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Fetal electrocardiogram (FECG) extraction is very important procedure for fetal health assessment. In this article, we propose a
fast one-unit independent component analysis with reference (ICA-R) that is suitable to extract the FECG. Most previous ICA-R
algorithms only focused on how to optimize the cost function of the ICA-R and payed little attention to the improvement of cost
function. They did not fully take advantage of the prior information about the desired signal to improve the ICA-R. In this paper,
we first use the kurtosis information of the desired FECG signal to simplify the non-Gaussian measurement function and then
construct a new cost function by directly using a nonquadratic function of the extracted signal to measure its non-Gaussianity.The
new cost function does not involve the computation of the difference between the function of the Gaussian random vector and
that of the extracted signal, which is time consuming. Centering and whitening are also used to preprocess the observed signal to
further reduce the computation complexity. While the proposed method has the same error performance as other improved one-
unit ICA-Rmethods, it actually has lower computation complexity than those othermethods. Simulations are performed separately
on artificial and real-world electrocardiogram signals.

1. Introduction

The fetal electrocardiogram (FECG) contains much impor-
tant information about the health and possible diseases of
the fetus, which reflects the complete view of the heart
activities. Additionally, it ismore sensitive than colorDoppler
ultrasound in the case of fetal acidosis and anoxia. With the
analysis of the FECG, the doctor can discover fetal hypox-
emia, umbilical abnormality, and other fetal abnormality
situations timely and take early effective actions to ensure the
health of the fetus. However, the FECG signal is considerably
weaker than the maternal electrocardiogram (MECG) and
is often embedded in the noise, MECG, baseline wandering,
power line interference, and so forth. Accordingly, it is quite
difficult to extract the FECG signal and further reduce the
diagnostic accuracy.

A number of methods have been reported for extracting
the FECG signal, like filtering method [1], singular value

decomposition [2], wavelet transform [3], independent com-
ponent analysis (ICA) [4], and others [5]. Every method has
its advantages and disadvantages [5, 6]. In this paper, we only
consider the method based on ICA. The FECG extraction
based on the ICA methods considers the extracting FECG
signal as a blind source separation problem. They consider
the unknown FECG signal, MECG, and other interference
signals as source signals and the measured signals from the
maternal abdomen and chest as mixed signals (measured
signals). It actually can separate all source signals, including
the FECG signal andMECG signal. Compared with the other
methods, it has a simple structure and has been proved to be
efficient in extracting FECG in many studies [4–9]. However,
for extracting the FECG, the ICA method must first separate
all the source signals from the measured signals and then
artificially selects the FECG signal. When the number of
measured signals is very large, the extraction of the FECG
signal will consume plenty of time.
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To overcome this problem, the independent component
analysis with reference (ICA-R) is applied to extract the
FECG [10–14], which separates the desired FECG signal by
using some prior information about the desired FECG with-
out separating all the source signals. Therefore, this FECG
extraction method based on ICA-R is more efficient than
those based on ICA. ICA-R was proposed and implemented
by Lu and Rajapakse [15–17] by incorporating the prior
information of the desired signal into the contrast function
of the ICA [18]. To improve the ICA-R performance, some
authors proposed improved ICA-Rmethods. For example, to
reduce the computational complexity of ICA-R, Lin et al. [11]
proposed a fast one-unit ICA-R by using prewhitening to deal
with the observed signal. Compared with the original ICA-
R, this method has shorter running time and the same error.
Also, Huang and Mi [19] studied the gradient of inequality
constraint function and corrected the gradient. This method
has a higher success rate for extracting the desired signal. In
addition, Li et al. [14] first divided the cost function of ICA-
R into two parts that are the negentropy function and the
closeness measure function and then directly used the first-
order derivative of the negentropy contrast function to update
the separating vector. This method has faster convergence
rate and higher success rate to extract the desired signal
than the previously reportedmethod [19]. Moreover, Sun and
Shang [20] studied the stability of ICA-R and proposed an
initialization method of separating the matrix. This method
has a higher accuracy and stability than the original ICA-
R. Kavuri et al. [21] proposed a one-unit ICA-R by using
evolutionary algorithm to optimize the cost function to find a
global optimal solution. Although this method has a smaller
error than the original ICA-R, it does consume a considerable
amount of time. Additionally, Zhang et al. [22] proposed
the ICA-R based on kurtosis and analyzed how to choose
the reference signal. Wang [23] used the method that has
been used in the fast ICA to propose a fixed-point ICA
method. Rodriguez et al. [24] proposed a multiunit ICA-
R method based on nonorthogonal decoupling of separated
matrix. This method cannot be extended to one-unit ICA-R.
Mi [25] proposed a strategy to detect future misconvergence
to improve the probability of extracting the desired signal.
Chen et al. [26] proposed an ICA-R that can be used in single
channel by discrete wavelet transform.

The one-unit ICA-R is a special case of the multiunit
ICA-R. It only separates one desired source signal every
time. The only difference between the one-unit ICA-R and
the multiunit ICA-R is that the former only extracts one
desired signal, and the latter is based on the former and uses
the orthogonalization method to extract multiple desired
signals. If we use the deflationary orthogonalization method
or symmetric orthogonalization method, which are widely
used in ICA [18] to extract the signal in the one-unit ICA-R,
the one-unit ICA-R can be easily extended to multiunit ICA-
R. In the FECG extraction, we only want to extract the FECG
with just one signal; thus, the one-unit ICA-R is enough to
extract FECG.

Although the one-unit ICA-R and multiunit ICA-R have
a little difference, they share the same cost function. Addi-
tionally, they both use the same non-Gaussian measurement

function that is used in the classical ICA algorithm to mea-
sure the non-Gaussian component of the extracted signal.
The negentropy approximation is needed to compute the
difference between the function of the extracted signal and
the function of a Gaussian vector that has the same mean
and variance as the extracted signal.This will consume plenty
of time. The classical ICA algorithm has no information
about the source signals, except that the non-Gaussian
measurements and statistics are independent. However, the
ICA-R has prior information about the desired signal, but the
previous methods did not use such information to reduce the
computational complexity of the negentropy approximation.
The aimof this paper is to reduce the computational complex-
ity for the one-unit ICA-R by taking advantage of the prior
information of the desired ECG to simplify the negentropy
approximation.

This paper is organized as follows. Section 2 reviews the
previously reported algorithms including the traditional ICA
and one-unit ICA-R. Section 3 analyzes in detail the non-
Gaussian measurement function that is used in the one-unit
ICA-R cost function. In Section 4, we simplify the non-
Gaussian measurement function based on the analysis in
Section 3 and, then, derive an improved one-unit ICA-R
with lower computation complexity. In Section 5, we test Mi’s
method [25] and our proposedmethod on artificial ECGdata
and real-world ECGdata to compare the performance of each
method. Some conclusions are included in Section 6.

2. Previous Algorithms

2.1. Traditional ICA. The traditional ICA is a signal process-
ing method for estimating the source signals from observed
signals that are a mixture of source signals. The model of
linear ICA is as follows:

x (𝑡) = As (𝑡) , (1)

where x(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 is the observed signal,

A is the mixing matrix with the size (𝑛 × 𝑚), and s(𝑡) =

[𝑠
1
(𝑡), 𝑠
2
(𝑡), . . . , 𝑠

𝑚
(𝑡)]
𝑇 is the source signal. The aim of the

ICA is to estimate the source signal s(𝑡) from the observed
signal x(𝑡) by computing the separating matrixW = [w

1
,w
2
,

. . . ,w
𝑚
]
𝑇 with size (𝑚 × 𝑛). The estimated source signal can

be expressed as follows:

y (𝑡) = Wx (𝑡) , (2)

where y(𝑡) = [𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑚
(𝑡)]
𝑇 is the estimated source

signal, which is the same as s(𝑡) under ideal condition.
However, under real condition, the shape of the waveforms of
y(𝑡) is close to s(𝑡), except for the amplitude and sequence of
the waveforms.The source signals s(𝑡) are considered as non-
Gaussian and mutually statistically independent. Accord-
ingly, it has strong non-Gaussian properties. The mixing
signals x(𝑡) have strong Gaussian characteristics according
to the central limit theorem. When the estimated source
signal is close to the source signal s(𝑡), it will have strong
non-Gaussian properties.Thus, the ICA uses a non-Gaussian
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measurement function of the estimated source signals as a
cost function [18]:

𝐽 (𝑦) ∝ 𝜌 [𝐸 {𝐹 (𝑦)} − 𝐸 {𝐹 (V)}]2 , (3)

where 𝜌 is a positive constant, 𝑦 is the estimated signal
(extracted signal), 𝐹 is the nonquadratic function, and V is a
Gaussian variable with the same mean and variance as 𝑦. By
maximizing the cost function, we can obtain the separating
matrix and recover the source signal.

2.2. One-Unit ICA-R. The ICA can separate all the source
signals from the observed signals. However, if we only want
to extract some or one of the desired source signals, we must
use ICA to separate all source signals and further select the
desired source signal from the estimated signals. When the
dimension of observed signals is very large, especially for
some biomedical signals, it will take a long period of time to
extract the desired signal. The one-unit ICA-R was proposed
by Lu and Rajapakse [15] to reduce computational time and
avoid additional operations to select the desired source signal
from the estimated signals.

The one-unit ICA-Rmethod combines prior information
of the desired source signal into the ICA cost function (3) and
constructs a new cost function.The cost function for the one-
unit ICA-R is as follows [15]:

max 𝐽 (𝑦) ≈ 𝜌 [𝐸 {𝐹 (𝑦)} − 𝐸 {𝐹 (V)}]2

s.t. 𝑔 (𝑦) ≤ 0

ℎ (𝑦) = 𝐸 (𝑦
2
) − 1 = 0,

(4)

where 𝑦 = w𝑇x, w is the separating vector, x is the observed
signals, 𝑦 is the extracted signal, 𝜌 is a positive constant, and
V is a Gaussian vector with the same mean and variance as 𝑦.
The inequality constraint term is 𝑔(𝑦) = 𝜀(𝑦, 𝑟) − 𝜉, where 𝑟
is the reference signal constructed by the prior information
of desired signal, 𝜀 is used to measure the closeness between
the estimated signal 𝑦 and the reference signal 𝑟, and 𝜉 is a
threshold parameter to control the closeness level. A common
and simple measure of closeness is the mean squared error
(MSE) 𝜀(𝑦, 𝑟) = 𝐸{(𝑦 − 𝑟)

2
}. ℎ(𝑦) is used to restrict the esti-

mated signal 𝑦 to unit variance.
The above inequality constraints can be transformed into

equality constraints by introducing the slack factor 𝑧. Thus,
the cost function of the one-unit ICA with reference to
equality constraint can be expressed as follows:

max 𝐽 (𝑦) ≈ 𝜌 [𝐸 {𝐹 (𝑦)} − 𝐸 {𝐹 (V)}]2

s.t. 𝑔 (𝑦) + 𝑧
2
= 0

ℎ (𝑦) = 𝐸 (𝑦
2
) − 1 = 0.

(5)

The augmented Lagrange multiplier method is used to
optimize the above cost function with equality constraint

and derive the augmented Lagrange function that can be
expressed as follows:

𝐿 = 𝐽 (𝑦) −
1

2𝛾
max ((𝛾𝑔 (𝑦) + 𝜇) , 0)2 +

𝜇2

2𝛾
− 𝜆ℎ (𝑦)

− 0.5𝛾
ℎ (𝑦)


2

,

(6)

where 𝜇 and 𝜆 are the Lagrange multipliers for the constrains
𝑔(𝑦) and ℎ(𝑦), respectively, and 𝛾 is a scalar penalty parame-
ter. A Newton-like learning algorithm is applied to optimize
the above equation and get the updated separating vector.The
updated formula is as follows [15]:

w
𝑘+1

= w
𝑘
− 𝜂R−1 𝑙

𝛿
, (7)

where 𝑘 is the current iterative number, 𝜂 is the fixed learning
rate, R is the covariance matrix of the observed signals, and
𝑙 and 𝛿 are the first and second derivatives of 𝑙, respectively,
and can be expressed as

𝑙 = �̂�𝐸 {x𝑓 (𝑦)} − 0.5𝜇𝐸 {x𝑔 (𝑦)} − 𝜆𝐸 {x𝑦}

𝛿 = �̂�𝐸 [𝑓

(𝑦)] − 0.5𝜇𝐸 [𝑔


(𝑦)] − 𝜆,

(8)

where �̂� = 2𝜌[𝐸{𝐹(𝑦)} − 𝐸{𝐹(V)}], 𝑓(𝑦) and 𝑓(𝑦) are the
first and the second derivatives of 𝐹(𝑦) with respect to 𝑦,
respectively, and 𝑔(𝑦) and 𝑔(𝑦) are the first and the second
derivatives of 𝑔(𝑦) with respect to 𝑦, respectively.

The optimum multipliers 𝜇 and 𝜆 are updated by the
following equations:

𝜇
𝑘+1

= max {0, 𝜇
𝑘
+ 𝛾𝑔 (𝑦)} (9)

𝜆
𝑘+1

= 𝜆
𝑘
+ 𝛾ℎ (𝑦) . (10)

The same author Lu and Rajapakse proposed [17] another
cost function for the one-unit ICA-R, as follows:

min − 𝐽 (𝑦) ≈ −𝜌 [𝐸 {𝐹 (𝑦)} − 𝐸 {𝐹 (V)}]2

s.t. 𝑔 (𝑦) ≤ 0

ℎ (𝑦) = {𝐸 (𝑦
2
) − 1}

2

= 0.

(11)

The learning rule of the separating vector is

w
𝑘+1

= w
𝑘
− 𝜂R−1 𝑙

𝛿
, (12)

where

𝑙 = �̂�𝐸 {x𝑓 (𝑦)} − 𝜇𝐸 {x𝑔 (𝑦)}

− 4𝜆 (𝐸 {𝑦
2
} − 1) 𝐸 {x𝑦}

𝛿 = �̂�𝐸 [𝑓

(𝑦)] − 𝜇𝐸 [𝑔


(𝑦)] − 8𝜆.

(13)

The symbols of the parameters in (12) have the samemeaning
as those in (7). Many studies about the ICA-R method are
based on the cost function (11) [19, 20, 25].
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3. Analysis of the Non-Gaussian Measurement
Function in the One-Unit ICA-R Method

The non-Gaussian measurement function (5) that is also the
cost function of the fast ICA can also be expressed as

𝐽 (𝑦) = 𝜌
𝐸 {𝐹 (𝑦)} − 𝐸 {𝐹 (V)}

 , (14)

where |(⋅)| is the absolute value of (⋅). Maximizing (14) equals
maximizing (3). In ICA-R, V is a Gaussian variable having
zero mean and unit variance [17]. It actually has nothing to
do with the separating vectorw and can be seen as a constant
for w. Accordingly, maximizing (14) equals maximizing or
minimizing 𝐸{𝐹(𝑦)}. We denote it by𝐻(𝑦); that is,

𝐻(𝑦) = 𝐸 {𝐹 (𝑦)} , (15)

where 𝑦 = w𝑇x = w𝑇As = b𝑇s, s is the source signals, A is
the mixing matrix, and w is the separating vector. In the one-
unit ICA-R, we only extract one desired signal. We consider
that the successfully extracted signal 𝑦 equals 𝑠

𝑖
; hence, the

stability point of b is b∗ = (0
0
, . . . , 0

𝑖−1
, 1, 0
𝑖+1
, . . . )
𝑇.

At the stability point, the first-order derivative of𝐻(b𝑇s)
with respect to b∗ is

∇𝐻(b∗𝑇s) = 𝐸 {s𝑓 (b∗𝑇s)} = 𝐸 {s𝑓 (𝑠
𝑖
)}

= (0
1
, . . . , 0

𝑖−1
, 1, 0
𝑖+1
, . . .)
𝑇

𝐸 {𝑠
𝑖
𝑓 (𝑠
𝑖
)} .

(16)

The 𝐸{𝑓(𝑠
𝑖
)𝑠
𝑗
}
𝑖 ̸=𝑗

= 0, which means that the source signals
with zero are mutually statistically independent, is used in
(16). It is a fundamental assumption in ICA-R [17] and its
second derivative is as follows:

∇
2
𝐻(b∗𝑇s) = 𝐸 {ss𝑇𝑓 (b∗𝑇s)} = diag (𝐸 {𝑓 (𝑠

𝑖
)} ,

. . . , 𝐸 {𝑠
2

𝑖
𝑓

(𝑠
𝑖
)} , . . . , 𝐸 {𝑓


(𝑠
𝑖
)}) .

(17)

Adding a small fluctuation 𝜎 = (𝜎
1
, . . . , 𝜎

𝑖−1
, 𝜎
𝑖
, 𝜎
𝑖+1
, . . .) into

b∗, we obtain

bnew = b∗ + 𝜎 = (𝜎
1
, . . . , 𝜎

𝑖−1
, 𝜎
𝑖
+ 1, 𝜎
𝑖+1
, . . .) . (18)

Taylor’s series expansion of𝐻(b𝑇news) at the point b
∗ is

𝐻[(b∗ + 𝜎)𝑇 s]

= 𝐻(b∗𝑇s) + 𝜎∇𝐻(b∗𝑇s) + 1

2
𝜎∇
2
𝐻(b∗𝑇s)𝜎𝑇

+ 𝑜 (‖𝜎‖
2
)

= 𝐻 (𝑏
∗
) + 𝜎
𝑖
𝐸 {𝑠
𝑖
𝑓 (𝑠
𝑖
)}

+
1

2
[𝐸 {𝑠
2

𝑖
𝑓

(𝑠
𝑖
)}𝜎
2

𝑖
+ 𝐸 {𝑓


(𝑠
𝑖
)}∑
𝑛 ̸=𝑖

𝜎
2

𝑛
]

+ 𝑜 (‖𝜎‖
2
) .

(19)

In the one-unit ICA-R, the extracted signal 𝑦 is considered to
have unit variance.When the desired signal has unit variance,

then ‖b∗ + 𝜎‖ = I. That is, 𝜎2
1
+ 𝜎2
2
+ ⋅ ⋅ ⋅ + (𝜎

𝑖
+ 1)
2
+ ⋅ ⋅ ⋅ = 1.

Thus, we obtain (𝜎
𝑖
+1) = √1 − 𝜎2

1
⋅ ⋅ ⋅ − 𝜎2

𝑖−1
− 𝜎2
𝑖+1

⋅ ⋅ ⋅ and its
Taylor’s series at point zero is

𝜎
𝑖
+ 1 = 1 −

1

2
∑
𝑛 ̸=𝑖

𝜎
2

𝑛
+ 𝑜(∑
𝑛 ̸=𝑖

𝜎
2

𝑛
) . (20)

Substituting (20) in (19), we get

𝐻[(b∗ + 𝜎)𝑇 s]

= 𝐻(b∗𝑇s) − 1

2
𝐸 {𝑠
𝑖
𝑓 (𝑠
𝑖
)}∑
𝑛 ̸=𝑖

𝜎
2

𝑛

+
1

2
[𝐸 {𝑠
2

𝑖
𝑓

(𝑠
𝑖
)} 𝜎
2

𝑖
+ 𝐸 {𝑓


(𝑠
𝑖
)}∑
𝑛 ̸=𝑖

𝜎
2

𝑛
]

+ 𝑜 (‖𝜎‖
2
)

= 𝐻(b∗𝑇s) + 1

2
[𝐸 {𝑓


(𝑠
𝑖
)} − 𝐸 {𝑠

𝑖
𝑓 (𝑠
𝑖
)}]∑
𝑛 ̸=𝑖

𝜎
2

𝑛

+ 𝑜 (‖𝜎‖
2
)

≈ 𝐻(b∗𝑇s) + 1

2
[𝐸 {𝑓


(𝑠
𝑖
)} − 𝐸 {𝑠

𝑖
𝑓 (𝑠
𝑖
)}]∑
𝑛 ̸=𝑖

𝜎
2

𝑛
.

(21)

As the components of 𝜎 are very small, we can neglect its
higher order term in (20) and (21). From the last item in (21),
we can obtain that when𝐸{𝑓(𝑠

𝑖
)}−𝐸{𝑠

𝑖
𝑓(𝑠
𝑖
)} > 0 then𝐻(b∗)

is the minimum, and vice versa is the maximum.

4. Improve One-Unit ICA-R Method

As the previous one-unit ICA-Rmethods involve the compu-
tation of the �̂� = 2𝜌[𝐸{𝐹(𝑦)} − 𝐸{𝐹(V)}] in every iteration,
it is a time consuming procedure. If the computation of
[𝐸{𝐹(𝑦)}−𝐸{𝐹(V)}] is avoided in �̂�, the implementation of the
ICA algorithm and ICA-R algorithm can be further speeded
up. We wish to incorporate the prior information of the
desired signal into non-Gaussianmeasurement function 𝐽(𝑦)
to eliminate 𝐸{𝐹(V)} to avoid further computing [𝐸{𝐹(𝑦)} −
𝐸{𝐹(V)}]. 𝐽(𝑦) is a part of the cost function of the one-unit
ICA-R. As a result, this will reduce computation complexity
of the one-unit ICA-R.

4.1. Simplification of the Non-Gaussian Measurement Func-
tion. Since the nonlinear function 𝐹 used in one-unit ICA-
R is a positive even function, the terms 𝐸{𝐹(V)} and 𝐸{𝐹(𝑦)}
are both positive in (14), and V has nothing to do with
the separating vector and thus can be seen as a constant.
Accordingly, when𝐸{𝐹(𝑦)} has amaximum value, this equals
[𝐸{𝐹(𝑦)} − 𝐸{𝐹(V)}], which has a maximum value. On the
contrary, when 𝐸{𝐹(𝑦)} has a minimum value, this equals
−[𝐸{𝐹(𝑦)} − 𝐸{𝐹(V)}], which has maximum value.

Based on the analysis in Section 3, when 𝐸{𝑓
(𝑠
𝑖
)} −

𝐸{𝑠
𝑖
𝑓(𝑠
𝑖
)} < 0, 𝐸{𝐹(𝑦)} has maximum value. Therefore,
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when 𝐸{𝑓(𝑠
𝑖
)} − 𝐸{𝑠

𝑖
𝑓(𝑠
𝑖
)} < 0, we can determine that

[𝐸{𝐹(𝑦)} − 𝐸{𝐹(V)}] has a maximum value based on the
analysis described in the first paragraph of this subsection.
Based on the above analysis, when 𝐸{𝑓(𝑠

𝑖
)} − 𝐸{𝑠

𝑖
𝑓(𝑠
𝑖
)} < 0,

then (14) can be simplified as

𝐽 (𝑦) = 𝜌 [𝐸 {𝐹 (𝑦)} − 𝐸 {𝐹 (V)}] . (22)

As V has nothing to do with the separating vector, we can
further simplify the non-Gaussian measurement function
(22) as

𝐽 (𝑦) = 𝜌𝐸 {𝐹 (𝑦)} . (23)

On the other hand, when the 𝐸{𝑓(𝑠
𝑖
)} − 𝐸{𝑠

𝑖
𝑓(𝑠
𝑖
)} > 0, the

non-Gaussian measurement function can be simplified as

𝐽 (𝑦) = −𝜌𝐸 {𝐹 (𝑦)} . (24)

Therefore, the negentropy approximation in (23) and (24) can
be expressed as

𝐽 (𝑦) = 𝜌 sign (𝑐) 𝐸 {𝐹 (𝑦)} , (25)

where 𝑐 = 𝐸{𝑠
𝑖
𝑓(𝑠
𝑖
)} − 𝐸{𝑓(𝑠

𝑖
)}.

sign (𝑐) =
{

{

{

1 𝑐 > 0

−1 𝑐 < 0.
(26)

In [16], the following function 𝐹(𝑦) was proposed
for extracting the super-Gaussian and sub-Gaussian signal,
respectively.

𝐹sup (𝑦) =
1

𝑎
log cosh (𝑎𝑦) − 𝑎

2
𝑦
2 (27)

𝐹sub (𝑦) =
𝑏

4
𝑦
4
, (28)

where 𝑎, 𝑏 ∈ 𝑅+. In [25], Mi has proved that (27) should be
corrected as

𝐹sup (𝑦) =
1

𝑎
log cosh (𝑎𝑦) . (29)

Accordingly, in this paper, we use (29) instead of (27). For
simplicity, we set 𝑎 = 1 in (29). The first and second deri-
vatives are tanh(𝑦) and 1 − tanh2(𝑦), respectively.

If we use (29) as a nonlinear function, 𝑐 in (25) can be
expressed as follows:

𝑐 = 𝐸 {𝑠
𝑖
𝑓 (𝑠
𝑖
)} − 𝐸 {𝑓


(𝑠
𝑖
)}

= 𝐸 {𝑠
𝑖
tanh (𝑠

𝑖
)} − 𝐸 {(1 − tanh2 (𝑠

𝑖
))}

= 𝐸{𝑠
2

𝑖
−
𝑠4
𝑖

3
+ 𝑜 (𝑠

6

𝑖
)} − 1

+ 𝐸{𝑠
2

𝑖
−
2𝑠4
𝑖

3
+ 𝑜 (𝑠

6

𝑖
)} .

(30)

In (30), we used Taylor’s series expansion of tanh(𝑠
𝑖
), which

is described as

tanh (𝑠
𝑖
) = 𝑠
𝑖
−
𝑠3
𝑖

3
+ 𝑜 (𝑠

5

𝑖
) . (31)

Neglecting the higher order term in (30) and considering that
the desired signal has unit variance, which is a very common
hypothesis in ICA and ICA-R, we can obtain the following:

𝑐 = 𝐸{𝑠
2

𝑖
−
𝑠4
𝑖

3
} − 1 + 𝐸{𝑠

2

𝑖
−
2𝑠4
𝑖

3
}

= 𝐸 {2𝑠
2

𝑖
} − 1 − 𝐸 {𝑠

4

𝑖
} = 1 − 𝐸 {𝑠

4

𝑖
} .

(32)

According to the kurtosis definition of a super-Gaussian
signal, when 𝑠

𝑖
is a super-Gaussian signal with unit variance,

𝐸{𝑠4
𝑖
} > 3. Then 𝑐 < 0 in (32). This means that if the desired

signal is super-Gaussian, we can directly simplify (25) as

𝐽 (𝑦) = −𝜌𝐸 {𝐹 (𝑦)} . (33)

4.2. ImprovedOne-Unit ICA-R for Extracting FECG. Theone-
unit ICA-R is used to extract one desired signal. The prior
information that the desired signal is a super-Gaussian or
a sub-Gaussian signal is easily obtained. The FECG and
MECG are both super-Gaussian signals in general.Therefore,
in the extraction of FECG, we can directly use (33) instead
of (14) to obtain the non-Gaussian measurement of an
extracted signal. Centering and whitening can reduce the
computation complexity of one-unit ICA-R [11]. Thus, we
use centering and whitening to process the observed signals.
After preprocessing, the new cost function of the one-unit
ICA-R for extracting FECG can be expressed as

min − 𝐽 (𝑦) ≈ 𝜌𝐸 {𝐹 (𝑦)}

s.t. 𝑔 (𝑦) ≤ 0,
(34)

where 𝑦 = w𝑇x is the extracted signal, x is the centered and
whitened signal, and w is the separating vector. 𝜌 in (34) is
different from �̂� in (12). 𝜌 is just a positive constant. Corre-
spondingly, the augmented Lagrangian function 𝐿(𝑤, 𝜇) for
the problem in (34) is expressed as follows:

𝐿 (𝑤, 𝜇) = 𝐽 (𝑦) −
1

2𝛾
[max2 {𝑟𝑔 + 𝜇, 0} − 𝜇2] . (35)

To find the maximum of 𝐿(𝑤, 𝜇), Newton’s method is used to
optimize 𝐿(𝑤, 𝜇).The learning rule of the separating vector𝑤
is given by the following equation:

w
𝑘+1

= w
𝑘
− 𝜂

𝑙

𝛿
, (36)

where 𝜂 is the learning rate:

𝑙 = 𝜌𝐸 [x𝑓 (𝑦)] + 𝜇𝐸 [x𝑔 (𝑦)] ,

𝛿 = 𝜌𝐸 [𝑓

(𝑦)] + 𝜇𝐸 [𝑔


(𝑦)] ,

𝑔 (𝑦) = 𝜀 (𝑦, 𝑟) − 𝜉.

(37)
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The main difference between the improved algorithm in
(36) and the original algorithm in (12) is that 𝜌 in (36) is just
a positive constant and �̂� in (12) is 2𝜌(𝐸{𝐹(𝑦)} − 𝐸{𝐹(V)}).
In the original algorithm, we have to additionally compute
(𝐸{𝐹(𝑦)} − 𝐸{𝐹(V)}) in every iteration, which considerably
consumes much more time compared with the improved
algorithm.

The one-unit ICA-R uses Newton’s method to optimize
cost function. Newton’s method is sensitive for the initial
value.The initial separating vector directly affects the conver-
gence of Newton’s method. However, the original algorithm
randomly initializes the separating vector. To avoid random
initialization, inspired by previous a report [20], we use the
following expression to initialize the separating vector:

w
0
= (rx−1)

𝑇

, (38)

where r is the whitened reference signal, x is the whitened
signal, x−1 is the inversion of x, and w

0
is the initialization

separating vector. The closer to whitened desired signal r is,
the closer to the perfect separating vector w

0
will be. This

can speed up the algorithm convergence rate and improve
the probability of global convergence compared with random
initialization.

Therefore, the proposed one-unit ICA-R algorithm for
extracting FECG can be described as follows:

(1) Center the observed signals.
(2) Whiten the centered signal.
(3) Choose a proper scalar penalty parameter 𝛾, conver-

gence threshold 𝜍, parameter 𝜌, and the leaning rate
𝜂; generally let 𝜌 = 1, 𝜂 = 1.

(4) Use (38) to initialize separating vector w
0
.

(5) Normalize w
0
← w
0
/‖w
0
‖.

(6) Choose an initial value for 𝜇.
(7) Update the Lagrange multiplier 𝜇 by (9).
(8) Update the separating vector w by (36).
(9) Normalize the separating vector 𝑤 by

w
𝑘+1

←
w
𝑘+1

w𝑘+1

. (39)

(10) Until min (‖w
𝑘+1

− w
𝑘
‖, ‖w
𝑘+1

+ w
𝑘
‖) ≤ 𝜍, otherwise

go back to step (7).

5. Simulation and Discussion

To demonstrate the effectiveness of the proposed one-unit
ICA-R algorithm, both artificial ECG data and real-word
ECG data are used in the following two experiments. To
quantitatively compare the performance of the proposed one-
unit ICA-R and Mi’s one-unit ICA-R [25], we adopt the
individual performance index (IPI) as an indicator function,
as was used in a previous study [11]. It is defined as

IPI = (

𝑀

∑
𝑖=1

𝑝𝑖


max
𝑗


𝑝
𝑗



) − 1, 𝑗 = 1, . . . ,𝑀, (40)

where | ⋅ | denotes the absolute value operator, 𝑝
𝑖
denotes

𝑖 element of the global system vector p = w𝑇BA =

(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑀
),A ismixingmatrix,B is thewhitenmatrix,w

is the separating vector of mixed signals after whitening,w𝑇B
is the global separating vector, 𝑀 is the number of mixing
signals, and max

𝑗
|𝑝
𝑗
| is to find the maximum valued among

the elements in the vector p = (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑀
).The extracted

signal by proposed method can be described as

𝑦 = w𝑇Bx = w𝑇BAs = ps =
𝑀

∑
𝑖=1

𝑝
𝑖
𝑠
𝑖
. (41)

From (41), it can be easily seen that if p = (0, 0, . . . , 𝑝
𝑘
, . . . , 0),

𝑝
𝑘

̸= 0, we will have the extracted signal 𝑦 = 𝑝
𝑘
𝑠
𝑘
, which is

just rescaled signals of 𝑠
𝑘
. It is obvious from (40) that we have

IPI ≥ 0 and that IPI equals zero if and only if p is a rescaled
canonical base vector that only one element of vector is not
zero. Therefore, the closer to a rescaled canonical base vector
the global system vector p, the nearer to zero the IPI and thus
the better the performance of one-unit ICA-R method.

In the experiments, we select 𝐹(𝑦) = log cosh (𝑦) as
the nonquadratic function and 𝜀(𝑦, 𝑟) = 𝐸{(𝑦 − 𝑟)

2
} as the

closeness measure function. Additionally, 𝑔(𝑦) = 𝜀(𝑦, 𝑟) − 𝜉.
We also use the corrected first derivative of 𝑔(𝑦) as its first
derivative. The corrected first derivative is given in [19] as

∇w𝑔 (𝑦) = 𝐸 {x𝑔 (𝑦)} = 2𝐸 {x (𝑦 − 𝑟)} . (42)

In the following experiments, we set 𝜌, 𝜂, and 𝛾 all equal to
one and perform 1000 trials for each data set.

5.1. Experiment with Artificial ECG Data. The artificial sig-
nals include the power line interference with 50Hz, Gaussian
noise, FECG, and MECG. The FECG and MECG are gener-
ated by using the ECG toolbox of Sameni [28]. The reference
signals for the FECG and MECG are constructed with sign
operation to roughly give the signs of the most data samples
of the desired source signal [14, 15]. There are 5000 samples
in the experiment. The mixing matrix is randomly generated
as

𝐴 =

[
[
[
[
[

[

0.8925 0.0570 0.5044 0.9153

0.0169 0.0590 0.4364 0.4911

0.5165 0.4735 0.8193 0.7484

0.0418 0.3840 0.4448 0.3421

]
]
]
]
]

]

. (43)

Four artificial source signals are depicted in Figure 1, which
are considered independently of each other. s1 is the power
line interference with sub-Gaussian distribution. s2 is the
random Gaussian noise with Gaussian distribution. s3 and
s4 are FECG and MECG with super-Gaussian distribution,
respectively. The mixtures are shown as mixed signals in
Figure 2. The FECG extracted by the proposed method and
its reference are shown in Figure 3. The MECG extracted
by the proposed method and its reference are shown in
Figure 4. Comparisons of the extracted FECG and the
extracted MECG are shown in Figures 3 and 4 with the
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Figure 1: Four artificial source signals. (s1): power line interference.
(s2): random Gaussian noise. (s3): FECG signal. (s4): MECG signal.
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Figure 2: Mixed signals from sources in Figure 1.

desired signals s3 and s4 in Figure 1, respectively. It is evident
that the waveforms of the extracted signals are most identical
to the waveforms of the desired signals.

To quantitatively compare the performance of the pro-
posed method and that of Mi’s method [25], the IPI, defined
in a previous report (40), are computed for the extraction
results of both algorithms in the same experiment. Both
algorithms use the same parameters and reference signal.The
results are shown in Table 1, where it can be seen that the IPIs
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Figure 3: Reference signal and extracted artificial FECG signal.
(Ref): reference signal for FECG signal. (FECG): extracted artificial
FECG signal by the proposed method from mixed signals in
Figure 2.
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Figure 4: Reference signal and extracted artificial MECG signal.
(Ref): reference signal for MECG signal. (MECG): extracted arti-
ficial MECG signal by the proposed method from mixed signals in
Figure 2.

Table 1: Comparison of the IPI performance and time consumed by
the proposed method and Mi’s method.

Desired signal FECG MECG
Proposed IPI 0.0144 0.0788
Mi [25] IPI 0.0144 0.0788
Proposed Time (s) 0.010359 0.014047
Mi [25] Time (s) 0.025578 0.033813

are the same for the proposed method andMi’s method.This
means that both methods successfully extract the FECG and
MECG with the same low IPI. However, the running time
consumed by both methods is quite different. The running
time of the method proposed here is roughly half of that of
Mi’s algorithm.

5.2. Experiment with Real-World ECG Data. The real-world
ECG data was contributed by De Moor [27] and has been
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Figure 5: Real-world ECG recordings: the 8 channels of ECG
recordings obtained from a pregnant woman with data length of
2500 samples and time of 10 s [27].

Table 2: Comparison of the time consumed by the proposed
method and Mi’s method for the real-word ECG data.

Desired signal FECG MECG
Proposed Time (s) 0.022828 0.022109
Mi [25] Time (s) 0.050484 0.049234

widely used by other researchers [11–13, 25]. It was recorded
over 10 s and sampled at 250Hz by placing eight electrodes
on different locations of a pregnant woman. The real-word
ECG data are shown in Figure 5, where the signals Ch1–
Ch5 were the recordings from five electrodes placed on
the woman’s abdomen. Accordingly, the FECG, respiratory
motion artifacts, and the MECGwere visible in these record-
ings. The signals Ch6–Ch8 were the recordings from three
electrodes placed on the woman’s thorax. In these thoracic
measurements, the FECG was invisible because of the dis-
tance between the fetus and the chest leads.

In the Ch1 recording, the strong and slow heart belongs
to the mother, while the weak and fast belongs to the fetus.
Therefore, we can use the information about fetus in the
Ch1 recording to construct reference signal for extracting the
FECG. We use impulse series whose occurrence time is the
same as that of the subpeaks in the first channel signal Ch1 as
reference for extracting the FECG. The impulse series whose
occurrence time is the same as the peaks of any channel signal
were used as reference for extracting the MECG.
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Figure 6: Reference signal and extracted FECG signals by both
methods from the real-world ECG signals in Figure 5. Ref: reference
signal for FECG signal. A-B: extracted artificial FECG signals by the
proposed method and Mi’s method, respectively. C: red and blue
curves are exactly the samewith the subfigures A and B, respectively.

The reference signal and the FECG signal extracted by
both methods are shown in Figure 6, where the reference
signal is denoted as Ref, the FECG extracted by the proposed
method is denoted as A, the FECG extracted by Mi’s method
is denoted as B, and both extracted FECG signals are
redescribed in C and represented with different color curves.
The reference signal and the MECG signal extracted by both
methods are shown in Figure 7, where the reference signal is
also described as Ref, the MECG extracted by the proposed
method is denoted as A, theMECG extracted by the previous
method is denoted as B, and both extracted MECG signals
are redescribed in C with different color curves. We can
see in Figures 6 and 7 that the FECG and MECG are both
successfully extracted by both methods. Since the mixing A
and the pure FECG and MECG signals are not available for
the real-word ECG recordings, the IPI performance cannot
be computed. Butwe can compare thewaveforms of extracted
signals by both methods to estimate their relative error.
Therefore, we redescribe the extracted FECG and MECG
signal waveforms by both methods in the same subfigure C
with different color curves in Figures 6 and 7, respectively.
From the subfigure C in Figures 6 and 7, it can be seen that
the different color curves are almost the same. This means
that the proposed method and Mi’s method have almost
the same error. However, their consumed running time is
considerably different, as shown in Table 2.The running time
is approximately reduced to half of that of the Mi’s algorithm.

6. Conclusion

In this paper a fast one-unit ICA-R algorithm for extracting
ECG is proposed by simplifying the non-Gaussian mea-
surement method of the extracted signal. In the proposed
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Figure 7: Reference signal and extracted MECG signals by both
methods from the real-world ECG signals in Figure 5. Ref: reference
signal for MECG signal. A-B: extracted artificial MECG signals by
the proposedmethod andMi’s method, respectively. C: red and blue
curves are exactly the samewith the subfigures A and B, respectively.

algorithm, the nonlinear function of the extracted signal is
directly used as non-Gaussian measurement function. This
avoids having to compute the difference between the function
of the extracted signal and the function of the Gaussian ran-
dom vector with the samemean and variance as the extracted
signal. Centering and whitening are also used to preprocess
the observed data to avoid computing the observed signal
covariance matrix. As a result, the computation complexity
for the one-unit ICA-R algorithm is greatly reduced.

The validity of the proposed algorithm is tested and
compared to Mi’s algorithm using artificial ECG data and
real-world ECG data. Both experimental results demonstrate
that the convergence rate of the proposed algorithm is two
times faster thanMi’s algorithm,while bothmethods have the
same error.
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