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 2 

Abstract: 1 
The high proportion of transmission events derived from asymptomatic or presymptomatic 2 
infections make SARS-CoV-2, the causative agent in COVID-19, difficult to control through the 3 
traditional non-pharmaceutical interventions (NPIs) of symptom-based isolation and contact 4 
tracing. As a consequence, many US universities developed asymptomatic surveillance testing 5 
labs, to augment NPIs and control outbreaks on campus throughout the 2020-2021 academic year 6 
(AY); several of those labs continue to support asymptomatic surveillance efforts on campus in 7 
AY2021-2022. At the height of the pandemic, we built a stochastic branching process model of 8 
COVID-19 dynamics at UC Berkeley to advise optimal control strategies in a university 9 
environment. Our model combines behavioral interventions in the form of group size limits to 10 
deter superspreading, symptom-based isolation, and contact tracing, with asymptomatic 11 
surveillance testing. We found that behavioral interventions offer a cost-effective means of 12 
epidemic control: group size limits of six or fewer greatly reduce superspreading, and rapid 13 
isolation of symptomatic infections can halt rising epidemics, depending on the frequency of 14 
asymptomatic transmission in the population. Surveillance testing can overcome uncertainty 15 
surrounding asymptomatic infections, with the most effective approaches prioritizing frequent 16 
testing with rapid turnaround time to isolation over test sensitivity. Importantly, contact tracing 17 
amplifies population-level impacts of all infection isolations, making even delayed interventions 18 
effective. Combination of behavior-based NPIs and asymptomatic surveillance also reduces 19 
variation in daily case counts to produce more predictable epidemics. Furthermore, targeted, 20 
intensive testing of a minority of high transmission risk individuals can effectively control the 21 
COVID-19 epidemic for the surrounding population. Even in some highly vaccinated university 22 
settings in AY2021-2022, asymptomatic surveillance testing offers an effective means of 23 
identifying breakthrough infections, halting onward transmission, and reducing total caseload. 24 
We offer this blueprint and easy-to-implement modeling tool to other academic or professional 25 
communities navigating optimal return-to-work strategies. 26 
 27 
 28 
Keywords: COVID-19; asymptomatic surveillance testing; branching process model; university 29 
control 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
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 41 
Introduction 42 

Non-pharmaceutical interventions (NPIs) to control the spread of infectious diseases vary 43 
in efficacy depending on the natural history of pathogen that is targeted [1]. Highly transmissible 44 
pathogens and pathogens for which the majority of onward transmission events take place prior 45 
to the onset of symptoms are notoriously difficult to control with standard public health 46 
approaches, such as isolation of symptomatic individuals and contact tracing [1]. SARS-CoV-2, 47 
the causative agent in COVID-19, is a clear example of one of these difficult-to-control 48 
pathogens [2]. While the first SARS-CoV was effectively contained via the isolation of 49 
symptomatic individuals following emergence in 2002 [3], at the time of this article’s revision, 50 
SARS-CoV-2 remains an ongoing public health menace that has infected more than 240 million 51 
people worldwide [4]. Though the two coronaviruses are epidemiologically comparable in their 52 
original basic reproduction numbers (R0) [3], SARS-CoV-2 has evaded control efforts largely 53 
because the majority of virus transmission events occur prior to the onset of clinical symptoms in 54 
infected persons [2]—in stark contrast to infections with the first SARS-CoV [3]. Indeed, in 55 
many cases, SARS-CoV-2-infected individuals never experience symptoms at all [5–8] but, 56 
nonetheless, remain capable of transmitting the infection to others [9–13]. Due to the challenges 57 
associated with asymptomatic and presymptomatic transmission [10], surveillance testing of 58 
asymptomatic individuals has played an important role in COVID-19 epidemic control [14–16]. 59 
Asymptomatic surveillance testing is always valuable for research purposes, but its efficacy as a 60 
public health intervention will depend on both the epidemiology of the focal infection and the 61 
characteristics of the testing regime. Here, we explore the effects of both behavior-based NPIs 62 
and asymptomatic surveillance testing on COVID-19 control in a university environment.  63 

In year two of the COVID-19 pandemic, the United States still leads the globe with over 64 
46 million reported cases of COVID-19 [4], and universities across the nation continue to 65 
struggle to control epidemics in their campus communities [17]. To combat this challenge in 66 
AY2020-2021, colleges adopted a variety of largely independent COVID-19 control tactics, 67 
ranging from entirely virtual formats to a mix of in-person and remote learning, paired with strict 68 
behavioral regulations, and—in some cases—in-house asymptomatic surveillance testing [18]. In 69 
AY2021-2022, asymptomatic surveillance testing continues to play a key role in expanded plans 70 
for university reopening [18,19], even on some campuses which also mandate vaccination [20]. 71 
In March 2020, shortly after the World Health Organization declared COVID-19 to be a global 72 
pandemic [21], the University of California, Berkeley, launched its own pop-up SARS-CoV-2 73 
testing lab in the Innovative Genomics Institute (IGI) [22] with the aim of providing COVID 74 
diagnostic services to the UC Berkeley community and underserved populations in the 75 
surrounding East Bay region. Though the IGI RT-qPCR-based pipeline was initially developed 76 
to service clinical, symptomatic nasopharyngeal and oropharyngeal swab samples [22], the IGI 77 
subsequently inaugurated an asymptomatic surveillance testing program for the UC Berkeley 78 
community [23], through which—at the time of this revision—over 60,000 faculty, students, and 79 
staff in the UC Berkeley community have since been serviced with over 440,000 tests and 80 
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counting [24].  From June 2020-May 2021, weekly asymptomatic surveillance testing was 81 
mandatory for any UC Berkeley community member working on campus; testing requirements 82 
were relaxed in May 2021 for those providing proof of vaccination.  83 

Here we developed a stochastic, agent-based branching process model of COVID-19 84 
spread in a university environment to advise UC Berkeley on best-practice approaches for 85 
asymptomatic surveillance testing in our community and to offer guidelines for optimal control 86 
in university settings more broadly. Previous modeling efforts have used similar approaches to 87 
advocate for more frequent testing with more rapid turnaround times at the expense of 88 
heightened test sensitivity [14,15] or to weigh the cost-effectiveness of various testing regimes 89 
against symptom-based screening in closed university or professional environments [16]. Our 90 
model is unique in combining both behavioral interventions with optimal testing design in a real-91 
world setting, offering important insights into efficient mechanisms of epidemic control and an 92 
effective tool to optimize control strategies.  93 
 94 
Materials and methods. 95 

Our model takes the form of a stochastic branching process model, in which a subset 96 
population of exposed individuals (0.5%, derived from the mean percentage of positive tests in 97 
our UC Berkeley community [24]) is introduced into a hypothetical 20,000 person community 98 
that approximates our university campus utilization goals from spring 2021. With each timestep, 99 
the disease parameters for each infected case are drawn stochastically from distributions 100 
representing the natural history of the SARS-CoV-2 virus, paired with realistic estimates of the 101 
timeline of corresponding public health interventions [2,16,25] (Fig. 1). Our flexible model (Text 102 
S1; published here with open-access R-code [26]) allows for the introduction of NPIs for 103 
COVID-19 control in four different forms: (1) group size limits, (2) symptom-based isolations, 104 
(3) asymptomatic surveillance testing isolations, and (4) contact tracing isolations that follow 105 
after cases are identified through screening from symptomatic or asymptomatic surveillance 106 
testing (Table 1). Because we focused our efforts on optimal asymptomatic surveillance testing 107 
regimes, we did not explicitly model other NPIs, such as social distancing and mask wearing; 108 
however, the effects of these behaviors were captured in our representation of R-effective 109 
(hereafter, RE) for both within-campus and out-of-campus transmission. Since vaccination 110 
against SARS-CoV-2 became widely available during the review process of our article 111 
(including a vaccine mandate across the University of California school system [27]), we 112 
updated our original model to allow for flexible starting conditions that include a variable 113 
proportion of vaccinated individuals in a specific university setting. We allowed a randomly 114 
selected 5% of vaccinated individuals to become infected and infectious as “breakthrough cases” 115 
(consistent with published estimates of vaccine efficacy for the Pfizer-BioNTech mRNA vaccine 116 
with the most widespread uptake in the US [28]). For simplicity, we assumed that all infectious 117 
individuals were equally transmissible, regardless of vaccination status (though see ‘Discussion’ 118 
for future research objectives). After experiencing infection, we further assumed that all 119 
individuals became recovered and immune for the remaining duration of our simulations, as our 120 
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 5 

focal timescale of interest (the academic semester) is shorter than most projections of the 121 
duration of immunity to SARS-CoV-2 [29,30].  122 

 123 
Fig. 1: Conceptual schematic of branching process model of SARS-CoV-2 dynamics.  124 
Person A is isolated through testing after exposing Person B and Person C. Person B is then isolated through contact 125 
tracing, while Person C is not traced but is nonetheless ultimately isolated through symptomatic surveillance. A viral 126 
titer trajectory (right) is derived from a within-host viral kinetics model (Text S2)—independent trajectories from 127 
20,000 randomly-selected individuals are shown here to highlight the range of possible variation. The 25th and 75th 128 
titer threshold percentile for the onset of symptoms are depicted in pink, such that 32% of individuals modeled in 129 
our simulations did not present symptoms. Schematic is adapted in concept from Hellewell et al. (2020) [31].   130 
 131 
Table 1: Parameter ranges and interventions included in model. 132 

Parameter Values investigated References* 
Basic epidemiology 
Population size • 20,000 --- 

Number initially infected • 100 --- 

Possible cases per infectious 
individual (R0), prior to 
environmental corrections 

• Negative binomial distribution (main text):  
mean = 2.5; k = 0.10  

• Lognormal distribution (Fig. S2):  
mean=2.5; sd = 0.10 

• Negative binomial distribution, Delta (Fig. S7, S8): 
mean = 2.5; k = 0.10. 

[32,33] 

Transmission events per 
infectious individual 

• Poisson distribution: 𝜆 = 3 --- 

Virus generation time • Weibull distribution: 𝑘 = 2.826; 	𝜆 = 5.665 [2] 

Proportion of transmissions 
maintained within the UCB 
community 

• 90% (main text) 
• 50% (Fig. S5) 

--- 

Population proportion vaccinated • 0% (main text) 
• 97.7% (Fig. S7) 
• 60% (Fig. S8) 

[24,34] 

Proportion of vaccinated 
individuals experiencing 
breakthrough cases  

• 0% (main text) 
• 5% (Fig. S7, S8) 

[28] 

Threshold viral titer for symptom 
onset 

• Lognormal distribution: mean = 105 viral cp/µl 
RNA; sd = 104 viral cp/µ (main text; yields ~30% 
asymptomatic infections) 

[6,7] 
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• Lognormal distribution: mean = 107 viral cp/µl 
RNA; sd = 104 viral cp/µ (Fig. S3; yields ~50% 
asymptomatic infections) 

Behaviour-based NPIs 
Group size limits • 6, 12, 16, 20, 50, no limit (main text; Fig. S1, S2) --- 

Population proportion adhering to 
group size limits 

• 90% (main text; Fig. S2) 
• 50% (Fig. S1) 

--- 

Lag time to symptomatic 
isolation 

• Normal distribution: mean = 1,2,3,4,5 days; sd = .5 
days 

 

--- 

Lag time to contact tracing  • Normal distribution: mean = 1 day; sd = .5 days 

 

--- 

Population proportion 
participating in contact tracing  

• 0% (main text) 
• 90% (Fig. S4) 

--- 

Testing interventions 
Testing frequency • semi-weekly (2x/week) 

• weekly 
• every-two-weeks 

--- 

Test days per week • 2 (main text) 
• 5, 7 (Fig. S6) 

--- 

Testing turnaround time • Normal distribution: mean = 1,2,3,4,5,10 days; 
sd=.5 days 

--- 

Test limit of detection • 101, 103, 105 viral cp/µl RNA [22,35–39] 

*if applicable; otherwise, indicates a parameter investigated in this analysis. 

 133 
RE is the product of the pathogen basic reproduction number (R0) and the proportion of 134 

the population that is susceptible to disease. RE is thus a dynamic value which corresponds to the 135 
number of new infections caused by a single infection at a given timepoint within a specified 136 
community. We computed an independent RE for each infectious person in our population as a 137 
combined result of both heterogeneity in individual infectiousness and heterogeneity in 138 
individual contact events that could result in transmission. To determine RE, we first drew a 139 
value of potential cases for each infectious individual from the SARS-CoV-2 negative binomial 140 
distribution for R0, estimated to have a mean value of 2.5 and a dispersion parameter (k) of 0.10 141 
[32]; in later analyses incorporating highly vaccinated university settings reflective of the reality 142 
of AY2021-2022, we shifted the mean to a value of 6 to better approximate the dynamics of 143 
highly transmissible variants of concern (e.g. the Delta variant) [33]. Though representation of 144 
RE in log-normal vs. negative binomial form will not change the average number of cases 145 
generated per epidemic, the negative binomial distribution replicates the dynamics of 146 
superspreading events, which are known to play an important role in SARS-CoV-2 dynamics 147 
[40–45]. Indeed, there is strong direct empirical evidence that COVID-19 epidemiology exhibits 148 
a negative binomial RE across multiple systems [44,46–48]; as few as 10% of infectious 149 
individuals may be responsible for 80% of onward SARS-CoV-2 transmissions [49]. 150 

After drawing potential cases for each infectious individual, we next hypothesized that 151 
most university students would interact predominantly with other students vs. people from the 152 
surrounding community and, thus, modeled only a minority (10%) of possible onward 153 
transmissions as lost to the external community (e.g. an infectious UC Berkeley community 154 
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member infects someone outside the UC Berkeley community), though see ‘Results’ for 155 
discussion of sensitivity analysis of this assumption.  156 

Next, we assumed that social distancing, masking, and behavioral modifications in our 157 
community would modulate dynamics such that some of the remaining 90% (or 50% in 158 
sensitivity analyses) of the original R0-derived potential infections do not take place. Because we 159 
were specifically interested in advising UC Berkeley on group size limits for gatherings, we then 160 
drew a number of possible onward transmission events for each infectious individual from a 161 
simple Poisson distribution with 𝜆 = 3, signifying the average number of possible encounters 162 
(i.e. cross-household dining, shared car rides, indoor meetings, etc.) per person that could result 163 
in transmission. We then use published estimates of the generation time of onward transmission 164 
events for SARS-CoV-2 infection [2] to draw event times for these encounters and distributed 165 
each infectious person’s original number of R0-derived potential cases among these events at 166 
random. This ensured that multiple transmissions were possible at a single event; the most 167 
extreme superspreading events occur when persons with heterogeneously high infectiousness 168 
draw a large number of potential cases, which are concentrated within a relatively small number 169 
of discrete transmission events. When we imposed group size limit NPIs in our model, we 170 
truncated case numbers for each event at the intervention limit. 171 

For each infectious individual, we additionally generated an independent virus trajectory, 172 
using a within-host viral kinetics model for SARS-CoV-2 upper respiratory tract infections, 173 
structured after the classic target cell model [50–53] (Text S2). From each independent virus 174 
trajectory, we inferred a time-varying transmissibility, modeled as a Michaelis-Menten-like 175 
function of viral load [53]. We fixed the within-host viral kinetics model constant, 𝜃, at a value 176 
that allowed for a ~50% probability of infection occurring per transmissible contact event at an 177 
infectious individual’s peak viral load [53]. Because all possible onward transmissions were 178 
assigned an event generation time, we next evaluated the viral load of the infectious person at the 179 
time of each potential transmission to determine whether or not it actually occurred. By these 180 
metrics, our original R0-derived possible cases were halved, such that RE, the number of average 181 
onward infections caused by a single infectious person in the UC Berkeley community, was 182 
reduced to just over one (RE=1.05), or just under three (RE=2.94) in the case of Delta variant 183 
simulations, consistent with published estimates of Bay Area RE and initial asymptomatic test 184 
results in our community from the first year of the pandemic [24,54]. The majority of modelled 185 
transmission events occurred when the infectious host had higher viral titers, thus biasing new 186 
case generations towards earlier timesteps in an individual’s infection trajectory, often occurring 187 
prior to the onset of symptoms as is realistic for COVID-19 [25] (Fig. 1). 188 

In addition to modulating the probability of onward transmission events, each infectious 189 
individual’s virus trajectory additionally allowed us to compute a timing of symptom onset, 190 
which corresponded to the timepoint at which an individual’s virus trajectory crossed some 191 
threshold value for presentation of symptoms. We drew each threshold randomly from a log-192 
normal distribution with a mean of 105 virus copies per µl of RNA; by these metrics, roughly 193 
32% of our modeled population presented as asymptomatic, in keeping with published estimates 194 
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for SARS-CoV-2 [6,7]. Using each infectious individual’s viral load trajectory, we were next 195 
able to compute a period of test sensitivity, corresponding to the time during which viral load is 196 
high enough for detection by the virus test in question, based on the modeled limit of detection. 197 
Asymptomatic surveillance testing results in higher “false-negative” test results both very early 198 
and very late in infection when viral loads are below the detection limit for the adopted assay 199 
[55] (Fig. 1), though most tests should reliably detect infectious cases with viral titers >106 cp/µl 200 
[56–58]. We explored dynamics across a range of published values for test limits of detection: 201 
101, 103, and 105 virus copies per µl of RNA. The IGI’s RT-qPCR-based testing pipeline has a 202 
published sensitivity of 1 cp/µl [22], while the majority of SARS-CoV-2 RT-qPCR tests 203 
nationally are reliable above a 103 cp/µl threshold [35]; less-sensitive antigen-based and LAMP 204 
assays report detection limits around 105 cp/µl [36,37]. Some commercially-available COVID-19 205 
test kits detection limits in TCID50/ml, which corresponds to the median tissue culture infectious 206 
dose, roughly approximating a threshold for the infectious viral load. Though exact values will 207 
vary depending on the virus, cell type, and assay conditions, a 100 TCID50/ml limit of detection 208 
for SARS-CoV-2 has been shown to correspond to a viral load detection limit between 102 and 209 
103 cp/µl RNA [38,39]. For reference, the Abbot BinaxNOWTM COVID-19 Ag card reports a 210 
limit of detection of 140.6 TCID50/ml (between 102 and 103 cp/µl RNA), while the QuickVue At-211 
Home COVID-19 test reports a limit of detection of 1.91x104 TCID50/ml (between 104 and 105 212 
cp/µl RNA). 213 

In addition to within-community transmissions, all individuals in the modeled population 214 
were also subjected to a daily hazard (0.25% in standard model runs and 0.60% in Delta variant 215 
runs) of becoming infected from an external source, based on published estimates of RE and 216 
COVID-19 prevalence in Alameda County [54,59]. We report the mean results of 100 stochastic 217 
runs of each proposed intervention. 218 
 219 
Results. 220 
Comparing behavioral NPIs for COVID-19 control. 221 

We first ran a series of epidemic simulations using a completely mixed population of 222 
20,000 individuals subject to the infection dynamics outlined above to compare and contrast the 223 
impacts of our four NPIs on COVID-19 control. We introduced an initial population of 100 224 
infectious individuals (0.5%) at timestep 0 and compared the effects of a single intervention on 225 
epidemic trajectories after the first 50 days of simulation. Less intensive or intervention-absent 226 
scenarios allowed infectious cases to grow at unimpeded exponential rates, rapidly exhausting 227 
our susceptible supply and making it necessary to compare results at a consistent (and early) 228 
timepoint in our simulated epidemics. 229 

As a consequence of our representation of RE in negative binomial form, we first 230 
considered the COVID-19 control effectiveness of group size limits on in-person gatherings, 231 
which doubled as upper thresholds in transmission capacity (Fig. 2). Assuming that 90% of the 232 
modeled population adhered to assumed group size regulations, we found that limiting outdoor 233 
gatherings to groups of six or fewer individuals saved a mean of ~7,900 cases per 50-day 234 
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simulation (in a 20,000 person population) and corresponded to an RE reduction of nearly 0.20 235 
(reducing RE from 1.05 to subclinical 0.86; Fig. 2; Dataset S1). By contrast, a large group size 236 
limit of 50 persons had almost no effect on epidemic dynamics; under published estimates of 237 
SARS-CoV-2 negative binomial RE [32], a group size limit of 50 will restrict transmission from 238 
only 0.00039% of infectious individuals (Fig. 2). Intriguingly, in sensitivity analyses exploring 239 
assumptions of only 50% adherence to group size limits, we witnessed larger caseloads only at 240 
group size limits of 16 or fewer individuals (Fig. S1); at group sizes of 20 or more individuals, 241 
density limits were so ineffective already that reducing adherence had no power to further 242 
undermine the intervention’s impacts. Gains in epidemic control from group size limits resulted 243 
from avoidance of superspreading events, an approach that was effective for negative binomial 244 
but not log-normal representations of RE that lack the transmission “tail” characteristic of a 245 
superspreader distribution [45] (Fig. S2). Importantly, by avoiding superspreading events, group 246 
size limits also reduced variance in daily case counts, yielding more predictable epidemics, 247 
which are easier to control through testing and contact tracing [2,25,31]. Over the July 4, 2020 248 
weekend, asymptomatic surveillance testing resources in our UC Berkeley community were 249 
overwhelmed and containment efforts challenged after a single superspreading event on campus 250 
[60].  251 

 252 
Fig. 2: Effects of group size limits on COVID-19 dynamics. 253 
A. Negative binomial RE distribution with mean = 1.05 and dispersion parameter (k) = 0.10. The colored vertical 254 
dashes indicate group size limits that ‘chop the tail’ on the RE distribution; for 90% of the population, coincident 255 
cases allocated to the same transmission event were truncated at the corresponding threshold for each intervention. 256 
B. Daily new cases and, C. Cumulative cases, across a 50-day time series with 95% confidence intervals by standard 257 
error depicted under corresponding, color-coded group size limits.  258 
 259 

We next investigated the impacts of variation in lag time to self-isolation post-symptom 260 
onset for the just under 70% of individuals likely to present with COVID-19 symptoms in our 261 
modeled population (Fig. 3). At UC Berkeley, all essential students, faculty, and staff must 262 
complete a digital ‘Daily Symptom Screener’ before being cleared to work on campus; here, we 263 
effectively modeled the delay post-initial symptom onset to the time at which each individual 264 
recognizes symptoms sufficiently to report to the Screener and isolate. For each infected 265 
individual in our population, we drew a symptom-based isolation lag from a log-normal 266 
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distribution centered on a mean of one to five days, assuming the entire population to be 267 
compliant with the selected lag.  268 

 269 
Fig. 3: Impacts of NPIs on COVID-19 control. 270 
A. Mean reduction in RE* and B. cumulative cases saved across 50-day simulated epidemics under assumptions of 271 
differing non-pharmacological interventions (NPIs). NPIs are color-coded by threshold number of persons for 272 
group-size limits, lag-time for symptom-based isolations, and mean turnaround time from test positivity to isolation 273 
of infectious individuals for testing isolations. For testing isolations, shading hue corresponds to test limit of 274 
detection with the darkest colors indicating the most sensitive tests with a limit of detection of 101 virus copies/µl of 275 
RNA. Progressively lighter shading corresponds to limits of detection = 103, 105, and 107 cp/µl.  276 
*Note: RE reduction (panel A) is calculated as the difference in mean RE in the absence vs. presence of a given NPI. 277 
The upper confidence limit (uci) in RE reduction is calculated as the difference in uci RE in the absence vs. presence 278 
of NPI. In our model, mean RE in the absence of NPI equals 1.05 and uci RE in the absence of NPI equals 8.6. 279 
 280 

By these metrics, a rapid, one day lag in symptom-based isolation was the fourth-most 281 
effective intervention in our study, with a mean of more than 13,100 cases saved in a 50-day 282 
simulation (again, in a 20,000 person population), corresponding to an RE reduction of 0.67, 283 
from 1 to 0.38 (Dataset S1). Longer lag times to isolation produced less dramatic results, but 284 
even an average five-day lag to isolation post-symptom onset nonetheless yielded more than 285 
4,000 cases saved and reduced RE by a mean of 0.06. The efficacy of symptom-based isolation 286 
decreased at higher virus titer thresholds for symptom onset, corresponding to a higher 287 
asymptomatic proportion (~50%) of the population (Fig. S3); some empirical findings suggest 288 
that these higher titer thresholds for symptom onset may more accurately reflect COVID-19 289 
epidemiology [61]. Because both group size limits and daily screening surveys to facilitate 290 
symptom-based isolation can be implemented without expending substantial resources, we 291 
advocate for these two approaches as particularly cost-effective COVID-19 control strategies for 292 
all university and small community environments—especially those lacking an on-site 293 
asymptomatic surveillance testing lab. 294 
 295 
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Comparing asymptomatic surveillance testing for COVID-19 control. 296 
Our primary motivation in developing this model was to advise UC Berkeley on best-297 

practices for asymptomatic surveillance testing. As such, we focused efforts on determining the 298 
most effective use of testing resources by comparing asymptomatic surveillance testing across a 299 
range of approaches that varied test frequency, test turnaround time (the time from which the test 300 
was administered to the timing of positive case isolation), and test sensitivity (based on the limit 301 
of detection). 302 

We compared all permutations of asymptomatic surveillance testing, varying test 303 
frequency across semi-weekly, weekly, and every-two-week regimes, investigating turnaround 304 
time across delays of one to five and ten days, and exploring limits of detection of 101, 103, and 305 
105 virus copies per µl of RNA. These test frequency regimes reflect those considered by UC 306 
Berkeley administrators throughout the pandemic: from August-December 2020 and January-307 
April 2021, UC Berkeley undergraduates residing in university residence halls were subject to 308 
compulsory semi-weekly asymptomatic surveillance testing, while all other campus community 309 
members were permitted to take part in voluntary testing with a recommended weekly or every-310 
two-week frequency. After vaccines became widespread (and eventually mandated), testing 311 
requirements for vaccinated undergraduates in residence halls were reduced to once a month. 312 
Turnaround time values in our model reflect the reality in range of testing turnaround times from 313 
in-house university labs like that at UC Berkeley to institutions forced to outsource testing to 314 
commercial suppliers [62], and limits of detection span the range in sensitivity of available 315 
SARS-CoV-2 tests [22,35–37].  316 

Across testing regimes broadly, we found test frequency, followed by turnaround time, to 317 
be the most effective NPIs, with limit of detection exerting substantially less influence on 318 
epidemic dynamics, consistent with findings published elsewhere [14,15]. The top three most 319 
effective NPIs in our study corresponded to semi-weekly testing regimes with one- and two-day 320 
turnaround times across 101 and  103 cp/µl limits of detection. These three scenarios yielded 321 
mean cases saved ranging from just over 14,000 to just over 13,500 in the first 50 days of 322 
simulation and produced an RE reduction capacity between 0.97 and 0.80 (Fig. 3; Dataset S1). 323 
Halving test frequency to a weekly regimen, under assumptions of turnaround time=1 day and 324 
limit of detection=101, resulted in a nearly 48% decrease in the NPI’s RE reduction capacity. By 325 
comparison, a single extra day lag from one to two-day turnaround time under semi-weekly 326 
testing conditions at limit of detection=101 cp/µl yielded a modest 16% decrease in RE reduction 327 
capacity. However, longer delays in turnaround time of up to ten days or more—not unusual in 328 
the early stages of the COVID-19 pandemic [62]—were not significantly different from 329 
scenarios in which no intervention was applied at all. This outcome results from the rapid 330 
generation time of SARS-CoV-2 [2]; most infectious individuals will have already completed the 331 
majority of subsequent transmissions by the time a testing isolation with a 10-day turnaround 332 
time is implemented. Nonetheless, encouragingly, reducing test sensitivity from 101 to 103 under 333 
a semi-weekly, turnaround time=1 day regime decreased RE reduction capacity by only 18%, 334 
offering support to advocates for more frequent but less sensitive tests [63] but also highlighting 335 



 
 

 12 

the added benefit incurred when university testing labs, like that at UC Berkeley, are able to 336 
provide both frequent and sensitive PCR-based testing. 337 

Addition of a contact tracing intervention, in which 90% of infectious contacts were 338 
traced and isolated within a day of the source host isolation, to NPI scenarios already featuring 339 
either symptom-based or asymptomatic surveillance testing isolation enhanced each 340 
intervention’s capacity for epidemic control (Fig. S4). Of note, contact tracing boosted 341 
performance of some of the poorest performing testing interventions, such that even those 342 
previously ineffective asymptomatic surveillance regimens with 10-day turnaround time 343 
nonetheless averted cases and significantly reduced RE when infectious contacts could be 344 
isolated. For a semi-weekly testing regime at limit of detection =101 cp/µl and turnaround time 345 
=10 days, the addition of contact tracing increased mean cases saved from ~510 to >8,600 and 346 
increased RE reduction capacity from 0.000080 to 0.27 (Dataset S2).  347 
 348 
Optimizing combined NPIs for COVID-19 control. 349 

Our modeled simulations suggested that it is possible to achieve largely equivalent gains 350 
in COVID-19 control from NPIs in the form of group size limits, symptom-based isolations, and 351 
asymptomatic surveillance testing isolations—though gains from symptom-based behavioral 352 
isolations were jeopardized under assumptions of a higher proportion of asymptomatic 353 
individuals (Fig. S3). Nonetheless, the most effective interventions were realized when 354 
behavioral control mechanisms were combined with asymptomatic surveillance testing (Fig. 4). 355 
Assuming a one day turnaround time and 101 cp/µl limit of detection, we found that adding (a) 356 
contact tracing with 90% adherence and a one-day lag, plus (b) symptom-based isolation with a 357 
one-day lag, plus (c) a group size limit of twelve persons to an every-two-week asymptomatic 358 
surveillance testing regimen could elevate the RE reduction capacity from 0.22 to 0.83 and 359 
almost double the ~6,600 cases saved from the testing intervention alone (Dataset S3). 360 
Combining interventions enabled less rigorous testing regimes to rival the effectiveness of semi-361 
weekly asymptomatic surveillance testing without expending additional resources. In addition, 362 
combining interventions resulted in less variation in the cumulative case count, as many layers of 363 
opportunity for infection isolation helped limit the likelihood of a superspreading event spiraling 364 
out of control. Sensitivity analyses indicated that our findings were largely robust to assumptions 365 
of exacerbated insularity in university settings (e.g. when only 1% of transmissions were lost to 366 
the outside) but that the impacts of combined interventions were reduced under sensitivity 367 
analyses exploring a higher proportion (e.g. 50%) of transmissions lost to the external 368 
community (Fig. S5), as interventions can only be applied within the closed campus. These 369 
findings highlight the vulnerability of any community public health control measure to disease 370 
introductions from beyond the sphere of control. On a macroscale, isolated countries like New 371 
Zealand have struggled with this challenge across the course of the COVID-19 pandemic [64].  372 
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 373 
Fig. 4: Combining behavioral and asymptomatic surveillance testing NPIs for COVID-19 control. 374 
A. Mean reduction in RE*, B. cumulative cases saved, and C. daily case counts for the first 50 days of the epidemic, 375 
across regimes of differing testing frequency and a combination of asymptomatic surveillance testing, contact 376 
tracing, symptomatic isolation, and group size limit interventions. All scenarios depicted here assumed test 377 
turnaround time, symptomatic isolation lags, and contact tracing lags drawn from a log-normal distribution with 378 
mean=one day. Limit of detection was fixed at 101 and group size limits at 12. Dynamics shown here are from 379 
simulations in which testing was limited to two test days per week.  380 
*Note: RE reduction (panel A) is calculated as the difference in mean RE in the absence vs. presence of a given NPI. 381 
The upper confidence limit (uci) in RE reduction is calculated as the difference in uci RE in the absence vs. presence 382 
of NPI. In our model, mean RE in the absence of NPI equals 1.05 and uci RE in the absence of NPI equals 8.6. 383 
 384 
 385 

Finally, we also experimented with varying the distribution of days allocated to 386 
asymptomatic surveillance testing, without changing the frequency with which each individual 387 
was tested. Specifically, we explored semi-weekly, weekly, and every-two-week testing 388 
regimens in which tests were administered across two, five, and seven available testing days per 389 
week. More broadly distributed test days corresponded to fewer tests per day at a population 390 
level but, as with more intervention layers, resulted in less variation in the cumulative total cases 391 
because testing isolations more closely tracked daily exposures (Fig. S6).  392 
 393 
Modeling COVID-19 dynamics in the campus community. 394 
 We next sought to advise the IGI on asymptomatic surveillance testing strategies 395 
explicitly by simulating epidemics in a more realistic, heterogeneous population modeled after 396 
the UC Berkeley campus community in the spring semester of AY2020-2021 (Fig. 5). To this 397 
end, we subdivided our 20,000 person university population into a 5,000 person “high 398 
transmission risk” cohort and a 15,000 person “low transmission risk” cohort, assuming “high 399 
transmission risk” status to correspond to individuals (such as undergraduates), living in high 400 
density housing with a majority of contacts (90%) concentrated within the UCB community and 401 
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“low transmission risk status” to correspond to individuals (such as faculty members or 402 
postdoctoral scholars) with only limited contacts (40%) in the UCB community. We imposed a 403 
12-person group size limit (with 90% adherence) on the population as a whole, as recommended 404 
by the City of Berkeley Public Health Department in the early months of the pandemic [65], and 405 
assumed a one-day average lag in symptom-based isolation for all cohorts. To add additional 406 
realism, we enrolled only 50% of each transmission risk group in our modeled asymptomatic 407 
surveillance testing program (to mimic adherence—though asymptomatic surveillance testing is 408 
compulsory for undergraduates residing in residence halls at UC Berkeley [24]). We assumed 409 
that 95% efficacy in contact tracing (with a mean tracing delay of one day) for those enrolled in 410 
our asymptomatic surveillance program but only 50% efficacy for those not enrolled; UC 411 
Berkeley has encouraged all community members to enroll in the ‘CA Notify’ digital contract 412 
tracing app developed by Apple and Google [66]. For all testing interventions, we assumed limit 413 
of detection=101 cp/µl and turnaround time=2 days, the average for the IGI asymptomatic 414 
surveillance testing lab [22]. 415 
 416 

417 
Fig. 5: Targeted testing of high transmission risk cohorts in a heterogenous population. 418 
A. Schematic of transmission risk group cohorts in the heterogenous model. The population is divided into 5,000 419 
“high transmission risk” and 15,000 “low transmission risk” individuals, for which, 90% and 40% of the proportion 420 
of transmission events take place within the UC Berkeley community, respectively. Of those transmission events 421 
within the Berkeley community, the majority (80%) are restricted within the same transmission risk group as the 422 
infector, while 20% are sourced to the opposing risk group. Half of each cohort is assumed to be enrolled in 423 
asymptomatic surveillance testing and subjected to the differing test frequency regimes depicted in panels B. 424 
through D. Panel B. shows the progression of cumulative cases across 730 days of simulation for each testing 425 
regime, while panel C. and D. give, respectively, the reduction in RE* and the total cases saved achieved by each test 426 
regime vs. a no intervention baseline. 427 
*Note: RE reduction (panel A) is calculated as the difference in mean RE in the absence vs. presence of a given NPI. 428 
The upper confidence limit (uci) in RE reduction is calculated as the difference in uci RE in the absence vs. presence 429 
of NPI. In our model, mean RE in the absence of NPI equals 1.05 and uci RE in the absence of NPI equals 8.6. 430 
 431 
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 432 
We found that targeted, semi-weekly testing of 50% of individuals in the high 433 

transmission risk cohort, paired with every-three-week testing of enrolled individuals in the low 434 
transmission risk cohort yielded mean RE reduction and cumulative cases saved on par with that 435 
achieved from weekly testing (and better than that achieved from every-two-week testing) of all 436 
enrolled individuals in the population at large (Fig. 5). Targeting the highest transmission-risk 437 
populations with testing allows practitioners to save valuable resources while simultaneously 438 
controlling the epidemic for the entire community. Importantly, while mean RE reduction and 439 
cumulative cases were largely comparable between the targeted, semi-weekly testing regiment 440 
and the untargeted, weekly regimen, the observed variance in intervention efficacy (Fig. 5C) was 441 
substantially greater for the targeted scenario, in which the low transmission risk cohort was only 442 
tested once every three weeks. This results from a higher probability that a rare superspreading 443 
event could occur in the infrequently monitored low transmission risk cohort, thus reaffirming 444 
our previous observation that more frequent asymptomatic surveillance testing regimens result in 445 
more predictable—and easier to control—epidemics.  446 

Notably, irrespective of intervention, the diminished transmissibility of the “low 447 
transmission risk” population in this heterogeneous model structure greatly reduced epidemic 448 
spread in subsequent simulations as compared with those presented previously in the perfectly 449 
mixed environment; as a result, we here compared interventions after 500 days of simulation, 450 
rather than 50. The heightened realism of our heterogenous population generated slow-moving 451 
epidemics more closely resembling those we witnessed in our university environment across 452 
AY2020-2021.  453 

 454 
Modeling vaccinated environments. 455 

During the time in which this article was under review, COVID-19 vaccines became 456 
widely available in the US, and the University of California system issued a vaccine mandate for 457 
students and staff across all of its campuses, including UC Berkeley [27]. Simultaneously, the 458 
highly transmissible Delta variant (R0 ~ 6 [33]) took hold as the most widespread SARS-CoV-2 459 
lineage in the United States [67]. To address this new reality, we ran additional simulations of 460 
our original, single-population, university testing model, comparing the mosaic of possible 461 
interventions exhibited in Fig. 4 under assumptions of R0 = 6 in university settings in which a 462 
variable proportion of the student population was vaccinated. Specifically, we compared 463 
simulations in a population that was only 60% vaccinated (reflecting the student population of 464 
the University of Alabama, Tuscaloosa, a comparably sized public university to UCB but 465 
without a vaccine mandate, at the time of writing [34]) to simulations in a population that was 466 
97.7% vaccinated (reflecting the UC Berkeley undergraduate population at the time of writing 467 
[24]). Over 1,000 US universities and colleges have now issued guidelines mandating 468 
vaccination (with some exceptions) for on-campus study [68].  469 

In these new simulations, testing, tracing, symptomatic isolation, and group size limit 470 
NPIs continued to have scalable impacts on COVID-19 dynamics within each respective 471 
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university setting (Fig. S7-S8). Baseline RE under Delta variant assumptions in 60% vaccinated 472 
populations without behavior- or testing-based interventions was higher than baseline RE in 473 
unvaccinated populations under standard transmission assumptions (1.12 vs. 1.05). Nonetheless, 474 
behavior- and testing-based NPIs easily controlled epidemics in a less susceptible population  475 
(Fig. S7). Averted cases were fewer because fewer infections occurred altogether in the partially-476 
vaccinated population. Daily variance in exposure rate narrowed and differences in impact 477 
between interventions of variable intensity were less extreme in this more mild epidemic 478 
scenario, a pattern even more more pronounced in simulations assuming a 97.7% vaccinated 479 
population. Under assumptions of near-complete vaccination and Delta transmission, baseline RE 480 
equaled 0.17, and a testing only intervention with an every-two-week frequency was sufficient to 481 
avert the majority of onward transmission in the system (Fig. S8). Our findings offer support for 482 
some university policies which continue to mandate asymptomatic surveillance testing even for 483 
vaccinated individuals [20], as even modest surveillance efforts still effectively reduced RE and 484 
averted cases in highly vaccinated settings. Our model is structured such that future work could 485 
investigate the impact of disparate population sizes, distinct R0 values reflective of variable 486 
contact patterns, and unique vaccination proportions in heterogeneous subgroups within a larger 487 
community on longterm epidemic control. 488 
 489 
Discussion. 490 

We built a stochastic branching process model of SARS-CoV-2 spread in a university 491 
environment to advise UC Berkeley on best-practice strategies for effective asymptomatic 492 
surveillance in our pop-up IGI testing lab—and to offer a model for other institutions attempting 493 
to control the COVID-19 epidemic in their communities. While previous work has explored the 494 
isolated effects of specific NPIs—including group association limits [45],  symptomatic isolation 495 
[2,14–16,25,31], asymptomatic surveillance testing [14–16], and contact tracing [2,25,31]—on 496 
COVID-19 control, ours is unique in investigating these interventions simultaneously in a 497 
realistic and easily applicable setting. We offer an easy-to-implement modeling tool that can be 498 
applied in other educational and workplace settings to provide NPI recommendations tailored to 499 
the COVID-19 epidemiology of a specific environment.  500 

Results from our analysis of behavior-based NPIs support previous work [2,14–501 
16,25,31,45] in showing that stringent group size limitations to minimize superspreading events 502 
and rapid symptom-based isolations offer an effective means of epidemic control in the absence 503 
of asymptomatic surveillance testing resources. However, because of the unique natural history 504 
of the SARS-CoV-2 virus, for which the majority of transmission events result from 505 
asymptomatic or presymptomatic infections [2,31], symptom-based NPIs cannot reduce 506 
epidemic spread completely, and small community environments will always remain vulnerable 507 
to asymptomatic case importation. Moreover, symptom-based NPIs pose less effective means of 508 
epidemic control under scenarios assuming a higher proportion of asymptomatic individuals; 509 
empirical evidence suggests that SARS-CoV-2 infection may result in asymptomatic infection in 510 
up to nearly 70% of the population in select environments [61]. For this reason, our results 511 
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emphasize the importance of asymptomatic surveillance testing to prevent ongoing epidemics in 512 
universities and other small community environments. As more data becomes available on both 513 
the proportion of asymptomatic infections and their contributions to SARS-CoV-2 transmission, 514 
the relative importance of group size interventions, symptom-based isolation, and asymptomatic 515 
surveillance testing in different epidemiological contexts will be possible to determine from our 516 
modeling framework.  517 

As with behavioral interventions, our exploration of optimal asymptomatic surveillance 518 
testing regimes supports findings that have been published previously but with some key 519 
extensions and critical novel insights. As has been recently highlighted [14,15], we find that the 520 
most cases are saved under asymptomatic testing regimes that prioritize heightened test 521 
frequency and rapid turnaround time over test sensitivity. Importantly, we extend previous work 522 
to highlight how more rigorous testing regimes—and those combined with one or more 523 
behavioral interventions—greatly reduce variance in daily case counts, leading to more 524 
predictable epidemics. We find that the reduction in daily case variation is even more 525 
pronounced when test regimes of equivalent frequency are distributed more broadly in time (i.e. 526 
tests are offered across more days of the week), thus minimizing the likelihood of compounding 527 
transmission chains that may follow upon a superspreading event. Additionally, we demonstrate 528 
how a focused stringent testing regime for a subset of “high transmission risk” individuals can 529 
effectively control a COVID-19 epidemic for the broader community. Importantly, the extension 530 
of our model to heterogenous community dynamics also paves the way for future work that 531 
could explicitly model age-structured mixing patterns and infection probabilities by assigning 532 
disparate R0 values and/or distinct viral load trajectories to different community subgroups. For 533 
example, students living in university residence halls may experience a higher daily hazard of 534 
infection than older adults in lower density housing (as captured in R0), and young adult 535 
infections may manifest with lower viral load trajectories that are more likely to present as 536 
asymptomatic. Similarly, future modeling efforts could explore variable infection probabilities 537 
and/or viral titer trajectories in individuals infected after vaccination or otherwise. Taken 538 
together, our model shows the utility of a multi-faceted approach to COVID-19 control and 539 
offers a flexible tool to aid in prioritization of interventions in different university or workplace 540 
settings. 541 

Finally, our paper presents the only COVID-19 asymptomatic surveillance model 542 
published to date that combines asymptomatic testing with contact tracing, thus highlighting the 543 
compounding gains effected by these two interventions: contact tracing amplifies the control 544 
impacts of both symptom-based and asymptomatic surveillance testing-based isolations, such 545 
that even intervention scenarios assuming long delays in isolation after symptom onset or slow 546 
turnaround-times for test results can nonetheless greatly reduce the transmission capacity of 547 
COVID-19. These findings further emphasize the critical role that asymptomatic surveillance 548 
testing will continue to play in ongoing efforts to control COVID-19 epidemics in AY 2021-549 
2022. Even limited asymptomatic surveillance testing can offer substantial gains in case 550 
reduction for university and workplace settings with high vaccination rates and/or efficient 551 
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symptomatic isolation and contact tracing programs in place. Our model allows us to prioritize 552 
when and where these gains are most likely to be achieved. 553 

Because we do not explicitly model SARS-CoV-2 transmission in a mechanistic, 554 
compartmental framework [69,70], our analysis may overlook some more subtle insights into 555 
long-term disease dynamics. More complex analyses of interacting epidemics across larger 556 
spatial scales or investigations of the duration of immunity will necessitate implementation of a 557 
complete compartmental transmission model. However, our use of a stochastic branching 558 
process framework makes our model simple to implement and easily transferrable to other semi-559 
contained small community environments, including a wide range of academic settings and 560 
workplaces [26]. We make this tool available to others interested in exploring the impacts of 561 
targeted public health interventions—in particular, asymptomatic surveillance testing regimes—562 
on COVID-19 control in more specific settings.  We at the University of California, Berkeley are 563 
committed to maintaining the safest campus environment possible for our community, using all 564 
intervention tools at our disposal. We advise those in similar positions at other institutions to 565 
employ the behavioral interventions outlined here, in concert with effective asymptomatic 566 
surveillance testing regimes, to reduce community epidemics of COVID-19 in their own 567 
communities. 568 
 569 
 570 
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Supplementary Appendix. 1 
 2 
Text S1. Model Description. 3 

Our publicly-available Github repository (1) provides opensource code to reproduce all 4 
simulations and analyses presented in our paper. We summarize the practical implementation 5 
details of our modeling design for ease-of-access here.  6 

Our model takes the form of a stochastic branching process model, in which a subset 7 
population of exposed individuals (0.5%, derived from the mean percentage of positive tests in 8 
our UC Berkeley community (2)) is introduced into a hypothetical 20,000 person community that 9 
approximates the campus utilization goals for our university in spring 2021. The model code 10 
builds up to a single function `replicate.epidemic()` which runs a specified number of stochastic 11 
simulations from a defined parameter set, using the function ‘simulate.epidemic()’. Within the 12 
‘simulate.epidemic()’ function, we first construct a population of 20,000 persons in the sub-13 
function, ‘initiate.pop()’. Within this initiation function, each person in our population is 14 
individually numbered, assigned a viral titer trajectory that will be followed if that individual 15 
becomes infected (Text B), and assigned a suite of disease metrics drawn stochastically from a 16 
specified set of parameter distributions, as outlined in Text S3.  17 

 18 
Text S2. Within-host viral dynamics 19 
Titer Trajectories.  20 

For computational efficiency, we pre-generated 20,000 50-day individual titer trajectories 21 
and saved them as an .Rdata file, `"titer.dat.20K.Rdata"`. To generate these trajectories, we used 22 
a within-host viral kinetics model structured after the classic target cell model (3–5). Code for 23 
this model is available in the ‘model-sandbox’ folder of our Github release, under file `viral-24 
load.R`, which iterates the following simple model and parameter values derived from Ke et al. 25 
(2020), describing the dynamics of SARS-CoV-2 proliferation in the upper respiratory tract (6): 26 

 27 
𝑑𝑇!
𝑑𝑡 = −𝛽𝑇!𝑉 28 

𝑑𝐸
𝑑𝑡 = 𝛽𝑇!𝑉 − 𝑘𝐸 29 

𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 	𝛿𝐼 30 

𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 	𝑐𝑉 31 

 32 
where 𝑇! 	corresponds to the target cell population, 𝛽 is the transmission rate of free virus to 33 
target cell invasion, 𝑘 corresponds to the inverse of the duration of the virus eclipse phase, and 𝛿 34 
corresponds to the inverse of the incubation period of an infected cell. 𝑝 then gives the burst size 35 
of a virus-infected cell and 𝑐 equals the inverse of the lifespan of free virus subject to natural 36 
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virus mortality and immune predation. Parameter values used to generate each titer trajectory 37 
(with a standard deviation of .1x the value of each parameter introduced to add stochasticity in 38 
each iteration) are derived from Ke et al. (2020) (6), after fitting this model to individual patient 39 
data tracking viral loads through time in the upper respiratory tract of SARS-CoV-2-infected 40 
individuals: 41 
 42 
starting conditions:  𝑇! = 4 ∗ 10"; 𝐸 = 0; 𝐼 = 1;	𝑉 = 0 43 
parameter values: 𝛽 = 1.9 ∗ 10#"; 𝑘 = 4; 𝑐 = 10;	𝛿 = 1.9;	𝑝 = 51.4 44 
 45 
Note that Ke et al. (2020) (6) also explore the within-host dynamics of SARS-CoV-2 infection in 46 
the lower respiratory tract; however, since we model human-to-human transmissibility as 47 
inferred by viral load in nasopharyngeal swab samples (which better reflect the viral load in the 48 
upper respiratory tract), we ignore the lower respiratory dynamics here. 49 
 50 
Infectivity by Viral Load. 51 
After Ke et al. (2020) (6), we next estimated the probability of infection given contact at a 52 
specific viral load, using a Michaelis-Menton-like function. Following Ke et al. (2020), we 53 
described the probability this probability as:	54 

𝑃(𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛) = 1 − exp	(−1 ∗ C𝜃 E
𝑉

𝑉 + 𝐾$
HI) 55 

where 𝐾$ corresponds to the saturation constant by which proportional gains in infectiousness  56 
with viral load diminish at increasingly high viral titers and 𝜃 is a constant, such that the 57 
maximum transmission capacity at any moment equals 1 − 𝑒#%. Ke et al. (2020) modeled a 58 
constant hazard of contact events for infectious individuals and therefore fixed 𝜃 at a value of 59 
0.05, corresponding to a ~5% probability of a given contact resulting in transmission. Because 60 
we draw possible transmissions events from a negative binomial SARS-CoV-2 R0 distribution, 61 
(mean= 2.5 and k=0.10 (7)) but ultimately know that RE for our university environment should 62 
have a value of just above one (8), we instead fixed 𝜃 at a value of 0.72, corresponding to a 63 
~51% probability of a given contact resulting in transmission, thus effectively halving R0 to 64 
generate RE. The exact probability varied as a function of the timing of each contact event across 65 
the trajectory of within-host viral load, with transmissions favored earlier in an infection 66 
trajectory when viral load peaks (9). 67 
 68 
Text S3. Individual disease metrics 69 
Figures in our paper are derived from 100x replications of each set of parameter values, which 70 
we manipulate to explore a range of non-pharmaceutical interventions (NPIs) to combat COVID-71 
19 dynamics in our system. Our flexible model allows for the introduction of NPIs for COVID-72 
19 control in four different forms: (1) group size limits, (2) symptom-based isolations, (3) 73 
surveillance testing isolations, and (4) contact tracing isolations that follow after cases are 74 
identified through screening from symptomatic or surveillance testing. These interventions 75 
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modify the suite of disease metrics drawn upon model initiation for each numbered individual in 76 
the dataset. We summarize the disease metrics drawn at initiation for all members of the 77 
population here: 78 

• Time of next test: allocated based on the selected asymptomatic surveillance testing regime. 79 
We assume the week starts with day 1 on Saturday and day 7 on Friday. If n.test.days =2, then 80 
tests are distributed on Monday (day 3) and Friday (day 7) of each week. As timesteps 81 
advance and individuals reach their respective test days, the next test day is updated based on 82 
the testing regime (if semi-weekly, the next test day is advanced 3 days; if weekly, the next 83 
test day is advanced 7 days; if every-two-weeks, the next test day is advanced 14 days). 84 

• Beginning/end time of test sensitivity: based on test limit of detection (LOD) as specified at 85 
model outset, this corresponds to the timestep post exposure at which an individual viral titer 86 
crosses the threshold for being detectable by the chosen test, both as titers increase at the 87 
beginning of a disease trajectory and decrease at the end.  88 

• Adherence with testing regime: Y/N, allocated randomly across individuals based on the 89 
proportion of the population modeled as complying with the surveillance testing intervention 90 
(90% of individuals in all scenarios modeled in our paper). 91 

• Adherence with group limit: Y/N, allocated randomly across individuals based on the 92 
proportion of the population modeled as complying with the group size limits imposed at 93 
outset (90% of individuals in all scenarios modeled in our paper; see ‘number of potential 94 
onward cases generated for’ for how group size interacts with cases). 95 

• Adherence with contact tracing regimen: Y/N, allocated randomly across individuals based 96 
on the proportion of the population modeled as complying with the contact tracing 97 
intervention imposed at outset (90% of individuals in all scenarios modeled in our paper). 98 

• Time of symptom onset: determined by randomly drawing a titer limit for symptom onset for 99 
each individual from a lognormal distribution with a mean of 1e+05 cp/µl  RNA and a 100 
standard deviation of 1e+04 cp/µl (10–12). The timing of symptom onset then corresponds to 101 
the time post-exposure at which each individual’s titer trajectory crosses the corresponding 102 
titer limit. According to this approach, under default parameter values, symptom onset 103 
occurred between 2 to 4 days post-exposure in our model, and ~32% of the population never 104 
presented with symptoms at all (Fig. 1, main text). 105 

• Time of symptom-based isolation: based on delay lag post-symptom onset, drawn from a 106 
lognormal distribution with a mean of the specified number of days of symptom isolation lag 107 
(1-5 or infinity) and a standard deviation of 0.5 days. 108 

• Time of tracing-based isolation: based on contact tracing lag for those adhering to the 109 
contact tracing regimen in place. Parameter must be updated with each timestep until 110 
individual becomes infected; value then becomes fixed at time of infector isolation, plus 111 
corresponding lag drawn from a lognormal distribution with a mean of one day and a standard 112 
deviation of 0.5 days. 113 



 4 

• Time of testing-based isolation: based on turnaround time to isolation post testing, drawn 114 
from a lognormal distribution with a mean of the specified number of delay days (1-5, 10, or 115 
infinity) and a standard deviation of 0.5 days. Parameter is updated when ‘time of next test’ is 116 
updated for each individual in our model.  117 

• Disease status: ‘susceptible’ = 0, ‘exposed’ = 3, ‘infectious’ = 1, ‘recovered’ = 5, 118 
‘vaccinated’= 6. At onset, all individuals are modeled as susceptible, excepting the 0.5% 119 
which are introduced as infectious (1) to seed the epidemic and the ‘prop-vaccinated’, a 120 
parameter encoding the proportion of the target population that is vaccinated prior to the start 121 
of epidemic simulations. We additionally encode a ‘prop-breakthrough’ parameter which 122 
corresponds to the proportion of vaccinated individuals who experience breakthrough 123 
infections. In simulations presented in our paper, 95% of vaccinated individuals are treated as 124 
if fully immune, while 5% of individuals experience breakthrough infections; these 125 
breakthrough cases are modeled stochastically, based on probability at the timestep in which 126 
each possible infection encounter occurs. 127 

Number of potential onward cases generated: Several figures in the main text of our 128 
manuscript present the RE reduction capacity of a specified intervention, which we calculate 129 
as the difference between the average of the number of potential onward cases generated and 130 
the number of actual onward cases generated for each individual after an intervention is 131 
adopted. To compute the number of potential onward cases generated for each individual, we 132 
first draw a number of possible cases from a negative binomial distribution with a mean of 2.5 133 
and a dispersion parameter (k) of 0.10, as estimated for SARS-CoV-2 (7) (or with a mean of 6 134 
in later simulations to represent the heightened transmissibility of the Delta variant (13)). 135 
Next, we assume that a minority of transmission events will be lost to the external 136 
environment through contacts between UC Berkeley students and members from the outside 137 
community. We do not track these ‘lost cases’ but instead simply reduce the total number of 138 
potential onward cases to the proportion constrained within UCB: 90% in simulations 139 
presented in the main text and 50% in the sensitivity analysis presented in Fig. S5.  140 

Then, we draw a number of possible onward transmission events for the remaining cases 141 
for each infectious individual from a simple Poisson distribution with 𝜆 = 3, signifying the 142 
average number of possible encounters (i.e. cross-household dining, shared car rides, indoor 143 
meetings, etc.) per person that could result in transmission. We then distribute each infectious 144 
person’s original number of R0-derived potential cases among these events at random, 145 
ensuring that multiple transmissions are possible at a single event; the most extreme 146 
superspreading events thus occur when persons with heterogeneously high infectiousness 147 
draw a large number of potential cases, which are concentrated within a relatively small 148 
number of discrete transmission events. For example, if an infectious individual draws an R0 149 
value of 16 and an event number value of 4, then those 16 potential infections are randomly 150 
distributed among 4 events.  151 

 152 
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Next, we use published estimates of the generation time of onward transmission events for 153 
SARS-CoV-2 infection to draw event times for each event, based on a weibull distribution 154 
with a shape parameter = 2.826 and a scale parameter = 5.665, as specified in Ferretti et al. 155 
(2020) (9). Following the above example, 4 discrete generation times would be assigned to 156 
cases across the 4 pre-allocated events. 157 

Since each individual is already pre-assigned a within-host viral titer trajectory in our 158 
modeling framework, we next examine the viral load specified at the generation time of each 159 
transmission event and determine if each case assigned to that event actually occurs. Each 160 
case is considered individually, and the probability of transmission is computed stochastically 161 
based on the value of the individual’s viral titer at the time of the event (higher titer infections 162 
are more likely to generate onward transmission events) (Text S2). In the above example, all 163 
16 possible transmissions would be individually assessed, though several would have the 164 
same titer, corresponding to the infectious person’s titer at the time point of each contact event 165 
(4 possible). Since our maximum probability of a case occurring at max viral load is ~51% 166 
(Text S2), our original R0-derived cases are here halved, resulting in an average of 1.05 167 
onward transmission events per infectious individual (or just under 3 in the case of Delta 168 
simulations) in the absence of the NPIs examined here (but reflecting social distancing and 169 
mask wearing), which, as specified in the main text, is in line with current estimates from 170 
Alameda County, CA (8).  171 

For the purposes of our example, let’s assume that 10 of those possible 16 cases occur, 172 
allocated across 4 different events, with 7 cases at one event and one case each at 3 other 173 
events. 174 

• Number of actual onward cases generated: From the number of possible cases generated, 175 
we next apply the relevant intervention and iterate forward in time to determine the actual 176 
number of cases generated by each infectious individual across the time course of our 177 
modeled epidemics. For symptom and surveillance testing-based isolations, as well as contact 178 
tracing, no cases are generated if an infectious individual is isolated prior to the generation 179 
time of any possible onward cases. For NPIs in the form of group size limits, case reduction in 180 
our model is performed prior to the initiation of the epidemic time series, and case numbers 181 
for each transmission event are truncated at the intervention limit. 182 

Again following the example listed above, if we imagine that the imposed group size limit 183 
is 6, then the 7 cases assigned to a single event will be truncated to 6, meaning that 9 out of 184 
the 10 potential cases are allowed to occur after the intervention. Our model is conservative in 185 
assessing the impact of a group-size intervention by allowing some portion of those 186 
superspreading cases to occur, rather than assuming that a group size limit-abiding infectious 187 
individual does not attend larger-than-allowable events altogether. Because only 90% of the 188 
population adheres to group size intervention in any given simulation (or 50% in sensitivity 189 
analyses; see Fig. S1), some proportion of large superspreading events will still take place at 190 
random, even after NPIs are imposed. 191 
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Following onset of infection, the timings of symptom-, tracing-, and asymptomatic testing-based 192 
isolations are then compared and the earliest time is selected as the actual mechanism (if any) of 193 
isolation for that individual. The number of actual onward cases generated is then updated if 194 
isolation occurs prior to some new case generations. Additionally, all individuals identified as 195 
infectious are additionally assigned the following metrics: 196 

• Isolation time of infector 197 
• Source of infection (external Alameda County vs. UC Berkeley community member) 198 
• ID number of infector, if from UC Berkeley 199 

The cycle then repeats in the next timestep when all “actual infections” for each infectious 200 
individual are then assigned to new susceptible individuals. The epidemic continues with 201 
updated parameters for all newly exposed individuals until either the end of the time series is 202 
reached or no more susceptible individuals remain in the population.  203 
 204 
 205 
 206 
 207 
 208 
 209 
 210 
 211 
 212 
 213 
 214 
 215 
 216 
 217 
 218 
 219 
 220 
 221 
 222 
 223 
 224 
 225 
 226 
 227 
 228 
 229 
 230 
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Supplementary Figures 271 
 272 

 273 
Figure S1. Figure replicates Fig. 2 (main text) assuming only 50% adherence to group size limitations vs. the 90% 274 
adherence presented in the main text. A. Negative binomial RE distribution with mean = 1.05 and dispersion 275 
parameter (k) = 0.10. The colored vertical dashes indicate group size limits that ‘chop the tail’ on the RE 276 
distribution; for 90% of the population, coincident cases allocated to the same transmission event were truncated at 277 
the corresponding threshold for each intervention. B. Daily new cases and, C. Cumulative cases, across a 50-day 278 
time series with 95% confidence intervals by standard error depicted under corresponding, color-coded group size 279 
limits. Mean output of simulations under 50% adherence are shown as solid black lines, with the dashed line 280 
corresponding to mean output under the 90% adherence assumptions presented in the main text. 281 
 282 

 283 
Figure S2. Figure replicates Fig. 2 (main text) at a log-normal distribution for RE, instead of negative binomial. A. 284 
Log-normal RE distribution with a mean of 1.05 and a standard deviation of 1.233. The colored vertical dashes 285 
indicate the group size limits that ‘chop the tail’ on the RE distribution. B. Daily new cases and, C. cumulative cases, 286 
across a 50-day time series under corresponding, color-coded group size limits.  287 
 288 
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 289 
Figure S3. Figure replicates symptom-isolation panels from Fig. 3 (main text) in top row, showing A. mean 290 
reduction in RE and B. cumulative cases saved across 50-day simulated epidemics under differing lag times to 291 
isolation, assuming a threshold titer for symptom onset by which ~32% of the population presents as asymptomatic. 292 
A comparison at a titer threshold for which ~51% of the population presents as asymptomatic demonstrates how a 293 
higher proportion of asymptomatic individuals in the population erodes the effectiveness of the symptom-based 294 
isolation intervention; asymptomatic status has no impact on the effectiveness of group size limits or asymptomatic 295 
surveillance testing interventions. 296 

 297 
Figure S4. Figure replicates symptom-isolation panels from Fig. 3 (main text) in top row, showing A. mean 298 
reduction in RE and B. cumulative cases saved across 50-day simulated epidemics for NPIs of both symptom-based 299 
and testing-based isolation, across a range of different lag times or turnaround times to isolation (for, respectively 300 
symptom- or testing-based isolations). All testing-based interventions depicted are shown at a limit of detection=101 301 
cp/µl. In the bottom row, A. mean reduction in RE and B. cumulative cases saved are depicted for a comparative 302 
intervention which adds an additional single-day lag in contact tracing to the respective symptom-based or testing-303 
based isolation. Under these combined interventions, even previously ineffective testing interventions with 10-day 304 
turnaround time show gains beyond no intervention at all.  305 
 306 
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 307 
Figure S5. Figure replicates Fig. 4 of the main text, under assumptions of 50% of cases lost to the outside 308 
community, as compared to the 10% modeled in the main article. A. Mean reduction in RE, B. cumulative cases 309 
saved, and C. daily case counts for the first 50 days of the epidemic, across regimes of differing testing frequency 310 
and a combination of surveillance testing, contact tracing, symptomatic isolation, and group size limit interventions. 311 
All scenarios depicted here assumed test turnaround time, symptomatic isolation lags, and contact tracing lags drawn 312 
from a log-normal distribution with mean=one day. Limit of detection was fixed at 101 and group size limits at 12. 313 
Dynamics shown here are from simulations in which testing was limited to two test days per week. NPIs have 314 
proportionally less impact on RE reduction (A) but nonetheless manage to avert an equal number of cases (B) when 315 
the university is modeled as a more open, community-integrated environment. Under this scenario, interventions 316 
function primarily to isolate cases from the external environment, rather than curb onward, within-community 317 
transmission. For this reason, daily variance in exposure rate is also diminished under assumptions of a higher 318 
proportion of transmissions lost to the surrounding community.  319 
*Note: RE reduction (panel A) is calculated as the difference in mean RE in the absence vs. presence of a given NPI. 320 
The upper confidence limit (uci) in RE reduction is calculated as the difference in uci RE in the absence vs. presence 321 
of NPI. In our model, mean RE in the absence of NPI equals 1.05 and uci RE in the absence of NPI equals 8.6. 322 
 323 
 324 
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 325 
Figure S6. Figure extends results from Fig. 4 (main text), showing the standard deviation in cumulative cases from 326 
50-day simulated epidemics, across regimes of differing testing frequency and a combination of surveillance testing, 327 
contact tracing, symptomatic isolation, and group size limit interventions. All scenarios depicted here assume test 328 
turnaround time, symptomatic isolation lags, and contact tracing lags drawn from a log-normal distribution with 329 
mean=1 day. Limit of detection is fixed at 101 and group size limits at 12. Dynamics compare tests of differing 330 
frequency (semi-weekly, weekly, every two weeks) distributed across variable numbers of days in a given week 331 
(2,5,7). Additional layers of intervention and more testing days per week reduce the standard deviation in 332 
cumulative cases. 333 
 334 
 335 
 336 
 337 
 338 
 339 
 340 
 341 
 342 
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 343 
Figure S7. Figure largely replicates Fig. 4 of the main text, under assumptions of mean R0 = 6 and 60% of the 344 
baseline campus population vaccinated, approximating circulation of the Delta variant in the undergraduate 345 
population of the University of Alabama, Tuscaloosa at the time of this writing. Note that y-axes for panel A. and B. 346 
differ from those depicted in Fig 4 of the main text and from Fig. S8 below. A. Mean reduction in RE and B. 347 
cumulative cases saved compared to a baseline scenario in which no behavior-based or testing NPIs were applied 348 
but simulations were run under assumptions of 60% vaccination in an R0=6 environment. C. Daily case counts for 349 
the first 50 days of the epidemic, across regimes of differing testing frequency and a combination of surveillance 350 
testing, contact tracing, symptomatic isolation, and group size limit interventions. All scenarios depicted here 351 
assumed test turnaround time, symptomatic isolation lags, and contact tracing lags drawn from a log-normal 352 
distribution with mean=one day. Limit of detection was fixed at 101 and group size limits at 12. Dynamics shown 353 
here are from simulations in which testing was limited to two test days per week. Combined, asymptomatic 354 
surveillance testing and behavior-based NPIs still reduce RE and avert cases but impacts are reduced compared to no 355 
vaccination settings (main text) because fewer opportunities for infection arise. Variance between simulations and 356 
interventions is also diminished in this more mild epidemic scenario, indicating that testing alone, without rigorous 357 
extensive additional interventions, can effectively control outbreaks. 358 
*Note: RE reduction (panel A) is calculated as the difference in mean RE in the absence vs. presence of a given NPI. 359 
The upper confidence limit (uci) in RE reduction is calculated as the difference in uci RE in the absence vs. presence 360 
of NPI. In our model, mean RE under Delta variant transmission assumptions in the absence of NPIs, but including 361 
60% population-level vaccination, equals 1.12 and uci RE equals 3.33. 362 
 363 
 364 
 365 
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 366 
Figure S8. Figure largely replicates Fig. 4 of the main text, under assumptions of mean R0 = 6 and 97.7% of the 367 
baseline campus population vaccinated, approximating circulation of the Delta variant in the undergraduate 368 
population of UC Berkeley at the time of this writing. Note that y-axes for panel A. and B. differ from those 369 
depicted in Fig 4 of the main text and from Fig. S7 above. A. Mean reduction in RE and B. cumulative cases saved 370 
compared to a baseline scenario in which no behavior-based or testing NPIs were applied but simulations were run 371 
under assumptions of 97.7% vaccination in an R0=6 environment. C. Daily case counts for the first 50 days of the 372 
epidemic, across regimes of differing testing frequency and a combination of surveillance testing, contact tracing, 373 
symptomatic isolation, and group size limit interventions. All scenarios depicted here assumed test turnaround time, 374 
symptomatic isolation lags, and contact tracing lags drawn from a log-normal distribution with mean=one day. Limit 375 
of detection was fixed at 101 and group size limits at 12. Dynamics shown here are from simulations in which testing 376 
was limited to two test days per week. Even in highly vaccinated university settings, behavior-based NPIs and 377 
asymptomatic surveillance testing reduce RE and avert cases largely derived from breakthrough infections, though 378 
lower baseline case counts equate to lower gains in RE reduction and case aversions. Variance between simulations 379 
and between interventions is most diminished in this epidemic scenario, indicating that testing alone, without 380 
rigorous extensive additional interventions, can effectively control outbreaks. 381 
*Note: RE reduction (panel A) is calculated as the difference in mean RE in the absence vs. presence of a given NPI. 382 
The upper confidence limit (uci) in RE reduction is calculated as the difference in uci RE in the absence vs. presence 383 
of NPI. In our model, mean RE under Delta variant transmission assumptions in the absence of NPIs, but including 384 
97.7% population-level vaccination, equals 0.17 and uci RE equals 0.51. 385 
 386 
 387 
 388 
 389 
 390 
 391 
 392 
 393 
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Legends for Datasets S1-S3. 394 
Dataset S1. Averaged total cases saved and mean RE reduction across group size limit, 395 
symptomatic isolation, and surveillance testing NPIs. Summarized model output from 100x 396 
simulations across all NPIs presented in Fig. 2 and Fig. 3, main text. Confidence intervals 397 
represent 1.96*standard deviation in case reduction or RE reduction. 398 

 399 
Dataset S2. Averaged total cases saved and mean RE reduction across symptomatic 400 
isolation, and surveillance testing NPIs, under regimes with and without contact tracing. 401 
Summarized model output from 100x simulations across all NPIs presented in SI-Appendix, Fig. 402 
S3. 403 
 404 
Dataset S3. Averaged total cases saved and mean RE reduction across combined 405 
intervention approaches. Summarized model output from 100x simulations across all NPIs 406 
presented in Fig. 4, main text. 407 
 408 
All other model output available as saved .Rdata files in our publicly-available Github 409 
repository: 410 
Brook CE, Northrup GR, Boots M (2020) Code for “Optimizing COVID-19 control with 411 
asymptomatic surveillance testing in a university environment.” doi:10.5281/zenodo.4131223 412 

 413 
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