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Abstract

Background

The identification of a target-indication pair is regarded as the first step in a traditional drug

discovery and development process. Significant investment and attrition occur during dis-

covery and development before a molecule is shown to be safe and efficacious for the

selected indication and becomes an approved drug. Many drug targets are functionally pleio-

tropic and might be good targets for multiple indications. Methodologies that leverage years

of scientific contributions on drug targets to allow systematic evaluation of other indication

opportunities are critical for both patients and drug discovery and development scientists.

Methods

We introduced a network-based approach to systematically screen and prioritize disease

indications for drug targets. The approach fundamentally integrates disease genomics data

and protein interaction network. Further, the methodology allows for indication identification

by leveraging state-of-art network algorithms to generate and compare the target and dis-

ease subnetworks.

Results

We first evaluated the performance of our method on recovering FDA approved indications

for 15 randomly selected drug targets. The results showed superior performance when com-

pared with other state-of-art approaches. Using this approach, we predicted novel indica-

tions supported by literature evidence for several highly pursued drug targets such as IL12/

IL23 combination.

Conclusions

Our results demonstrated a potential global approach for indication expansion strategies.

The proposed methodology enables rapid and systematic evaluation of both individual and

combined drug targets for novel indications. Additionally, this approach provides novel

insights on expanding the role of genes and pathways for developing therapeutic interven-

tion strategies.
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Introduction

Identification of high-quality drug targets is at the heart of successful drug discovery and

development but remains extremely challenging. The early “one gene, one drug, one disease”

paradigm [1] has evolved to consider the cellular and physiological context of the target. This

opens the potential for a drug target to be a potentially good target for multiple disease indica-

tions beyond the first or best established one. Efficient methods for indication expansion are

required to realize this potential.

The identification of the right target-indication pair is highly challenging through tradi-

tional ad-hoc approaches. The generation of rich and heterogeneous multi-omics data

resources, and disease to gene association knowledge recently has enabled the development of

several computational approaches intended to systematically expand the therapeutic base of a

given target. Among the proposed methods, some of them are similarity-based approaches.

For instance, Gottlieb et al., developed a drug indication (PREDICT) method that can identify

drug-disease associations and predict new drug indications based on the observation that simi-

lar drugs are indicated for similar diseases [2]. Zhao et al. established comCIPHER which lev-

eraged Bayesian partition method to identify drug–gene–disease co-modules to relate drug to

diseases for novel indication [3]. However, such approaches usually required comprehensive

drug and disease information such as chemical structure and treatment profiles. Some of the

methods are machine learning based approaches [4–6]. However, the machine learning

approaches mainly consider the known drug to disease associations as positive or negative

samples, while drug target and disease molecular basis, such as cellular and physiological con-

text, have been largely overlooked.

On the other hand, network-based methods have become popular approaches as they pro-

vide a systems-level view of the corresponding biological systems. Many biomedical networks

were proven comparable to social or web networks which have scale-free and small-world

properties [7], and therefore algorithms developed for analyzing social or web networks can be

equally applicable to biological network tasks [8–10].

Since retrieving useful patterns in the networks may uncover the underlying biomedical

characteristics and provide possible solutions for medical treatment, several network-based

methods have been proposed to discover new indications for approved drugs. The proposed

network methods exploit their own generated biomedical networks based on drug and disease

profiles or integrate the profiles with a molecular network. For instance, Liu et al. integrated a

drug-drug networks with a disease-disease similarity network, then applied a random walk

algorithm on the network to predict new indications for approved drugs [11]. Chiang and

Butte [12] introduced a network-based, guilt-by-association method to expand novel drug

indications based on shared treatment profile from disease pairs. Emig et al. [13] proposed a

network method which took disease signatures as input to generate target profiles, then

applied a logistic regression model to train and prioritize targets for drug repositioning. How-

ever, the methods were mostly based on establishing a disease phenotype or drug similarity

network to identify novel drug indications, there are still some limitations that need to be

addressed: For example, as the drug target perturbation is usually accompanied by disruption

of its involved biological processes, it is critical to investigate how the drug target and disease’s

biological processes or pathways are related. Additionally, human genetic evidence on a drug

target has been reported to play an increasingly important role on achieving a successful clini-

cal trial [14]. Therefore, it is of great importance to explore how drug targets can achieve thera-

peutic benefit for different indications through their biological network connectivity while

supported by the genetic evidences.
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Here, we introduce a network-based approach by integrating genetic evidence with a pro-

tein to protein interaction (PPI) network to systematically screen and prioritize disease indica-

tions for drug targets. Our approach was inspired by the following scientific rationales: First,

validated targets for well-studied indications are usually supported by human genetic evidence.

Recent work by Nelson et al. [15] showed that among the portfolios of drug targets, the num-

bers of those with direct human genetic support increased significantly across the drug devel-

opment pipelines and they can achieve 2-fold higher probability of success. On the other hand,

many complex human diseases are genetically associated with multiple variants identified

from genome-wide association studies (GWAS) [16]. Those disease associated genes also tend

to have a high propensity to interact with each other, forming disease modules or subnetworks

in a molecular interaction network. For instance, many immune-mediated diseases reflect per-

turbation of genes that interact in complex networks [17]. Most importantly, many studies

have demonstrated that genetically associated disease genes and validated targets tend to be

neighbors in molecular interaction networks [18, 19].

Based on these findings, we hypothesized that for any disease indication, when genetically

associated genes are closely connected with the drug target(s) and their neighboring genes in a

PPI network, then they could be considered as potential candidates for the drug target. We

therefore formulate the target indication expansion problem as prioritizing diseases for drug

target(s) through network comparisons. A target subnetwork was defined as a subnetwork that

connects the drug target(s) and their neighboring nodes in PPI network, which represents the

affected processes or signaling pathways under target perturbation. A disease subnetwork was

defined as a subnetwork which contains all (or the majority) of the disease genetically associ-

ated genes, with additional essential genes that can form a network module in PPI network.

We present the key steps of our approach in Fig 1: A) For a given drug target, we use a

state-of-art node prioritization algorithm (see Materials and methods) to prioritize the nodes

that have high connectivity with the drug target in the PPI network. Those top ranked nodes

and their direct interactomes were selected to generate the target subnetwork. For each disease,

we performed module detection algorithms from disease associated genes to detect the disease

subnetwork. B) The network node enrichment between target subnetwork and each disease

subnetwork was computed by hypergeometric test to derive the enrichment score. C) Finally,

all the diseases were ranked by the enrichment score to identify the top potential indications

for the target.

Results

Performance evaluation

In order to evaluate our network method performance doesn’t occur by chance, we randomly

selected 15 drug targets with their FDA approved indications and assessed how well their

approved indications can be successfully predicted when compared with the prediction results

on random drug targets. The target list was retrieved from Clarivate’s MetaCore (https://

portal.genego.com), in which each target has at least one FDA approved indication. For all the

diseases or indications used in performance evaluation, we took disease collections from Dis-

GeNET [20]. The approved indications from MetaCore were mapped to DisGeNET disease

terms for performance evaluation. Table 1 shows the selected drug targets and their corre-

sponding number of approved indications, the full list of all approved indications for the 15

drug targets can be found in S1 File.

For each selected drug target, we randomly selected 100 druggable targets and used the

same network approach to compute their average performance. We calculated the sensitivity

and specificity for each threshold. Sensitivity refers to the percentage of the associations whose
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Fig 1. Workflow of network-based approach for indication expansion.

https://doi.org/10.1371/journal.pone.0253614.g001

Table 1. Summarization of drug targets and their number of approved indications in MetaCore.

Drug Target Number of Approved Indications

TNF-alpha 10

Alpha-2A adrenergic receptor 12

COX-2 (PTGS2) 20

GABA-A receptor 6

Histamine H1 receptor 26

HTR2A 13

SERT 11

ACM3 20

IFNAR1 3

BTK 2

HTR6 7

MCR 9

NET 11

Beta-1 adrenergic receptor 12

Dopamine D2 receptor 21

https://doi.org/10.1371/journal.pone.0253614.t001
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ranking is higher than a given threshold, namely, the ratio of the successfully predicted known

drug-indication associations to the total known drug-indication associations. Specificity refers

to the percentage of associations that are below the threshold. Receiver-operating characteris-

tics (ROC) curves were plotted by varying the threshold, and the values of area under curves

(AUC) were calculated as AUROC for the measurement of the performance of the predictor.

In our performance evaluation results, we found the performance of network approach

with the selected drug target always outperformed that with random drug target (Fig 2). The

average AUROC of the selected drug targets had reached much higher average AUROC than

the random drug targets on predicting the approved indications, which demonstrated the indi-

cation predictive ability for the specified drug target doesn’t occur by chance.

All the 15 drug targets outperformed random targets by AUC, especially for Alpha-2A

adrenergic receptor and GABA-A receptor, which has increased AUC by 0.37 and 0.40, respec-

tively (Figs 3 and 4). The average difference between AUC of specified drug target and random

druggable targets is around 0.216. The ROC curves for other targets can be found in S1 and S2

Figs.

Comparison with other indication prediction approaches

We also compared the performance of our method with other state-of-art approaches. One of

the commonly used methods is to identify disease indications by genetic associations between

a drug target and specific diseases, e.g., if there is a novel target to disease association was iden-

tified from GWAS studies, this disease could be considered as a potential indication for that

drug target. In addition to the genetic association approach, we also investigated other meth-

ods that were used to predict target indications, such as proximity-based network approaches

that proposed by Guney et al [21]. In proximity-based network approaches, 5 different meth-

ods were developed to quantify the proximity that defined by network distance between drug

targets and diseases. For each drug target to disease pair, the network distance between drug

targets and disease genes was calculated by each of the 5 methods. On the other hand, a set of

the expected distances that between the same targets with randomly selected disease gene sets

were also calculated. The network distance and expected distances were compared to derive

the significance of network distance between targets and diseases, on which the diseases can be

Fig 2. AUROC performance of network algorithm, improved network algorithm, genetic association and random

genes.

https://doi.org/10.1371/journal.pone.0253614.g002
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further prioritized for indication prediction. Among the 5 developed the methods, the closest

distance approach (averages the shortest path lengths between drug targets to only the nearest

disease proteins), the shortest distance (averages the shortest path lengths between drug targets

to all the disease proteins), and kernel distance (down-weights the longer shortest path dis-

tances using an exponential penalty) demonstrated a better performance in discriminating

among the known and unknown drug-disease pairs in author’s benchmarking [21]. Therefore,

in addition to genetic association approach, we further picked these 3 methods to compare the

performance with our method. We compared the performance of the different approaches in

the following manner: We derived all genetic associations to diseases for each of the 15 selected

drug targets from DisGeNET [20]. Each gene-disease association has been provided with a

genetic association score defined by DisGeNET. The score ranges from 0 to 1, indicating the

significance of the genetic association. If there are indications that do not associate with any

drug targets, the scores will be assigned as 0. For genetic association approach, for each drug

target, we sorted the indications by their scores in descending order and used them for indica-

tion predictions. For proximity based network approaches, we collected all the genetic associ-

ated genes of each disease from DisGeNET, then calculated the network proximities between

each drug target and disease genes for indication predictions. For our network approach, we

Fig 3. Receiver Operating Characteristic (ROC) curve showing the performance of different approaches on Alpha-2A adrenergic receptor. The plot for network

approach is characterized by an AUC (area under the curve) of 0.96.

https://doi.org/10.1371/journal.pone.0253614.g003
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used the same disease genes to generate the disease subnetwork for each disease to compare

with target subnetwork.

Similarly, we compared the performance of the five methods using AUROC as evaluation

metrics. The network-based approach shows superior performance for most drug targets (Fig

2). The average AUC of 15 drug targets from network method is 0.874, which significantly out-

performed the average AUC from the genetic association method (0.682). Among the proxim-

ity based network approaches, the closet distance approach has an average AUC of 0.848,

while the shortest distance approach has an average AUC of 0.645 and 0.833 for Kernel

approach. The genetic association approach slightly outperformed the network analysis algo-

rithm for only one target, TNF-alpha.

We also compared the performances with different metrics since under some circum-

stances, AUROC is not a good metric due to too few indications associated with a specific

drug target in DisGeNET. This could potentially prevent predictions for several indications.

To address this, we used sensitivity for performance evaluation. We consider sensitivity(also

referred as recall) is a good metric since when predicting drug-indication pairs we are most

concerned with whether the approved indications are ranked on the top of the list since the

true negative control is hard to define. Sensitivity is computed as the proportion of approved

Fig 4. Receiver Operating Characteristic (ROC) curve showing the performance of different approaches on GABA-A receptor. The plot for network approach is

characterized by an AUC (area under the curve) of 0.91.

https://doi.org/10.1371/journal.pone.0253614.g004
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indications that are predicted to be positive. Since the number of correctly predicted true posi-

tives reflects the discriminatory power of a prediction method to distinguish true positives,

especially when the number of negative samples is far larger than that of positive samples.

Therefore, we report the number of correctly predicted drug-disease associations with respect

to a specified top-rank threshold. A known drug-disease association is considered as correctly

predicted if its ranking is higher than a specified top-rank threshold. To compare the perfor-

mance of the methods by sensitivity, we used different ranking threshold (Top 5%, 10%, 15%,

20%, 25% and 30%) based on the total numbers of diseases as positive, and investigate if the

known target disease links can correctly predicted by different methods. among all the. The

sensitivity derived from network approach, genetic association approach and proximity based

network approaches for the 15 drug targets were averaged and compared in Fig 5.

In Fig 5, it can be seen that our method demonstrated a superior performance than other

methods. When the threshold increased to top 10% and above, the average sensitivities were

consistently higher than of other methods, indicating our method can correctly predicts more

true drug-disease associations upon each top-rank threshold. The shortest distance and genetic

association approaches, on the other hand, had the lowest performance, while the closest dis-

tance and kernel distance approaches showed good performance as well. Throughout the per-

formance comparison across different approaches, the best threshold on the 15 drug targets

for our network method ranges from top 10% to top 20%, the average is around 15%. There-

fore, we would recommend top 15% as a threshold to shortlist the predicted candidate indica-

tions for further investigation.

Improved network approach

In the method described in the material and method section on our network approach, equal

weights are assigned to all nodes in the disease subnetwork while evaluating target—disease

subnetwork node enrichment. However, since disease subnetwork is formed by connecting its

genetic associated genes and additional nodes, the genetic associated genes provide much

stronger evidence for the association than other additional nodes. Hence, it is sensible to put

more weights on genetic associated genes. In our work, we also proposed the improved net-

work approach by putting twice weights on genetic associated genes. Specifically, for each

indication, each of its disease associated genes is considered as two nodes in the disease subnet-

work. We reperformed hypergeometric test to evaluate how significantly the target

Fig 5. Sensitivity of predictions on network approach and other approaches.

https://doi.org/10.1371/journal.pone.0253614.g005
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subnetwork node set overlaps with new disease subnetwork node set. Our evaluation result

demonstrated that the improved method has reached even higher performance on most of the

drug targets when compared to our original network method, the genetic association method

and proximity based network methods as well (Figs 2 and 5).

Case study: Expanding novel indications for highly pursued drug targets

We applied our method on predicting novel indications on several highly pursued drug tar-

gets. Here we conduct a case study on a combination of two drug targets: interleukin 12 (IL-

12)/IL-23 for their indication expansion to further validate the performance of the proposed

method.

The IL-12/IL-23 had attracted immense interest for clinical development, recently. Both IL-

12 and IL-23 are important cytokines. Their involved signaling pathway has been identified as

a critical role on inducing the inflammation in adaptive immune responses. IL-12 promotes

the Th1 polarization and secretion of critical cytokines such as interferon-γ and tumor necro-

sis factor by T and NK cells [22]. Whilst IL-23 helps to promote the differentiation of naïve T

cells into Th17 cells with the secretion of several inflammatory cytokines such as IL-17 and IL-

22 [23]. There are various drugs developed to modulate IL-12 (Th1)/IL-23(Th17) pathways,

such as IL-23 specific antibodies and IL-23R peptide inhibitors for treating autoinflammatory

diseases. On the other hand, combined therapies have also been under immense investigation.

Clinical trials have demonstrated the clinical effect with a safety profile on IL-12/IL-23 block-

ade. Ustekinumab, a therapeutic antibody targeting both cytokines is now widely licensed for

the treatment of Crohn’s disease [24] as well as psoriasis and psoriatic arthritis [25]. Further

studies would elucidate its potential role as first-line therapy for IBD and other autoinflamma-

tory diseases. There is strong interest within biopharma to expand the therapeutic base for

Ustekinumab and other similar drugs. Similarly, there is a critical need to explore indication

expansion potential for many other therapeutics to benefit patients. This offers an opportunity

for leveraging our network approach to systematically explore the drug novel indications that

supported by genetic evidences.

To perform the indication expansion study, we generated a target subnetwork using IL-12/

IL-23 as drug targets, which contains the two genes and their neighboring interactomes. We

also generated disease subnetworks for each indication in DisGeNET based on their genetically

associated genes. The network enrichment analysis was performed between the target subnet-

work and each disease subnetwork. The computation steps were repeated 3 times, and the

enrichment scores were averaged. The diseases were then ranked by the enrichment score.

When we investigated the ranked indications (S2 File), we have found that the approved

indications, or indications which are currently under clinical trials for IL-12/IL-23 interven-

tion were highly ranked in our predictions. Among the ranked 6,701 indications from DisGe-

NET, inflammatory bowel disease (IBD), which is one of the approved indications for

Ustekinumab, was ranked within top 30 (14th) predicted indications (Table 2). Other

approved indications for Ustekinumab also highly ranked among all the predicted indications:

Crohn’s disease (165th), Psoriasis (Pustulosis of Palms and Soles, 156th) psoriatic arthritis

(359th). Additional IBD related indications such as colitis, was ranked at 70th, and there is a

phase III trials in ulcerative colitis [24]. Figs 6 and 7 demonstrated the connections between

disease subnetwork and target subnetwork, where the diseases are psoriatic arthritis and hidra-

denitis suppurativa, respectively. Both networks showed a significant overlap between disease

and target subnetwork nodes, indicating a strong relationship between the target perturbed

process and the disease functions. The approval and on-going clinical trials of the two indica-

tions lend further support to our observations.
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For potential novel indications, the first ranked indication is Seborrheic dermatitis of scalp.

We found the potential clinical efficacy on dermatitis were supported by multiple studies. In a

recent report from Takahashi et al. [26], the authors observed Anti-IL-12/IL-23p40 antibody

ameliorates dermatitis and skin barrier dysfunction in mice. Moreover, in a recent phase II,

placebo-controlled clinical trial on moderate-to-severe atopic dermatitis patients [27], the

ustekinumab group achieved higher clinical responses at the 12, 16 weeks (primary endpoint)

and 20 weeks compared to placebo. Although the difference between groups was not signifi-

cant, the inconclusive results might possibly be due attributed to insufficient dosing of usteki-

numab and the unlimited use of background topical corticosteroids. Hidradenitis suppurativa,

which was another highly pursued immune mediated indication, was ranked 110th in our pre-

dictions. We found that there is one treatment Dimethyl fumarate which impairs IL-12 and

IL-23 production by dendritic cells and macrophages, which is currently in clinical phase III

trial for this disease [28, 29]. Other top predicted novel indications include Gastroenteritis

(23th), which could play a role in the initiation and/or exacerbation of IBD [30].

We also noticed several indications of infectious nature, such as bacteroides infections, can-

didiasis and intraabdominal infections were among the top ranked indications (Table 2). For

Table 2. Top30 predicted indications for IL12/IL23.

Rank Disease P-value FDR

1 Seborrheic dermatitis of scalp 1.16E-303 7.75E-300

2 SPINOCEREBELLAR ATAXIA 23 2.42E-299 1.62E-295

3 Sensation Disorders 2.42E-299 1.62E-295

4 Plague 2.42E-299 1.62E-295

5 Irritable Mood 2.42E-299 1.62E-295

6 Onychomycosis 5.35E-298 3.58E-294

7 Pentosuria 3.31E-296 2.22E-292

8 Bacteroides Infections 3.31E-296 2.22E-292

9 Cheilitis 1.73E-295 1.16E-291

10 Oral candidiasis 9.40E-294 6.29E-290

11 Candidiasis, Chronic Mucocutaneous 2.28E-290 1.52E-286

12 Tyrosine Kinase 2 Deficiency 5.30E-290 3.54E-286

13 Leukoerythroblastic Anemia 5.30E-290 3.54E-286

14 INFLAMMATORY BOWEL DISEASE, AUTOSOMAL RECESSIVE 5.30E-290 3.54E-286

15 COLD-INDUCED SWEATING SYNDROME 1 2.27E-289 1.52E-285

16 Bronchial Spasm 2.27E-289 1.52E-285

17 Intraabdominal Infections 3.98E-288 2.66E-284

18 STUVE-WIEDEMANN SYNDROME 3.98E-288 2.66E-284

19 Lobomycosis 1.06E-287 7.06E-284

20 Hand, Foot and Mouth Disease 1.45E-287 9.70E-284

21 Hyper-Ige Recurrent Infection Syndrome, Autosomal Dominant 6.21E-287 4.15E-283

22 Rheumatoid Arthritis, Systemic Juvenile 2.61E-286 1.74E-282

23 Gastroenteritis 3.75E-284 2.51E-280

24 Amyloidosis, Primary Cutaneous 6.94E-284 4.63E-280

25 Entamoeba histolytica Infection 6.94E-284 4.63E-280

26 Glutaric aciduria, type 1 6.94E-284 4.63E-280

27 Genital Herpes 2.08E-283 1.39E-279

28 Cardiac Output, High 6.94E-284 4.63E-280

29 Fetal Resorption 6.94E-284 4.63E-280

30 Galactorrhea not associated with childbirth 6.94E-284 4.63E-280

https://doi.org/10.1371/journal.pone.0253614.t002
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this perspective we found studies demonstrating that psoriasis patients treated with IL-12/23

blockers showed a reduced risk for serious infection compared with those who received TNF

or IL-17 inhibitors [31]. This might be due to the restoration of tissue barrier function or nor-

malization of immune dysregulation, suggesting improvement over certain infectious condi-

tions as a result of therapeutic intervention.

Fig 6. Target and disease subnetwork connection network. Purple represents disease (Psoriatic Arthritis) network nodes, green

represents IL12/IL23 network nodes, and red represents target and disease subnetwork shared nodes, respectively.

https://doi.org/10.1371/journal.pone.0253614.g006

Fig 7. Target and disease subnetwork connection network. Purple represents disease (Hidradenitis Suppurativa)

network nodes, green represents IL12/IL23 network nodes, and red represents target and disease subnetwork shared

nodes, respectively.

https://doi.org/10.1371/journal.pone.0253614.g007
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There are other novel indications which worth further investigations. They were not listed

in Table 2 due to the context limit. The S2 File contains the full list of our predicted indications

for IL-12/IL-23. Since our main goal for this work is to develop a method that can systemati-

cally prioritize thousands of indications rather than just identify one or two indications for the

drug targets, we consider the top rankings on IL12/IL23 from our method could quickly create

a shortlist of potential indications (e.g. top 15%) based on the genetic evidence and network

connections. This could provide the starting point for bench scientists to systematically evalu-

ate and develop some actionable hypotheses on next steps to act on these potential indication

opportunities. They could be further filtered down by other criteria such as biological plausi-

bility, in-house data and literature evidences for the top indications as mentioned above.

Discussion

In this paper, we proposed a network-based methodology for drug target novel indication

expansion by taking advantage of genetic evidence and PPI networks. This methodology suc-

cessfully recovered FDA approved indications for a set of randomly selected drug targets in

our performance evaluation, and it also outperformed other existing indication expansion

approaches. The performance was further enhanced by putting weights on genetically associ-

ated genes for diseases. On investigating highly pursued drug targets of interest such as IL-12/

IL-23, the approved disease indications such as IBD were consistently ranked at the top on our

predicted list. We consider the strong performance is due to the genetic evidence identified

from genome-wide association studies (GWAS), which led to the identification of multiple

variants on IL-12/IL-23 and other neighboring genes associated with IBD, the vast majority of

which are shared by Crohn’s disease and ulcerative colitis. By further connecting the multiple

identified variants and genes into a network module, the disease involved biological processes

and pathways can be represented at the cellular level. This will enable us to compare disease

associated biological process and pathways that are perturbed by the target engagement. Based

on this, several novel indications were also identified based on the consistency and biological

plausibility supported by studies on their associations to targets.

We consider this methodology to not only expand potential indications for drug targets but

also provide novel insights that help leverage the impact of genetic and pathway information

for developing therapeutic intervention strategies. In addition, compared to other indication

expansion approaches, our method also has the potential to predict indications for treatments

with multiple drug target combinations, other than a single drug target. This is especially use-

ful for recent popular therapeutic approaches, such as combo treatments. Therefore, we con-

sider this methodology to be able to be readily applied to other drug discovery portfolios,

which enable us to formulate novel, testable hypotheses facilitating target indication expan-

sion, or drug repositioning candidates, and ultimately realize the goal of personalized

medicine.

Despite the encouraging results produced by our methods, some limitations should be

noted. First, the methods can only work for diseases with known gene to disease associations,

and our current knowledge about gene to disease associations is still far from complete. The

predicted results may be biased by heavy reliance on protein interaction topology. It is well

known that some diseases originate or impacted by environmental factors, acquired somatic

mutations, or other phenomena, which may not be fully characterized by protein interactome

network topology, as generated in this workflow. To improve the prediction of target-disease

associations for novel indications, other reliable features need to be taken into consideration,

such as using tissue-level gene expression to generate disease modules. Therefore, it is impor-

tant to note that the indication expansion by our approach can only be as accurate as the
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current protein interactome can accurately represents the underlying biological process for

each disease. Lastly, for some diseases who have known associated genes but if there is no pro-

tein interactome data available then we cannot directly use the approach for such cases. An

alternative approach would be to consider other types of networks (co-expression or func-

tional networks) and apply the same approaches.

Materials and methods

Datasets

We obtained all the available FDA-approved drug targets and their indications from Clari-

vate’s MetaCore for our target indication expansion and performance evaluation. Indications

for oncology were excluded as we were not investigating cancer indications. After removing

oncology indications, there are 2,806 target-indication pairs within 267 drug targets and 270

diseases in total.

The disease to gene association datasets were downloaded from DisGeNET (http://www.

disgenet.org). DisGeNET [20] is one of the public databases which consists of large collections

of gene to human disease and phenotype associations. The database collects the information

from expert curated repositories, including GWAS catalogues, animal models and scientific

literature.

There are several data processing procedures required in order to evaluate whether our

ranking list for DisGeNET could better recover the known approved indications of a query tar-

get in terms of the area under receiver operating characteristic curve (AUROC) and sensitivity.

Firstly, since there is no target to indication approval data from DisGeNET, we needed to

obtain the approved indications from other databases and map the approved indications to

DisGeNET disease terms. In this work, the approved target to indications list was obtained

from MetaCore, including FDA and EU approved indications which were labeled as positive.

Secondly, we were not able to match disease terms in DisGeNET and MetaCore directly due to

different disease ontologies. Hence, we used Mesh ID as the key to map disease names across

two databases. Since DisGeNET collects data from different sources, diseases that are without

Mesh ID were removed in our study. Since in DisGeNET there are also many diseases which

have the same Mesh ID, to further reduce the redundancy of diseases in our prediction list, we

only kept one term for those diseases which ranks highest for each Mesh ID in our result.

There are 9, 231 diseases with 6,701 Mesh IDs, therefore we kept 6,701 ranked indications in

our IL12/IL23 case study. The full list of the included diseases with their genetic associated

genes in our study from DisGeNET can be found in S3 File. We used AUROC as the evalua-

tion metric, which was obtained by comparing ranking list with the ground truth. To further

evaluate if approved indications were recovered, we also took FDR< 0.05 as a threshold and

calculated sensitivity.

The protein-protein interaction (PPI) network data was downloaded from STRING data-

base (version11) [32]. The STRING database is one of the most comprehensive protein to pro-

tein interaction network with predicted and known interactions. Each edge is given a weight

to identify the degree of confidence. In order to generate a reliable, high-trust level network

reference for our approach, we selected interactions with confidence score greater than 0.7

defined by STRING. After data preprocessing, we reconstructed our global protein-protein

interaction network with 14,157 nodes and 326,634 edges.

Generation of drug target subnetwork

In our work, a drug target subnetwork is defined as a subnetwork that connects the drug target

(s) and their neighboring nodes in a PPI network. In order to select the top neighboring nodes
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into the subnetwork, a node prioritization algorithm was needed to rank the neighboring

nodes according to their connectivity to the target. Many node prioritization algorithms have

been developed for this purpose, such as neighborhood scoring [33], Interconnectivity [34],

network propagation [35]. Among the algorithms, the network propagation algorithm has the

best performance on predicting the disease associated genes in our benchmark. Hence, we

selected network propagation to identify the top 200 neighboring nodes for a drug target’s

subnetwork.

Network Propagation is a flow-based method that prioritizes candidates by smoothing dis-

ease-associated information over the network. The scoring of the network nodes can be

regarded as propagating flow through the network. The starting nodes of the flow correspond

to the drug targets and are assigned a flow of 1, while the remaining network nodes are

assigned a flow of 0. These flow assignments represent the prior knowledge of the condition

and are smoothed over the network to prioritize candidates that are in close proximity to all

disease associated genes. The scoring is done by simulating an iterative process where flow is

pumped from the starting nodes to their network neighbors. In addition, every network node

propagates the flow received in the previous iteration to its neighbors. The iterations are

repeated until a steady state is reached. The final flow that each network object received corre-

sponds to its final score and defines the rank of the object in the list of candidates. In each iter-

ation, the flow for the network objects is updated as follows:

Ft ¼ a � A0 � Ft� 1 þ ð1 � aÞ � F0

Ft is a vector containing the flow for each network object at time point t. A’ corresponds to the

adjacency matrix of the graph, where each entry is normalized by the degrees of the source and

target nodes. The normalization by node degrees compensates for the fact that nodes with

many interactors have a higher chance of picking up flow by chance and are thus more likely

to be ranked higher in the prioritization. F0 represents the prior knowledge vector containing

the scores for disease genetic associated genes, or differentially expressed genes. The algorithm

terminates when the L1 norm of the difference between Ft and Ft-1 drops below 10−6.

Generation of disease subnetworks

We applied the DIAMOnD algorithm [36] to generate disease subnetworks. The algorithm

starts from genetically associated genes of a disease as seed node set and adds a new node that

is highly connected with the seed nodes iteratively. At every step, DIAMOnD pre-selects a set

of candidate nodes based on their connectivity to the current seed node set. The overconnec-

tivity p-value for each candidate node is calculated using hypergeometric test. Under null

hypothesis, the intersection size between a node neighbors and seed nodes is a random vari-

able following hypergeometric distribution.

The node with the smallest p value will be added into seed set each time. The growth stops

at a user-defined threshold, yielding one or more start nodes-enriched subnetworks. The num-

ber of iterations to add candidate nodes is assigned manually in the original DIAMOnD paper.

The author chose 200 as the putative size of complete disease modules within the interactome

for evaluating the performance of DIAMOnD. To further explore the effect of network size

parameter on performance, we did a benchmarking on different node numbers in DIAMOnD

as 100, 150, 200, 250 and 300 respectively. The benchmarking was conducted on the 15

selected drug targets and used their approved indications as ground truth to evaluate ranking

performance. As a result of the benchmarking, we didn’t identify any significant difference

among the ranking performance across these 5 parameters. The performance on average

AUROC and recall of 15 drug targets in different subnetwork size is shown in Table 3.
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Therefore in our calculation, we set the iteration number as 200. The original seed node set

which are the disease associated genes and the additional added nodes by the iteration were

used to generate disease subnetwork.

Comparison between target-disease subnetworks

We applied hypergeometric test to compare the two subnetworks and obtained p value to eval-

uate the topological enrichment. To account for multiple tests, false discovery rate (FDR) is

generated by adjusting p value with the correction method introduced by Holm et al [37]. Fur-

thermore, as the genetic associated genes vary from disease to disease, we assumed the disease

subnetwork started with more associated genes are much more reliable. Then the metrics is

adjusted by number of associated genes with p value, N refers to number of associated genes of

the disease:

Metric ¼
P val

log2ðN þ 1Þ
; P val < 1

1; P val ¼ 1

8
<

:

Diseases were sorted by the metric in an ascending order, the inverse of rank was calculated

as the final association score.

Supporting information

S1 Fig. ROC curves for randomly selected targets showing the performance of different

approaches.

(TIF)

S2 Fig. ROC curves for randomly selected targets showing the performance of different

approaches.

(TIF)

S1 File. Full list of all approved indications for the 15 randomly selected drug targets.

(XLSX)

S2 File. Full list of predicted indications for IL-12/IL-23.

(CSV)

S3 File. Full list of diseases with genetic associated genes included in this study from Dis-

GeNET.

(CSV)
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