N-methylation suggests that lysine
N-formylation may interfere with signaling mediated by
histone and other chromatin protein modifications (e.g.,
[110, 111]).

In all of these cases, the adducted proteins are subject to
degradation, with the potential for the release and excretion
of adducted peptides or amino acids. Their potential as
biomarkers warrants further study of DNA-derived protein
adducts.
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4.3. Metabolism of 2-Deoxyribose Oxidation Products. As in
the case of nucleobase lesions, the products of 2-deoxyribose
oxidation of DNA must also be considered as substrates for
metabolic enzymes and biotransformational reactions. This
is all the more apparent given the electrophilic nature of
the products, which points to glutathione (GSH) adduct

formation, and the α,β-unsaturated carbonyl structure of
many of the products, which makes them ideal substrates
for glutathione S-transferases (GST) [34]. Indeed, GSTs
have been shown to react with α,β-unsaturated aldehyde-
containing lipid peroxidation products, many of which are
chemical analogues of 2-deoxyribose oxidation products [9,
68]. Two examples of GST reactions with 2-deoxyribose
oxidation products illustrate this biotransformation concept.

The first example involves GSH conjugation of base
propenals. One of the classic definitions of GST substrates is
that they must react directly with GSH to a measurable extent
[34]. This is indeed the case with base propenals, as demon-
strated in studies by Berhane et al. in which GSH added to
give a Michael adduct and a substitution product with loss of
the nucleobase (Figure 10) [30]. In addition, base propenals
were found to be among the best substrates for the Pi class of
GSTs, producing a single GSH conjugate (Figure 10).

GSH conjugates have also been identified for furan
metabolite cis-1,4-dioxo-2-butene [31, 32], the conforma-
tional isomer of the trans-1,4-dioxo-2-butene product of 5′-
oxidation (Figure 2). Given the similarity in the reactivity
of cis- and trans-1,4-dioxo-2-butene toward DNA adduct
formation [9], it would not be surprising to identify
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GSH adducts of the trans-isomer product of 2-deoxyribose
oxidation, as has been observed in vitro and in vivo with the
cis-isomer derivative of furan metabolism [31, 32, 112].

5. Prospects

Molecules damaged during normal physiological processes
and in states of pathology represent a large source of
biomarkers with potential clinical utility in defining etio-
logical mechanisms, quantifying the risk of human disease
and studying interindividual variations in cellular repair
pathways. In spite of this potential, there has been little
effort to define the biotransformational fate of damaged
biomolecules as they move from the site of formation to
excretion in clinically accessible compartments. This paper
has highlighted examples of this important problem with
DNA damage products. Coupled with the development of
more sensitive and specific analytical technologies, there are
likely to be major advancements in defining the metabolism
of DNA damage products and other damaged biomolecules
in the coming years.
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