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Abstract

We use topological data analysis to investigate the three dimensional spatial structure of the locus of afferent neuron
terminals in crickets Acheta domesticus. Each afferent neuron innervates a filiform hair positioned on a cercus: a protruding
appendage at the rear of the animal. The hairs transduce air motion to the neuron signal that is used by a cricket to respond
to the environment. We stratify the hairs (and the corresponding afferent terminals) into classes depending on hair length,
along with position. Our analysis uncovers significant structure in the relative position of these terminal classes and
suggests the functional relevance of this structure. Our method is very robust to the presence of significant experimental
and developmental noise. It can be used to analyze a wide range of other point cloud data sets.
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Introduction

One of the most pressing issues in biology in general, and

particularly in neuroscience, is the development of computational

methods that can extract relevant information from noisy data.

We are currently in a situation where there is still a lack of high

precision quantitative data, but often a relative abundance of noisy

and imprecise data. In the present work, we show how one can use

ideas from persistent homology [1,2,3] to analyze the three

dimensional spatial structure of the afferent neurons locus in the

cercal system of a cricket. This method is applicable to any point

cloud data set that exhibits an underlying topological structure

corrupted by noise.

The cercal system in a house cricket Acheta domesticus (Figure 1) is

a near-field flow sensor that senses fluid particle motion via an

array of very thin mechanosensory hairs called filiform hairs.

These hairs are distributed along two antenna-like, shallowly-

tapering appendages called cerci at the rear of the abdomen.

Different hairs have different directional and frequency sensitiv-

ities that are determined by the biomechanical properties of the

hair and its socket. Each hair is innervated by a single neuron,

whose axon projects into the terminal ganglion located near the

rear end of the animal. Each axon forks into a tree-like structure.

Individual branches are covered with synaptic boutons that make

synaptic contact with one of the ganglion’s interneurons. By

staining the afferent neuron and imaging with a scanning

microscope, one can locate the three dimensional coordinates of

the set of synaptic boutons for a particular hair. Hairs are

functionally characterized by the orientation of their socket, which

determines the orientation of air motion that this hair mechan-

ically responds to; by the length of the hair, which determines the

sensitivity to frequency of air motion; and by the position on the

cercus, which determines the latency of arrival of the signal to the

terminal ganglion. By superimposing the sets of synaptic terminals

of all hairs in all categories, we obtain the overall afferent synaptic

locus. The goal of this paper is to study the topological structure of

this locus and its stratification by the hair directional sensitivity

and length.

1.1. Structure of the afferent locus
The initial experiments and analysis of the structure of the

afferent locus was done in a series of papers by Jacobs and

collaborators [4,5,6]. The first paper constructed an anatomical

database consisting of twelve different identified sensory afferents

for five specimens, which spanned the entire range of directional

tunings seen in the system. All twelve afferents were associated

with the longest mechanoreceptors (w900mm) and, as a result of

experimental accessibility, were selected from the proximal part of

the cercus (i.e the initial 15% of the length from the base of the

cercus). Jacobs and Theunissen [4] have shown that the locus of

the afferent terminals changes continuously with the directional

tuning of the corresponding hairs. In the second paper [5] the

database was extended to include medium hairs (500{900mm)

from the proximal part of the cercus. Their research indicates that

there is no significant statistical difference between the positions of

the terminals of medium hairs and those of long hairs. Finally, in

an elegant paper, Jacobs and Theunissen [6] showed how the

directional tuning curves of four interneurons that are downstream

from the afferents arise from the overlap of the dendritic trees of

the interneurons with the afferent terminal locus. In particular, the

interneuron sensitivity to the motion from direction h arises from

the connectivity of its dendrite primarily with the terminals of

afferents that innervate hairs that mechanically respond to the

direction h.
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1.2. Statement of the problem
The locus of afferent terminals in the terminal ganglion of a

cricket is a well-defined object with complex structure. Afferent

terminals of hairs that respond to air movement from different

directions h1=h2 map to different positions. As h sweeps all

angles, this position continuously changes [4]. Each cercus hair is

distinguished by its response angle, by its position on the cercus

and by its length. Our goal is to describe how the structure of the

ganglion is stratified by hair position and hair length. This

structure, superimposed on the dendrite structure of the down-

stream interneurons, constrains the response characteristics of

these interneurons [6]. This result uses only the directional

response characterization of the hairs and relies on the fact that

the afferent terminals corresponding to similarly oriented hairs

clearly cluster in the same location (illustrated with the color

coding in Figure 2). Is the position of the hair along the cercus and

the length of the hair similarly encoded in the structure of the

afferent terminals locus? If so, then the interneurons connected to

afferents in a particular location will receive input from a class of

hairs of a certain length or a certain position on the cercus, and

thus this information is available to the interneurons. We note that

even if such a structure does not exist, it would still be possible for

interneurons to connect preferentially to specific classes of

afferents, but the developmental control of the connection process

would have to be very complex. A stratification by hair length

shows that the structure is more complex, and harder to interpret,

than the stratification by response direction. Therefore, more

sophisticated methods are required to reveal the stratification

structure with respect to the length and position of the hairs.

A casual look at the data set (see Figure S2 for a full three

dimensional data set, which can be rotated using an appropriate

software) reveals that the defining characteristics of the set are the

number and size of the voids, or tunnels, in the point cloud. The

data sets (short, medium and long proximal hair terminals; long

distal hair terminals), which we will present in this paper, all have a

vaguely similar overall shape and structure. However, as we put

together different combinations of these data sets, we seem to get

varying numbers and sizes of tunnels. How do we quantify the

number and size of tunnels in a data set consisting entirely of

points? The answer to this question is complicated by the

uncertainty in the data, which had been collected from multiple

animals and multiple hairs. How do we decide whether the

medium and short hair collections map to the same area or not,

especially if both the medium and short hairs came from different

animals and were themselves all of different lengths? Therefore the

need for a robust method with respect to noise is balanced by the

need for a sensitive method that is capable of detecting small

changes on a local scale, which may have a large effect on a scale

of the entire locus. If the terminals of the medium hairs are slightly

shifted with respect to terminals of the short hairs, then this small

local change may have a large effect on significantly diminishing

the size of the tunnel in the terminals of the short data set.

The last challenge stems from the fact that some of the holes

and tunnels in the terminal clouds are a result of the functional

constraints of the terminal ganglion. Since dendrites of the

downstream interneurons must access the terminals of the

afferents to make synaptic contacts, some, or probably most, of

the tunnels are access points of these dendrites. Therefore, we have

to be able to distinguish between the non-essential tunnels, which

serve as access points to the afferent terminals, and the essential

tunnels, which are a consequence of removing a particular class of

terminals.

In view of these constraints and challenges, we identify the

essential tunnels in the point cloud data sets as those that

correspond to the persistent homology of the data sets. As is

explained next, each essential tunnel is in one-to-one correspon-

dence with a circle lying within the data cloud that surrounds the

tunnel.

1.3. Persistent Homology
In this subsection we outline in lay terms our basic approach to

data analysis of a point cloud. We will leave a more formal

definition of the concepts of homology and persistence for Section

4.2. For the purpose of an introduction, it is sufficient to note that

the homology calculation for each set S in R3 will efficiently

compute three groups of embedded objects known as generators.

The generators in each of these groups are topologically distinct,

which means that one cannot deform any given generator onto

any other generator within the set S. The generators in the first

group (the 0th homology group) represent connected pieces of the

set S. We note that each component of S will have one generator

of the first kind embedded in it. The generators of the second

group (1st homology) are circles that circumscribe tunnels in the

set S. Finally, the generators of the third group (2nd homology) are

represented by spheres that surround voids in S. The number of

generators in each of these three groups are referred to as Betti

numbers, and denoted b0, b1 and b2, respectively.

It is not a priori clear for how one can apply the concepts of

homology to a data set in the form of a point cloud in a nontrivial

way. The homology of a point cloud, when considered as a

topological space, is entirely straightforward: the number of 0th

homology generators is equal to the number of points, and there

are clearly no higher order generators (circles, or spheres).

Imagine, however, that if the points of a point cloud were drawn

Figure 1. The cercus of Acheta Domestica with filiform hairs clearly visible. The length of the cercus is approximately 1 cm.
doi:10.1371/journal.pone.0037278.g001
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from a distribution that is centered around a large circle with a

standard deviation that is less than, but comparable to, the radius

of that circle. Then, can we use the ideas from homology to

‘‘discover’’ this circle from the collection of this noisy data set? The

idea of topological persistence [2,3] elegantly addresses this issue.

We introduce a parameter E and perform the following

construction for a sequence E0vE1v . . . . . . vEn{1vEn of in-

creasing values of E. We center a box of the dimension of the

ambient space and side Ei over each data point. We call the union

of these boxes a complex KEi
and compute its homology. We note

that if EivEj then KEi
5KEj

. While we refer the reader for detailed

definitions of persistent homology and persistent generators to the

original literature ([1,3], see also section 4.2), the main idea is very

intuitive and is captured in Figure 3. For a very small Ei the

topology, and hence homology, of the complex KEi
will be identical

to that of the underlying point cloud. But as we increase Ei, some of

the boxes will start to intersect, and as a consequence, b0 will start

to decrease. At some value of Ei, the complex KEi
will include a

generator of the first homology group that corresponds to the

underlying circle of the sample distribution. As Ei changes, we can

track the behavior of generators as a function of Ei. In particular,

under very general conditions (see section 4.2) it is possible to pair

births and deaths of generators in such a way that each generator

born at some value Ei disappears at some larger value Ej . We call

the difference j{i a lifespan of that particular generator and ½i,j�
the persistence interval. The information about lifespans can be

encoded as a barcode of a particular point cloud and it can be used

to distinguish essential topological features of the cloud from

Figure 2. The afferent terminals locus of Acheta Domestica. (Upper left) Axons of afferent neurons, which are attached to filiform hairs, project
into the terminal ganglion. (Upper middle and upper right) Each axon branches into a tree-like structure in which individual branches are covered by
synaptic boutons that provide connections with interneurons in the terminal ganglion. (Bottom) The entire collection of synaptic boutons over all
experimentally examined filiform hairs. The color wheel represents the preferred direction of motion of a hair, which correspondingly represents the
preferred response direction of the afferent neurons. (Data generously shared by G. Jacobs and collaborators).
doi:10.1371/journal.pone.0037278.g002
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spurious features introduced by experimental and measurement

noise. In particular, generators that capture essential topological

features will have distinguishably longer lifespans than those that

characterize spurious features. These are called persistent generators.

We will use persistent first homology generators to understand the

robust structure of the locus of afferent terminals.

It is worth noting that there is no data-independent threshold

that one can use to separate persistent and non-persistent

generators. It is only in the context of a given data set that one

can define some generators persistent, and this choice is necessarily

arbitrary. Our choice led to a conclusion that the combined set of

all afferents does not have any persistent homology (i.e. any

essential tunnels). This is an attractive conclusion, which is

consistent with all our other computations, and which has

interesting consequences that we elaborate upon in the discussion.

However, this conclusion is ultimately the result of an arbitrary

cut-off that separates persistent and non-persistent generators.

Results

Before presenting our results in terms of persistent first

homology generators, we summarize the results in terms of

essential tunnels in the point cloud data set. An essential tunnel is

encircled by a persistent generator of the first homology group.

Our computations reveal that the afferent terminals of both

short and medium hairs have three essential tunnels. However,

when we combine the short and medium data sets, the resulting set

contains only two essential tunnels. Therefore, the three tunnels in

the medium set are not the same as the three tunnels in the short

set. This means that at least one tunnel in the short set is filled (or

rendered non-essential) by the medium set; and at least one tunnel

in the medium set is filled by the short set.

The long proximal set has four essential tunnels; whereas, the

combined set of long proximal and long distal afferent terminals

contains only two essential tunnels. Therefore, the long distal set

fills two tunnels in the long proximal set. Our long distal data set

contains substantially less points than the long proximal set.

Consequently, it is entirely possible that if we had more data for

the long distal set, one or both of the remaining tunnels in the long

proximal set would be filled. To address this issue we construct a

Gaussian Mixture Model (GMM) for both long proximal and long

distal hairs. We then sample these models to create an enhanced

set of terminals. The analysis with the sampled data yields the

same results as analysis of the experimental data: the combined

sampled set contains two essential tunnels.

A combined proximal set, consisting of afferent terminals of all

hair lengths (short, medium and long) has only one essential

tunnel. This means that the addition of the long proximal class to

the combined, short and medium, class fills one essential tunnel.

Finally, the set of all terminals has no essential tunnels

remaining. This means that the terminals of the distal hairs, while

sparse, fill in the last essential tunnel in the combined set of

proximal afferent terminals. We obtain the same result by using

either the sparse experimental distal data or substantially larger

distal data sampled from a GMM model. As we have noted before,

there are still multiple tunnels left in the set of terminals, but these

are not essential and likely serve as the interneuron dendrite access

points.

Figure 3. Persistent cubical homology. (Top, left) An example of a point cloud. (Bottom, left to right) As the size of the squares (in arbitrary units)
around each point in the point cloud increases from 3 (left), through 4 (center) to 6 (right), different holes open and close in the gray set of squares.
The colored circles around the holes represent generators of the first homology group, which are graphed as a function of the size in the barcode
(top, right). The dashed lines are color coded and correspond to the figures in the bottom row. The red line in the barcode represents a persistent
generator which indicates a hole that is present for a substantial range of sizes of the squares.
doi:10.1371/journal.pone.0037278.g003
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2.1. Data modeling and filtering
We analyze the database of afferent terminals that is based on

the work of Jacobs and collaborators [4,5,6]. Recently more data

has been added to the database, and some of the data has been

refined and corrected. We obtained permission from G. Jacobs

and J. P. Miller to use this database.

The total number of data points in the terminal locus is divided

into two large categories: terminals of afferents from proximal

hairs [4,5] and, more recently added, terminals of afferents from

distal hairs. The proximal hairs are located within the nearest 15%
of the length of the cercus to its base, whereas the distal hairs are

located beyond the nearest 30% of the length [7]. We will label the

corresponding data sets proximal and distal. The proximal data set is

further divided by the length of the contributing hairs into three

subclasses, which we will label as long (w900mm), medium

(500{900mm) and short (*50{450mm) [4,5,6]. The proximal

data set totals to 99167 data points divided among the three length

subclasses. There are 42428 data points representing the terminals

of afferents attached to long hairs, 27442 points for those attached

to medium hairs and 29297 points for those attached to short

hairs. In addition to length, each hair responds preferentially to a

particular direction of air motion. We split these directions into 13

classes and assign to each data point the class of the corresponding

hair.

Distal hairs are all long and are sparser than any other data set.

Therefore, we split the preferred angles of the distal hairs into only

4 directional classes. Since the taper of the cercus makes access to

afferents in the distal part of the cercus difficult, the database only

contains 6194 distal hair data points. In order to address the

discrepancy between the number of proximal and distal points, we

have developed a Gaussian Mixture Model (GMM) that uses one

GMM per each of 13 directional classes for long proximal hairs,

one GMM per each of 13 directional classes for medium proximal

hairs and one GMM per each of 12 directional classes for small

proximal hairs (one class has no data points). We used 4 GMM’s

for the distal hairs: one per each direction class. This modeling has

allowed us to sample additional distal points as to supplement the

sparse experimental distal data.

2.2. Data filtering
We apply preliminary filtering to the data sets in order to

accomplish two goals. The first stems from our main goal of trying

to describe topological features of the point clouds given by the

afferents of different classes of hairs. These features are defined by

the location of the higher density region of the point cloud.

Therefore, we aim to reduce the number of outliers that are

caused by experimental and/or developmental noise. The

presence of such outliers, in what would otherwise be void areas

of space, can decrease the lifespans of persistent generators. The

second goal of our filtering is to remove redundant points from the

dense regions of our point cloud. These points, generally, do not

affect the overall shape and topological features of the set;

however, their inclusion can significantly slow down the compu-

tations.

Our filter Fk,j has two parameters k and j. When applied to a

point set, it will keep those points that have at least j neighboring

points within a distance of k mm. This filter is described in more

detail in section 4.1. We experimented with many different choices

of k and j. Our goal was to find a combination of k and j, that

would delete 10%{30% of the least dense points in each of the

long proximal, medium proximal and short proximal categories,

while keeping a percentage of data points that was similar for each.

We chose the filtering function F6,6, which keeps points having at

least j~6 neighboring points within a distance of k~6mm. This

choice led to a reduced long proximal set with 33950 points (which

is 80% of the original), a medium proximal set with 21039 points

(76%) and a short proximal set with 22753 points (77:7%). For all

data sets, unless otherwise noted, we have applied the F6,6. Thus,

the long, medium and short data labels, will refer to these filtered

data sets for the remainder of this paper.

Our second justification of the use of filter F6,6 was achieved

through a comparison of the resulting persistent generators of the

long proximal data set with those of the reduced long proximal

data set. This comparison is given in Table 1. The table has the

following layout, shared by all subsequent tables in the paper: data

refers to the input data set, with length referring to the length of the

lifespan of generators throughout the filtration. The columns,

labeled with a number n, record the number of generators in the

filtration of each corresponding data set that had a lifespan of

exactly n. We observe that the proximal long data set has 4

generators, which have distinguishably longer lifespans (three of

length 11 and one of length 14). The filtered proximal long data

set retains all four persistent generators. Furthermore, the gap in

the lifespan length between these four generators and that of any

other generator has been widened. This indicates that the filtering

works as desired: enhancing the features already present in the

data.

2.3. Topological structure of afferent terminals
We describe the topological structure of the terminals of

afferents by computing persistent generators for various subsets.

These subsets are formed in four steps.

(1) We form reduced (i.e. filtered) sets consisting of long proximal,

medium proximal and short proximal hairs separately.

(2) We combine the sets of short and medium hairs.

(3) We combine together long proximal and (long) distal hairs.

However, since the number of data points is much smaller for

distal hairs, we will use both direct comparison of the reduced

data sets, as well as a comparison using data sampled from a

Gaussian Mixture Model.

(4) We put together experimental data sets from (2) and (3) to

reconstruct the entire afferent terminus.

There are two natural ways to combine any two sets of data.

The first approach is to combine the original data sets, then reduce

this combined data set using the F6,6 reduction. The second

approach is to combine the reduced data sets; that is, we apply the

F6,6 reduction to each individual set, then combine the reduced

data sets. While we will not display results for both approaches, we

have found that there are minimal differences between the results

of either reduction approach. In particular, the number of

persistent generators is the same for each approach. Therefore,

throughout the rest of the paper we will combine the data sets

using the second approach.

2.3.1. Topology of short, medium and long proximal data

sets. We compute persistent generators of the reduced set of

long proximal, medium proximal and short proximal hairs. The

results are given in the following two forms (Figure 4): A table

collecting the number of generators of a given length and a b1-

barcode that displays lifespans of each generator. In the b1-

barcode we highlight in red the persistent generators.

We interpret the existence of a persistent generator as evidence

for the presence of a significant tunnel-like void in the data. The

data presented in Figure 4 shows that

(1) The reduced long proximal set has 4 persistent generators

with lifespans of 11, 13, 19 and 23.

Structure of the Afferent Terminals in a Cricket
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(2) The reduced medium proximal set has 3 persistent generators

with lifespans of 11, 13 and 14.

(3) The reduced short proximal set has 3 persistent generators

with lifespans of 12, 13 and 14.

Therefore, our results show that there are four significant

tunnels in the long data set and three, each, in the short and

medium data sets.

A natural question is whether the generators for the short and

medium data sets are the same, and if, in addition, those

generators are a subset of the generators of the long proximal set.

To address this question, we combine the medium and short hairs

into a single set, and then compute persistence. If the three

generators of the short data set are equivalent (homologous) to the

three generators of the medium data set, then the number of

generators of the combined set will remain three; however, if some

of these generators are homologous to zero in the combined set

(i.e. the points in one set ‘‘fill the hole’’ in the other set), the

combined data set may have a different number of persistent

generators.

The persistence results of the combined medium+small data set,

as displayed in Figure 5, show that two persistent generators

remain after the combination of the two proximal sets. To

illustrate what this information means for the data, we display the

short, medium and combined point clouds with generators in

Figure 6. The combined cloud is displayed in a different

orientation in the Figure S1. The respective point clouds of the

short and medium data sets seem to occupy approximately the

same space, although appear to be slightly offset.

In conclusion, one of the persistent generators for the medium

set is filled by the terminals from the short hairs; along with one of

the persistent generators of the short data set being filled by the

terminals of the medium hairs. This filling appears to be attributed

to the two point clouds being slightly offset. The remaining

tunnels, characterized by the orange and purple generators in each

set, line up enough to allow for the corresponding two generators

to remain persistent in the combined point cloud.

2.3.2. Topology of long proximal and long distal

sets. Next we look at combining the reduced long proximal

data with the distal data. The main issue we need to address is the

large discrepancy between the number of points in the long

proximal and long distal sets. Since there are more long proximal

hairs than long distal hairs, some, but not all, of this difference can

be attributed to experimental accessibility. Therefore, in addition

to investigating the topology of the union of the two experimental

data sets, we will also create a Gaussian Mixture Model (GMM)

for both data sets. We then sample a large number of points from

each desired data set, process this data set in the same way as the

experimental proximal data and compute the persistence for each

set separately, as well as for the combined set.

2.3.3. Comparison of experimental data sets of long

hairs. Since the distal point cloud is made up of only 6194 data

points, we do not perform any additional reductions on it. Instead,

we combine the entire distal point cloud with the data set of the

reduced long proximal hairs, then compute the persistence of the

resulting set. As we see from the results in Figure 7, the combined

point cloud has 2 persistent generators with lifespans of length 12
and 16. Recall that the proximal long point cloud has 4 persistent

generators: two with longer lifespans (19 and 23) and two with

shorter lifespans (11 and 13). The addition of the distal data

destroys the two smaller persistent generators, while reducing the

lifespans of the other two generators from 19 and 23 to 12 and 16.

Table 1. Comparison of filtered and unfiltered data.

Data\Length 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

UnFiltered Long 78 13 8 4 3 2 2 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0

Filterd Long 15 11 4 3 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1

The first column describes the data set, the top row is the length of the lifespan of generators. An integer entry k in the column labeled n indicates that there is k

generators with a lifespan of exactly n.
doi:10.1371/journal.pone.0037278.t001

Figure 4. b1-persistence intervals (only lifespans w2 are shown) for the reduced proximal (A) long; (B) medium; and (C) short data
sets.
doi:10.1371/journal.pone.0037278.g004
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In our interpretation this means that the distal data fills the tunnels

in the proximal long data set that support the two shorter

persistent generators, and is lining the tunnels in the proximal long

data set that contribute to the two larger persistent generators,

thereby reducing their lifespan. However, it is also possible that

had we had access to more experimental data for the distal hairs,

the additional data would fill the voids corresponding to the two

remaining persistent generators of the long proximal data set as

well. In an attempt to address this question, we construct a GMM

for each hair category: distal and proximal long hairs. We sample

from each model to obtain a more numerous distal set as well as a

sampled proximal long set for which to compare with. The

persistence results of the computations using the sampled data are

compared to the persistence results of the experimental data sets

and displayed in Figure 7 and Figure 8.

2.3.4. Sampling from the GMM model. As mentioned in

the introduction, we constructed 42 Gaussian Mixture Models

(GMM): one for each of 13 directional categories corresponding to

both the medium and long proximal hairs, one for each of the 4

directional categories of the distal hairs, and one for each of the

occupied 12 directional categories of the short proximal hairs.

Each GMM has an associated weight wi,
P42

i~1 wi~1, reflecting

the relative size of the corresponding class of hairs. Furthermore,

each model is itself made up of ni Gaussians with corresponding

mean mi,j and covariance matrix Si,j . Each Gaussian has an

individual weight wi,j with
Pni

j~1 wi,j~1. Given an overall desired

number of points N to be sampled, we sample N � wi � wi,j

(rounded to the nearest integer) data points from each Gaussian.

2.3.5. GMM for distal hairs. In the last step we sample

from the complete GMM to create a GMM distal data set and a

GMM long proximal set. These samples are then filtered,

removing the densest and the least dense parts. Lastly, we

compute persistence on each individual data set as well as on the

combined set.

We note that sampling any Gaussian will result in a dense

sample set close to the mean. On the other hand, since the support

of a Gaussian is the entire space R3, samples will eventually fill

arbitrary compact regions around the mean. Therefore, we expect

that the oversampling of any particular set would lead to the

annihilation of all topological features of the combined long

proximal and long distal point-clouds. In order to avoid this

oversampling artifact, we combine the initial sampling with two

reduction algorithms. The first, designed to eliminate the densest

parts of the sampled point cloud, uses co-density [1], see section 4.1.

The second filter F6,6, used on all experimental data sets, will

eliminate the least dense parts of the point cloud.

We calibrated the co-density filter on the long proximal data set

using the results previously displayed for the experimental data

and selected the X ½1000; 20,0� co-density filter (see section 4.1).

We will refer to the GMM long proximal data set that was filtered

Figure 5. b1-persistence intervals (only lifespans w2 are displayed) for the reduced proximal combined medium+short data set.
doi:10.1371/journal.pone.0037278.g005

Figure 6. The experimental data for (A) small; (B) medium; and the combined (C) medium+small sets. There are three persistent
generators in both the small and medium data sets, but only two persistent generators in the combined set. These two are consistent with two
(orange and purple) of the three generators from both the small and medium sets. The voids corresponding to the third generator (grey) in both the
small and medium sets are filled in the combined set. In this perspective only the orange persistent generator clearly encircles a void in the data. For a
different perspective, showing clearly the purple generator, see Figure S1 and Figure S2.
doi:10.1371/journal.pone.0037278.g006
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by X ½1000; 20,0� and F6,6 as the GMM long proximal data for the

remainder of the paper.

We do not know the appropriate ratio between the physiological

number of terminals of the distal afferents and the number of

terminals of the proximal afferents of the long hairs. Since distal

hairs are sparser, we assume the number of hairs in each of the

directional categories is comparable to the minimum population of

any proximal directional class. Therefore, we assume that

w�k&mini(wi) for any class k in the four distal classes and i

ranging over all proximal directional classes. Due to the

uncertainty in the actual numbers, we will create the GMM distal

data set by sampling in two different ways.

(1) Distal(min) will refer to the GMM distal data set with the

weight w�k for each distal class chosen to be that of the

minimum proximal class weight as described above.

(2) Distal(max) will refer to the GMM distal data set with the

weight w�k for each distal class chosen at the maximum

proximal class weight; that is, w�k~maxi(wi), where the k’s

and i’s are as described above.

The first approach leads to a sampling of 12587 initial data

points. The low number of sampled points leads us to use the

filtering X ½1000; 20,20�, which removes the dense areas as well as

the outliers, rather than the filter F6,6 which had been used on all

other data sets. Therefore, in removing the most dense 20% and

least dense 20% of the sampled points, we obtain the set

distal(min), which contains 7553 data points.

The second approach generates 55960 initial data points. After

removing the densest 20% of the points using the X ½1000; 20,0�
filter, we arrive at 44768 data points. With subsequent filtering by

the F6,6 reduction, we obtain the data set distal(max), which has a

cardinality of 39039 points (when X ½15; 20,0� was used in the first

step the set contained 39050 points). The results of the

computation of persistence for these sets, as well as each’s

combination with the GMM proximal long set, are in Table 2.

Observe that distal(max) has two persistent generators with

lifespans of 10 and 19; whereas the Distal(min) data set has a single

persistent generator with lifespan 12. However, when we add these

sets to the GMM long proximal data set, the resulting

combinations both yield 2 persistent generators with lifespans of

17 and 21 for the combination using distal(max) (17 and 24 when

using distal(min)). These are the same results as we obtained for

the combined experimental data sets in Figure 7 and Figure 8.

We conclude that

N The experimental long proximal set and GMM long proximal

set each have 4 persistent generators, with lifespans of

11, 13, 19, 23 and 11, 13, 23, 27, respectively.

N The addition of either the small sample (7553 points) or large

sample (39039 points) of the GMM distal cloud to the GMM

long proximal data fills the voids corresponding to the two

Figure 7. b1-persistence intervals (only lifespans w2 are displayed) for the combined long+distal data set.
doi:10.1371/journal.pone.0037278.g007

Figure 8. The experimental data for (A) long; (B) distal; and the combined (C) long+distal set. There are four persistent generators for the
long set, two of which are consistent between long and long+distal sets (orange and crimson). Grey generators in the long set are not persistent in
the combined set. We did not compute the generators for distal set since the data is much sparser than that of the long set.
doi:10.1371/journal.pone.0037278.g008
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smaller persistent generators, while reducing the lifespans of

the other 2 larger persistent generators. Therefore, we obtain

the same result as with the experimental distal data: the

(GMM) distal data is ‘‘lining’’ the tunnels of the (GMM) long

proximal set, corresponding to the 2 more significantly

distinguished persistent generators, see Figure 9.

2.4. Combined proximal set
We create the proximal data cloud that includes afferent

terminals from proximal hairs of all lengths and all orientations by

combining the experimental data for proximal long, medium and

short hairs. The results of this combined experimental proximal

data cloud are in Figure 10.

We note that there is only one persistent generator. Therefore

the addition of the long proximal data set to the combined short

and medium data set has annihilated one of the persistent

generators in that latter set and three of the persistent generators in

the former set.

2.5. Entire data set
Finally, we compute persistent generators for the entire set of

terminals. In doing so, we analyze three data sets. The first is the

complete experimental data set that combines the combined data

sets of long+distal and medium+small. Then, because the

experimental distal point cloud is so sparse, we also replace the

experimental distal data with the two sampled GMM distal data

sets. Recall, the sampled data sets are filtered in the way described

in section 2.3.5. We add the distal(min) and distal(max) data sets to

the experimental long+medium+short data set to form the

combined(min) and combined(max) data sets, respectively.

The persistent homology results for the experimental combined

set are displayed in Figure 11 and Figure 12. There are no longer

any persistent generators. Recall that the combined proximal

long+medium+short set does have a single persistent generator.

Therefore, the computations reveal that the sparse experimental

distal afferent terminals make the distinguishable tunnel in the

proximal data smaller. A close inspection of (B) of Figure 11 shows

multiple terminals within the central tunnel (black dots) in the data

cloud. These are distal terminals within the void in the proximal

set. This observation puts in question the robustness of our method

and result. Recall we did not filter the outliers from the

experimental distal set. To that end, if these few terminals are

the main cause of the loss of persistence of the proximal generator

(orange in (A) of Figure 11), our result, and method, could not be

considered robust. To address this issue, we analyze the

combined(max) and combined(min) point cloud data sets.

The results of these persistence computations are displayed in

Figure 13 and Figure 14. The comparison between combined(min)

and the experimental combined set (Figure 12) reveals almost an

exact match. The more interesting comparison is between

combined(max), which may represent the true physiological

abundance of the distal terminals, and the experimental combined

set. We note that the lifespans of all the generators are shorter for

the combined(max) set than are those for the experimental

combined set, in spite of the fact that the there are no longer any

Table 2. Persistent Generators for GMM Data Sets.

Data\Length 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Distal(max) 20 8 2 2 0 2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Distal(min) 19 4 3 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Long 19 7 4 2 2 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Long+Distal(max) 35 16 2 1 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

Long+Distal(min) 40 9 7 1 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

Number of generators with prescribed length for sampled distal hairs(at different weights), sampled long proximal hairs and the combined sampled long proximal and
distal sets.
doi:10.1371/journal.pone.0037278.t002

Figure 9. The GMM data for (A) long proximal; (B) distal(max); and (C) the combined long+distal(max) set. There are four persistent
generators for the GMM long proximal set, two of which are consistent between the GMM long and GMM long+distal sets (orange and crimson). Grey
generators in the GMM long proximal set are not persistent in the combined set.
doi:10.1371/journal.pone.0037278.g009
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visible distal terminals within the central tunnel. The terminals

visible in the tunnel in Figure 11 were filtered out as outliers. This

shows that these points were not the main cause of the loss of

persistence of the proximal generator (orange in (A) of Figure 11).

Rather, the distal terminals are lining the inside walls of this

tunnel, and thus, reducing its size. This result confirms that the loss

of persistence of the proximal generator from the addition of the

distal data points is a robust phenomena.

We want to emphasize that there are still multiple homology

generators in the combined data sets (see Figure 12 and Figure 14)

that correspond to different tunnels in the point cloud; however,

there is no persistent generator that is robustly present in the data.

These remaining tunnels very likely contain the dendrites of the

interneurons in the terminal ganglion, which are downstream from

the afferents, and which make synaptic contact with the afferent

terminal cloud.

Discussion

The lack of persistent generators in the combined proximal and

distal set illustrates that the set of terminals of all hairs has no

significant tunnels or voids. This result is not surprising from an

efficiency standpoint: the space in the terminal ganglion is limited

and the terminals of afferent neurons are filling the entire available

space. The potential consequences for neural processing are more

intriguing. Given that the directionally sensitive interneurons (IN)

from the ganglion are sampling the terminals of afferents with the

same directional sensitivity, and since it is likely that the three

dimensional position of both dendrites of IN’s and afferent

terminals are developmentally determined only up to some finite

precision, the spatial separation of afferent terminals puts the limit

on the precision with which the downstream processes can

distinguish direction of the air motion. Since the angles form a

circle (S1), the afferent terminals must be embedded in the

ganglion as an approximate image of a full torus S1|B2. Here B2

is a disc that approximates the spatial extend of the afferent

terminals with the same response angle. The need of separating

the terminals of hairs with the nearby response angle to enhance

acuity of the system, is balanced by the need to pack the terminals

in the smallest possible volume: a ball B3. These two needs are not

compatible. There is no embedding of the full torus to a 3-disc B3;

the space S1|B2 has a different homology than the space B3. As a

consequence, there must be at least one point in B3 where the

directional tuning is not well defined. This is similar to topological

singularities (pinwheels, vortices) in a primate cortical striate

cortex, which result from the fact that S1|B1 cannot be

embedded into a two dimensional disc D2. The only difference

is that the pinwheel in the terminal ganglion is three dimensional,

while spatial orientations of columns in a striate cortex is a two

dimensional phenomenon.

It is interesting to note that the distal hairs are filling the last

essential tunnel in the combined proximal set. Since distal hairs

are more sparse, not all directions are represented in the set of

their preferred directional responses. One can speculate that the

hairs further along the cercus fill more and more central positions

along the tunnel in the proximal set. If, in addition, there was a

hair at the very tip of the cercus, this would be the hair that would

map into the pinwheel position in the terminal ganglion. This

Figure 10. b1-persistence intervals (only lifespans w2 are shown) for the reduced experimental proximal combined long+-
medium+short data set.
doi:10.1371/journal.pone.0037278.g010

Figure 11. The experimental data for (A) long+medium+short; and (B) long+medium+short+distal. The combined set of all proximal hair
afferent terminals has only one persistent generator ((A), orange), while the entire set does not have a persistent generator.
doi:10.1371/journal.pone.0037278.g011
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hypothetical arrangement of terminals (more distal hairs have

afferent terminals closer to the pinwheel) would also make sense

from another perspective. Our collaborators have recently shown

[8] that the cercus acts as a delay line; a signal from greater distal

hairs travels to the ganglion significantly (w5ms) longer than the

signal from the proximal hairs. If the system works as a delay line,

it makes sense to separate the terminals of the distal hairs from

those of the proximal hairs, but still align the directional

sensitivities. Our current data does not have the spatial resolution

to confirm this conjecture, but our analysis, which shows that the

distal hairs line the tunnel in the proximal cloud, is compatible

with this theory.

We also comment on our results about the proximal hair

terminals. We have shown that while short and medium hairs have

three relatively weak persistent generators each, the combined

medium-short set has two robust persistent generators. This

suggests that our separation of the medium-short set into two

groups is artificial and only the combined set has spatial structure

that suggests functional relevance. The addition of the long

proximal hairs to the medium-short set annihilates one of these

generators. The resulting set of terminals has only one generator

that encircles the 3-D pinwheel where the angular response is not

well defined.

Our goal in this paper was to show the applicability of

sophisticated approaches from computational homology to the

analysis of noisy neuroscience data. The source of noise is both

developmental, encompassing animal to animal variability, and

experimental. Our methods provide robust results that give fresh

insight into the structure, as well as suggest functional relevance, of

the spatial organization of the terminals of afferent neurons.

Methods

4.1. Data filtering
Density estimation is a highly developed area within statistics [9]

and, following the lead of Lee et. al. [10] (see also the review by

Carlsson [1]), we will employ a codensity function as well as an

outlier-reduction function that we call the DN-density function.

The codensity function is defined as follows: For any fixed positive

integer k and the point cloud X , we define the k-codensity function dk

for x[X by

dk(x)~d(x,k(x)):

where d(:,:) denotes the distance function in X , and k(x) denotes

the kth nearest neighbor of x[X . The function dk(:) is inversely

related with density, since a dense region will have smaller

distances to the kth nearest neighbor. Considering that we are

interested in dense regions, we will study subcollections of points

for which dk(:) is bounded from above and/or below by given

threshold percentages. We also note that each dk yields a different

density estimator, since for large values of k, dk computes density

using points in large neighborhoods of x; whereas, for small values

of k, small neighborhoods are used. Therefore, for large k, dk

corresponds to a smoothed out notion of density and for small k,

dk corresponds to a version that carries more of the detailed

structure of the data set. Following similar notation as was used by

Carlsson [1], we denote a subset X ½k; u,l�5X , where k is a

positive integer and u (l) is the upper (lower) percentage bound on

the points to keep. More precisely,

Figure 12. b1-persistence intervals (only lifespans w2 are shown) for the combined experimental set.
doi:10.1371/journal.pone.0037278.g012

Figure 13. The data sets for (A) Combined(max); and (B) Combined(min). There are no persistent generators in either combined data set.
doi:10.1371/journal.pone.0037278.g013
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X ½k; u,l�~fx[X j dk(x) lies between the (100 {u) % and

l % lowest values of dk(x) in Xg

This approach to data reduction will be used exclusively for the

data sampled from the Gaussian Mixture Model to achieve a

reduction in the densest part of the sampled point cloud. The DN-

density function, described below, will be used for both the

experimental and sampled data in order to eliminate outliers in

the least dense regions.

The DN-density function is defined as follows: For any fixed

positive integer k and the point cloud X , we define the k-DN density

function DNk of x[X by

DNk(x)~f# of y [ X such that d(x,y)ƒkg

where d(:,:) denotes the distance function on X and the integer k
is a distance threshold to the neighbors of x[X . Then, for a fixed

positive integer threshold j, we define the thresholding function Fk,j

on a set X by

Fk,j(X ) : ~fx[X D DNk(x)§jg:

Finally, we let

Xk,j : ~
\?

l~1

Fl
k,j(X )

be the intersection of the iterates of the data reducing function Fk,j .

Note that these sets are finite and nested,Tsz1
l~1 Fl

k,j(X )5
Ts

l~1 Fl
k,j(X ), so that the procedure terminates

at a finite iteration. In addition, note that for poorly chosen values

of j and/or k, the set Xk,j can be empty; for instance, if we select j

or k to be extremely large. In practice, the sets stabilize after a few

iterations.

4.1.1. Calibration of the GMM filtering. We calibrate our

method on the long proximal data set using the results previously

displayed for the experimental data. The GMM long proximal

data set is created by sampling a total of 150000 points from the

complete GMM as formerly described. We eliminate 20% of the

points from the most dense regions of the sampled set by applying

either the filter X ½15; 20,0� or the filter X ½1000; 20,0�. These two

different filtering mechanisms, which use significantly different

sized neighborhoods, allow us to compare the effect of the

smoothness of the co-density function on the selection. The final

filtering of the GMM long proximal data set is the same as that of

the experimental long proximal data set; that is, we filter the

GMM long proximal set using the F6,6 reduction.

Following this procedure, the GMM long proximal data set

equates to 52974 points of the total 150000. Removing the most

dense 20%, using either of the X ½:; 20,0� filters, leaves a reduced

GMM long proximal data set with 42380 data points. The

cardinality of the set compares favorably to that of the non-

reduced experimental long proximal data set, which contains

42428 points. The application of the F6,6 filter further reduces the

GMM long proximal data set to a set of 30716 points, if the

density filter X ½15; 20,0� was previously applied, or 30656 points,

if the filter X ½1000; 20,0� had been applied. The cardinality of

each of these reduced GMM sets compares favorably to the

reduced experimental proximal long data set, which contains

33950 points. The final step of the calibration is to compute

cubical persistence on each reduced GMM data set, with results

displayed in Table 3, and compare these results to those of the

experimental long proximal data as displayed in Figure 4.

We observe that the data sets created by both the X ½15; 20,0�
and X ½1000; 20,0� density filters yield the same results: in either

case, the GMM long proximal data has 4 persistent generators at

lifespans of 11,13,23 and 27. Recall that the experimental long

proximal data had 4 persistent generators at lifespans of 11,13,19
and 23. Thus, seeing that we have an equal number of persistent

generators for the GMM and experimental data and, in addition,

the lifespan length for each is nearly identical, we conclude that

the Gaussian Mixture Model is a good model for the proximal

long data.

4.2. Persistence theory
In this subsection we outline the main concepts of topological

persistence, which combines the idea of homology with that of

filtration. The homology groups and Betti numbers associated with

these groups are computable invariants that have been developed

Figure 14. b1-persistence intervals (only lifespans w2 are shown) for the combined data sets: (A) Combined(max) and (B)
Combined(min).
doi:10.1371/journal.pone.0037278.g014
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over the last century (see [11] for a relatively accessible

introduction). Homology groups form a graded abelian group;

that is, there is one such group for every non-negative integer,

although for reasonable topological spaces such as compact

manifolds, these groups are trivial for integers larger than some

finite n. For our purposes it is sufficient to know that the dimension

of the 0th homology group (and thus the 0th Betti number: b0)

corresponds to the number of connected components of the set,

while the dimension of the 1st homology group (which in our case

will be always equal to the 1st Betti number: b1) measures the

number of one-dimensional holes in the set. A one-dimensional

hole is characterized, roughly speaking, by a loop that can be

embedded into the set around a hole for which the loop cannot be

smoothly (i.e. without tearing it apart) shrunk to a point within the

set. We will call such a loop a generator of the first homology group.

We now define more precisely the idea of topological

persistence in the context of cubical complexes used in this paper.

For more details the reader is referred to [2,3]. Recall that for a

sequence E0vE1v . . . . . . vEn{1vEn of increasing values of E, we

center a box with a side of length Ei over each data point. We call

the union of these boxes a complex KEi
and note that if EivEj then

KEi
5KEj

. These complexes form a filtration of the complex

K : ~KEn
. A filtration of a complex K is a nested sequence of

subcomplexes that starts with an empty complex and ends with the

complete complex K

1~K05K15 . . .5Kn~K :

Define Zs
k and Bs

k to be the k-th cycle and k-th boundary group,

respectively, of the s complex Ks in the filtration. To capture

persistent cycles in Ks, we factor its k-th cycle group by the k-th

boundary group of Kszp, where Kszp is p complexes further along

in the filtration. Therefore, the p-th persistent k-th homology group of

Ks is

H
s,p
k ~Zs

k=(B
szp
k \Zs

k):

This is well defined since both B
szp
k and Zs

k are subgroups of the

chain complex Cszp of Kszp, and thus, a group. The p-th persistent

k-th Betti number bs,p
k of Ks is the rank of H

s,p
k .

One can also define the p-th persistence group using inclusion

induced injective homomorphisms of ordinary homology groups.

The main observation is that if two cycles are homologous in Ks

then they still exist and are homologous in Kszp. Therefore an

inclusion induced map

g
s,p
k : Hs

k?H
szp
k

is well-defined and maps a homology class into one that contains

it. The image of this homomorphism is isomorphic to the p-th

persistent homology group of Ks,

Im gs,p
k %H

s,p
k :

4.3. Data analysis
In this subsection, we present the preprocessing and processing

used in our computation of persistent homology on each data set.

The overall size of each individual data set, the computational

memory needed to store the filtration of each data set and the

memory needed for the persistence computations has forced us to

use cubical homology for our computations (see [12] for relatively

accessible introduction). Cubical persistent homology allows for

the filtration K to be created using non-overlapping 3-dimensional

basis cubes, which then can be stored as a bitmap, greatly reducing

the computational cost [13,14]. The construction is based on a

cubical grid of the part of the space that contains all the data

points of the point cloud. In this way, the Ej ’s that parameterize the

filtration will all be multiples of the size of the elementary grid

element (i.e. elementary cube [12]).

We first translate the data into the positive quadrant of R3. The

critical input for this process is the size u of the basis cube (in mm).

An appropriate choice is important for two reasons: if one chooses

a basis cube too large, the growing of the filtration is too fast,

resulting in a lack of persistent generators; if the cube is too small,

the size of the filtration is too large and computationally costly, not

providing any further information beyond that obtained from a

filtration with a larger basis cube size. The appropriate choice for

the vast majority of data throughout this paper was u~0:9mm.

However, we had to choose u~1:1mm for the largest of our data

sets (those that combined data from all hairs) due to the large

computational cost that we incurred at input sizes of u~0:9mm

and u~1:0mm. Given the entire translated data set, we define

R5R3z to be the smallest box

R : ~½0,xmax�|½0,ymax�|½0,zmax�

that contains the point cloud data set, for which

xmax~nxu, ymax~nyu, and zmax~nzu are integer multiples of

the basic length u. We divide R into nx|ny|nz elementary cubes.

Each cube

c(i,j,k) : ~½(i{1)u,iu�|½(j{1)u,ju�|½(k{1)u,ku�

is uniquely determined by its coordinates (i,j,k).

Next, we build our filtration K . The initial complex K1 consists

of all elementary cubes in R that contain at least one point from

the data set X . The next step is to increase the size of the

elementary box and construct a complex from all larger boxes that

contain at least one point from X . A naive way to increase the size

of the elementary box is to simply double its size. The resulting

Table 3. Comparison of GMM long proximal models with different filters.

Data\Length 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Long-1000 19 7 4 2 2 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Long-15 12 4 2 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Long-1000 refers to GMM sampled long proximal data with filter X ½1000; 20,0�.
Long-15 refers to GMM sampled long proximal data with filter X ½15; 20,0�.
doi:10.1371/journal.pone.0037278.t003
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exponential growth of the elementary cubes would yield only a few

complexes K in the filtration. An alternative way, which we

describe next, creates nested complexes and results in a higher

resolution persistence computation. We associate to each elemen-

tary cube a positive integer value b, which will be referred to as a

birth time. Initially, we assign a birth time of zero, b(c(i,j,k)) : ~0,

to all cubes. We will then inductively define a nonzero birth time

value of b as we construct our filtration.

We start by assigning the birth time value 1 to all cubes that

contain at least one point of the set X

b(c(i,j,k)) : ~1uX\c(i,j,k)=1:

In the inductive step, for each elementary cube with b(c(i,j,k))~0,

we record all bordering elementary cubes’ birth times in the set

B : ~fbq D q~1,2,:::,26g. Then, if max(B)=0, we increment the

birth time b(c(i,j,k)) : ~1zminfbq=0 D q~1,2,:::,26g. Howev-

er, if max(B)~0, then b remains unchanged. This process

continues until every elementary cube in R has a nonzero birth

time assigned to it. There is a finite number of cubes and, since we

only change to a non-zero value of b once, this procedure is finite.

Let b� be the maximum birth time across all cubes in R. We define

the complexes Kb, b[f2, . . . ,b�g of our filtration K by

Kb~fc(i,j,k) D b(c(i,j,k))ƒbg:

We compute cubical persistence of the filtration complex K using

code developed by Mrozek, Batko and Wanner [13,14,15] called

cubPersistenceMD. While the final computation of homology is based

on the classic Smith Normal Form algorithm, the significant

computational improvements are found in its preprocessing co-

reduction algorithm ([13,14], also, See Section 4.4). This

preprocessing algorithm reduces the overall size of the input data

to the Smith Normal Form while preserving the homology of the

complex. The (co-)reduction runs in linear time, whereas the

Smith diagonalization algorithm has a complexity of O(n3:376:::)
[13,14,16].

In the computations described above, the output of the process

is a set of lists of birth/death times of generators in the filtration K .

The b1-Persistence Intervals, as displayed throughout the paper,

are constructed as a result. These barcodes provide detail as to

what is happening in the point cloud data set, but in these

situations it is often the ‘‘where’’ that is just as important as the

‘‘what’’. Therefore, we have employed subprograms from the

package CHomP [12], specifically Homcubes, to aid in acquiring a

means to visualize the persistent generators of each data set. The

input of Homcubes is the complex
Si

b~1 Kb. The choice of i is based

on the birth/death times of the persistent generators of each

specific point cloud data set; the only requirement is that birth

time ƒiƒ death time. The resulting set of generators is

constructed using basis cubes from the complex
Si

b~1 Kb, many

of which are not present in the initial complex K1. However, we

display these generators with the cubes from complex K1, since

these cubes closely approximate the actual position of afferent

terminals. This often results in generators that seemingly protrude

into free space, which is just a consequence of a mismatch between

the displayed set K1 and the set
Si

b~1 Kb where generators are

computed. Generators are also very rarely smooth. Therefore,

throughout the paper, we have displayed figures with smooth

circular representations of the computed generators. We illustrate

the difference in the Figure 15.

4.4. Co-reduction algorithm
Given a simplicial (or cubical) complex K and a free chain

complex C~fCq(K),Lqg with basis S, we say

(1) A pair (a,b) of elements of S is said to be an elementary
reduction pair if

cbdS a~fbg

(2) A pair (a,b) of elements of S is said to be an elementary
coreduction pair if

bdS b~fag

Theorem [13,14,15]: If (a,b) is an elementary reduction or

coreduction pair in S, then

H�(K)%H�(Kfa,bg)

Function Coreduction (Homology Complex S, a vertex
s) [13,14,15]

begin

Q : ~ empty queue of generators;

enqueue(Q,s)

while Q=1 do begin

s : ~ dequeue(Q);

Figure 15. The persistant generators of the experimental data set long+distal are displayed. (A) long+distal with smooth represenative
generators; and (B) long+distal with actual generators produced in computation.
doi:10.1371/journal.pone.0037278.g015
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if bdS s contains exactly one element t then begin

S : ~S\fsg;

for each u[cbdS s do

if u=[Q then enqueue(Q,u);

S : ~S\ftg;

end

else if bdS s~1 then

for each u[cbdS s do

if u=[Q then enqueue(Q,u);

end;

return S;

When implemented as a bitmap, for a cubical complex K the

coreduction algorithm runs in O(2d2n), where d denotes the

embedding dimension of the cubical set [13,14,15].

Supporting Information

Figure S1 The experimental data set medium+small is displayed

in two perspectives. (A) medium+small data in the perspective that

was displayed throughout the paper; (B) medium+small data in a

second perspective providing a clear view of the second (purple)

persistent generator.

(TIF)

Figure S2 Each figure is a Mathematica :nb file contain-
ing a 3-D figure. These figures depict the medium+small point

cloud; the medium+small point cloud with the computed

generators; and the medium+small point cloud with computed

generators and containing the black marked-double-circle, whose

arclength can is parameterized by the response angle of the

afferent hairs.

(NB)
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