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Abstract: The conventional magnetoelastic resonant sensor suffers from a low detecting sensitivity
problem. In this study, an hourglass-shaped magnetoelastic resonant sensor was proposed, analyzed,
fabricated, and tested. The hourglass-shaped magnetoelastic resonant sensor was composed of an
hourglass and a narrow ribbon in the middle. The hourglass and the narrow ribbon increased the
detection sensitivity by reducing the connecting stress. The resonant frequency of the sensor was
investigated by the finite element method. The proposed sensor was fabricated and experiments were
carried out. The tested resonance frequency agreed well with the simulated one. The maximum trust
sensitivity of the proposed sensor was 37,100 Hz/strain. The power supply and signal transmission
of the proposed sensor were fulfilled via magnetic field in a wireless and passive way due to the
magnetostrictive effect. Parametric studies were carried out to investigate the influence of the hourglass
shape on the resonant frequency and the output voltage. The hourglass-shaped magnetoelastic
resonant sensor shows advantages of high sensitivity, a simple structure, easy fabrication, passiveness,
remoteness, and low cost.
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1. Introduction

The magnetoelastic material has been widely used in the field of sensors since its emergence.
These sensors are based on different effects of the magnetoelastic material. These effects include the
giant magnetoimpedance (GMI) effect [1,2], stressimpedance (SI) effect [3,4], the small magnetization
rotaion (SAMR) technique [5], and the resonant magnetoelastic effect. A new tensductor sensor [6]
was developed based on the magnetoelastic material in 2018. Among of these new sensors, resonant
magnetoelastic sensors show advantages in chemical and force detecting fields due to its remoteness
and passiveness characteristics [7].

Frequency sensitivity is a key parameter of resonant magnetoelastic sensors [8–13]. A high
frequency sensitivity means that only few samples are needed in the test process [7,14–17]. The testing
accuracy and resolution can be improved at the same time [18,19]. Therefore, lots of studies have
focused on this research area.

Grime C.A. et al took advantage of a magnetoelastic material to detect the atmospheric pressure [20].
The magnetoelastic material was tailored into a rectangle shape and the frequency sensitivity was not
studied in the research. Andrew DeRouin et al. pasted the magnetoelastic material onto a substrate to
detect strain [21]. The magnetoelastic material was also tailored into a rectangle shape and the frequency
sensitivity was not studied either. Steven Trierweile et al. altered the shape of the magnetoelastic
material into rectangle arrays by using etching techniques [22]. The frequency sensitivity was boosted
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and the detecting scope was broadened. However, there was interference between neighboring
magnetoelastic ribbons, and the method was only suitable for biological field detection. Venkatram
Pepakayala changed the shape of the magnetoelastic material into a spring [23]. The frequency
sensitivity of the sensor increased to 12.5 × 103 ppm/mstrain, which was much higher than before.
However, the micro-electro-mechanical system (MEMS) techniques need a special apparatus and
the fabrication cost is very high. Scott R Green managed the magnetoelastic material by using a
microprecision spark [24]. It needed a long fabrication period for complicated shapes.

Based on the analyses listed above, one conclusion that can be drawn is that there is not a low cost
and easy fabrication method which can improve the frequency sensitivity effectively of the resonant
magnetoelastic sensors. Therefore, an hourglass-shaped wireless and passive magnetoelastic sensor
(HSMS) was proposed in this paper. Its frequency sensitivity was tested. In contrast to previous works,
the HSMS was shown to have high sensitivity. Additionally, it was easy to fabricate using an ordinary
measure and it had a low cost.

2. Materials and Methods

2.1. Materials

The magnetoelastic material used in the HSMS was Metglas 2826 MB, which contained 40% Fe,
38% Ni, 4% Mo, and 18% B (Fe40Ni38Mo4B18). The 2826 MB is a kind of amorphous metallic glass
due to its disordered atomic-scale structure. The thickness of 2826 MB is only 28 µm which gives it
superiority in resonance applications. The 2826 MB has a magnetoelastic coupling factor of 0.98 and a
magnetoelastic coefficient of 11.7 ppm. The magnetic and physical properties of Metglas 2826MB are
presented in Table 1.

Table 1. Magnetic and physical properties of 2826 MB.

Magnetic Properties Physical Properties

Saturation Induction (T) 0.88 Density (g/cm3) 7.90
Maximum D.C. Permeability (µ): Vicker’s Hardness (50 g load) 740
Annealed 800,000 Elastic Modulus (GPa) 100–110
As Cast >50,000 Tensile Strength (GPa) 1–2
Saturation Magnetostriction (ppm) 11.7 Lamination Factor (%) >75
Electrical Resistivity (µΩ·cm)s 138 Continuous Service Temperature (◦C) 125
Curie Temperature (◦C) 353 Thermal Expansion (ppm/◦C) 11.7
Magnetoelastic Coupling Factor 0.98 Crystallization Temperature (◦C) 410

2.2. Structure of the Proposed HSMS

Figure 1 shows the structure of the proposed HSMS. The HSMS is mainly composed of a sensing
component 2826 MB and a substrate.

The material of the sensing component is magnetoelastic material. The sensing component was
tailored into an hourglass shape using a Computer Numerical Control (CNC) milling machine (model:
FF500-CNC, Föhren, Germany). The hourglass-shaped sensing component had a length of 30 mm and
a width of 5 mm. There were two anchors on each end of the sensing component. Then, the sensing
component was pasted on the substrate through the two anchors. The material of the substrate was
aluminum alloy (Model: 7075, Shenzhen, China). The glue used in HSMS was modified acrylate
adhesive (model: AILIKE-A8, Shenzhen, China). Two pieces of rare earth magnets were placed around
the sensing component to provide a bias magnetic field [25].

The exact dimensions of the HSMS are given in Table 2. The dimensional and magnetic properties
of the bias magnetic are shown in Table 3. A prototype was fabricated to verify the frequency
performance of the HSMS, as shown in Figure 2. Two clampers were designed to fix the HSMS on
both ends.
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Table 2. Dimensions of the HSMS.

Symbol Parameter Symbol Parameter

a (mm) 2.5 d2 (mm) 1
b (mm) 8 e (mm) 8
c (mm) 3 f (mm) 2.5

d1 (mm) 5 α (◦) 33.69

Table 3. Dimensional and magnetic properties of the bias magnetic.

Item Properties

Length (mm) 20
Width (mm) 10
Height (mm) 2

Mass (g) 2.5
Magnetic Field Strength (T) 0.06

Material Nd-Fe-B Rare Earth
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2.3. Finite Element Method (FEM)

A FEM analysis was carried out to acquire the resonant frequency of the HSMS. The mass density
and Poisson’s ratio of 2826 MB were 7900 kg/m3 and 0.33, respectively. The resonant frequency provided
by the FEM analysis is shown in Figure 3. The calculated frequency was 97.83 kHz. From Figure 3,
it can be seen that the main vibration of the HSMS focused on the hourglass-shaped part which was
shown by red color. That is also to say the shape of the hourglass is one factor that influence the
frequency of the HSMS.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 10 

 

2.3. Finite Element Method (FEM) 

A FEM analysis was carried out to acquire the resonant frequency of the HSMS. The mass 
density and Poisson’s ratio of 2826 MB were 7900 kg /m3 and 0.33, respectively. The resonant 
frequency provided by the FEM analysis is shown in Figure 3. The calculated frequency was 97.83 
kHz. From Figure 3, it can be seen that the main vibration of the HSMS focused on the hourglass-
shaped part which was shown by red color. That is also to say the shape of the hourglass is one factor 
that influence the frequency of the HSMS. 

 
Figure 3. Resonant frequency determined by the finite element method (FEM) analysis. 

2.4. The Experiment Setup 

An experimental platform was designed and fabricated to obtain the frequency performance of 
the HSMS, as shown in Figure 4. A function generator (model: FLUKE-271, Washington, WA, USA) 
was used to generate a sinusoidal signal. The sinusoidal signal was amplified by a power amplifier 
(model: J.2500, New York, NY, USA). The amplified sinusoidal signal was input into an exciting coil 
to provide a working magnetic field. A detecting coil was placed around the HSMS to pick up the 
resonant frequency. The HSMS, the detecting coil, and the exciting coil are presented as I, II, and III 
in Figure 4. The strain was applied at the right by a handwheel and tested by a high precision force 
sensor (model: ZNLBM-500KG, Bengbu, China). The electric and dimension parameters of the 
exciting coil were 1 mm copper wire, 200 turns, and 110 mm external diameter. The electric and 
dimension parameters of the detecting coil were 0.4 mm copper wire, 200 turns, and 50 mm external 
diameter. Two detecting coils were connected reversely to eliminate the basic induction voltage from 
the exciting coil. 

 
Figure 4. The experimental setup. 

Figure 3. Resonant frequency determined by the finite element method (FEM) analysis.

2.4. The Experiment Setup

An experimental platform was designed and fabricated to obtain the frequency performance of the
HSMS, as shown in Figure 4. A function generator (model: FLUKE-271, Washington, WA, USA) was
used to generate a sinusoidal signal. The sinusoidal signal was amplified by a power amplifier (model:
J.2500, New York, NY, USA). The amplified sinusoidal signal was input into an exciting coil to provide
a working magnetic field. A detecting coil was placed around the HSMS to pick up the resonant
frequency. The HSMS, the detecting coil, and the exciting coil are presented as I, II, and III in Figure 4.
The strain was applied at the right by a handwheel and tested by a high precision force sensor (model:
ZNLBM-500KG, Bengbu, China). The electric and dimension parameters of the exciting coil were
1 mm copper wire, 200 turns, and 110 mm external diameter. The electric and dimension parameters of
the detecting coil were 0.4 mm copper wire, 200 turns, and 50 mm external diameter. Two detecting
coils were connected reversely to eliminate the basic induction voltage from the exciting coil.
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3. Results and Discussion

Figure 5 expresses the actual resonant frequency of the HSMS. The actual resonant frequency was
97.61 kHz, and it was very close to the simulated one. The actual resonant frequency agreed with the
simulated one which proved the design of the HSMS. There was a difference of 0.22 kHz, which was
mainly caused by the glue used in the HSMS fabrication.
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Figure 5. Actual resonant frequency of the HSMS.

Figure 6 gives the frequency performance of the HSMS under a specific strain. The strain can be
defined as follows:

ε =
∆l
l

(1)

where ε is the strain applied on the HSMS, l is the original length of sensing element, and ∆l is the
varied length of the HSMS.

The solid black line shows that no strain was applied on the HSMS. The non-loaded resonant
frequency was 97.61 kHz. The voltage obtained by the detecting coil was 14.47 mV. When a 0.08 tensile
strain was applied on the HSMS, the resonant frequency became 100.61 kHz. It was represented by the
dotted blue line. The voltage acquired by the detecting coil was 14.35 mV. The frequency shift of the
HSMS under the tensile strain of 0.08 mm/m was calculated by

∆ f1 = f1 − f0 = 100.61− 97.61 = 3.0 kHz (2)

where f 0 is the resonant frequency under a strain of 0 mm/m and f 1 is the resonant frequency under a
strain of 0.08 mm/m.

The frequency sensitivity δ can be obtained by

δ =
∆ f1
ε

=
3

0.08
= 37.5 kHz/strain (3)

The tensile strain applied on the HSMS can be seen as a mechanical preload which would alter
the vibration status of the HSMS. The 3.0 kHz measured shift in the resonant frequency evidences that
the HSMS could reflect the applied strain effectively. The voltage in the detecting coil changed from
14.47 to 14.35 mV. The voltage deviation of 0.12 mV was caused by the tensile strain.
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Figure 6. Frequency performance of the HSMS under a specific strain.

Figure 7 is a plot of the resonant frequency of the HSMS versus applied external strain. The whole
figure can be divided into three zones: the level zone, the measurement zone, and the saturation zone.
The three regions indicate three different working statuses of the HSMS. In the measurement zone,
the strain varies from 0 mm/m to 0.08 mm/m. The resonant frequency moves from 97.61 to 100.61 kHz.
There is a linear incremental relationship between the resonant frequency and the applied external
strain. The fitted curve is y = 37.1x + 97.1 by least-squares (R2 = 0.9859). The slope, 37.1 (unit: kHz

(mm/m)
),

is also the frequency sensitivity of the HSMS. Therefore, the strain region from 0 to 0.08 mm/m was
selected as the measurement region due to its high linearity and high frequency sensitivity.
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Figure 7. Plot of the resonant frequency of the HSMS versus the applied external strain.

The saturation zone was a special region of the HSMS. Above 0.10 mm/m the resonant frequency
did not increase significantly. This corresponds to the saturation zone of the HSMS according to
the Metglas 2826 MB datasheet [26]. When the strain was over 0.15, the 2826 MB ribbon did not
vibrate anymore, as it was totally saturated. Therefore, the saturation zone was not suitable for
detecting purposes.

The level region in the figure was very different from the measurement and saturation regions
discussed above. In the level region, a compressive strain was applied varying between 0 and
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0.15 mm/m. From the figure, it can be seen that the resonant frequency did not change very much.
The highest frequency shift was calculated by

∆ f2 = fh − fl = 98− 97.45 = 0.55 kHz (4)

where fh is largest resonant frequency in the level zone, and fl is the smallest resonant frequency in the
level zone.

Therefore, the frequency shift was very small in the level zone. Therefore, the HSMS was not
suitable for the detection of compressive strain. The discussion above agrees well with previous
studies [25].

The influence of the hourglass shape on the resonant frequency of the HSMS was also investigated.
The parameter d1 was set to 5 mm, and d2 varied from 1 mm to 5 mm. The FEM analysis results
are given in Figure 8. The relationship between the no-load resonant frequency and the parameter
ratio (d1/d2) is depicted in Figure 9. The overall relationship between the resonant frequency and the
ratio was almost an incremental function. When d1/d2 was equal to 1, the resonant frequency was
76.05 kHz at this time, which agreed with the studies in [27,28] When the ratio was 2, the resonant
frequency was 80.53 kHz, which was higher than that occurred at the ratio of 1. When the ratios were
3, 4, and 5, the resonant frequencies were 85.12 kHz, 91.57 kHz, and 97.83 kHz respectively. A linear
fitting curve between the resonant frequency and the ratio (d1/d2) was obtained. The fitting curve was
y = 5.33x + 70.65 by least squares. Figure 9 indicates further that the hourglass shape can heighten the
resonant frequency of the HSMS.
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The voltage output at corresponding resonant frequencies was studied in Figure 10. The resonant
frequencies were 76.05 kHz, 80.53 kHz, 85.12 kHz, 91.57 kHz, and 97.83 kHz respectively. The voltage
outputs collected by the coil were 14.73 mV, 14.64 mV, 14.56 mV, 14.50 mV, and 14.47 mV. As the resonant
frequency increased, the collected voltage decreased. A lower voltage output was disadvantageous to
the signal-to-noise ratio of the HSMS. Therefore, it should be noted the simultaneous appearance of
the higher resonant frequency and the lower voltage output puts forward a technical conflict. Our next
research focus is to enhance the frequency sensitivity further and increase the voltage output at the
same time.
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Figure 11 shows the frequency sensitivity comparison between the proposed HSMS and several
other works. The values of the frequency sensitivity of one unit strain in studies [21,23,24] were
9.2 kHz, 17.6 kHz, and 28.6 kHz respectively. The frequency sensitivity of the propose HSMS was
37.1 kHz. From the comparison, it can be concluded that the frequency sensitivity of the proposed
HSMS is superior to the other three strain sensors.
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4. Conclusions

In conclusion, this paper has described an hourglass-shaped wireless and passive magnetoelastic
sensor with an improved frequency sensitivity. Compared to previous related works, the proposed
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HSMS had a frequency sensitivity of up to 37.1 kHz/strain. At the same time, the HSMS was easily
fabricated using an ordinary CNC machine. The frequency performance of the proposed HSMS
showed a linear incremental region which could be used as the measurement region. The HSMS
with a large d1/d2 had a high frequency sensitivity. The HSMS could be applied for remote strain
measurement due to its high frequency sensitivity.
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