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Abstract: Armillariella tabescens (Scop.) Sing., a mushroom of the family Tricholomataceae, has been
used in traditional oriental medicine to treat cholecystitis, improve bile secretion, and regulate
bile-duct pressure. The present study evaluated the estrogen-like effects of A. tabescens using a
cell-proliferation assay in an estrogen-receptor-positive breast cancer cell line (MCF-7). We found
that the methanol extract of A. tabescens fruiting bodies promoted cell proliferation in MCF-7 cells.
Using bioassay-guided fractionation of the methanol extract and chemical investigation, we isolated
and identified four steroids and four fatty acids from the active fraction. All eight compounds were
evaluated by E-screen assay for their estrogen-like effects in MCF-7 cells. Among the tested isolates,
only (3β,5α,22E)-ergost-22-en-3-ol promoted cell proliferation in MCF-7 cells; this effect was mitigated
by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of (3β,5α,22E)-
ergost-22-en-3-ol was evaluated using Western blot analysis to detect the expression of extracellular
signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, and estrogen receptor α
(ERα). We found that (3β,5α,22E)-ergost-22-en-3-ol induced an increase in phosphorylation of ERK,
PI3K, Akt, and ERα. Together, these experimental results suggest that (3β,5α,22E)-ergost-22-en-3-ol is
responsible for the estrogen-like effects of A. tabescens and may potentially aid control of estrogenic
activity in menopause.

Keywords: Armillariella tabescens; (3β,5α,22E)-ergost-22-en-3-ol; phytoestrogens; estrogen receptor

1. Introduction

Menopause, the complete end of menstrual periods, typically occurs worldwide
for women 45 to 55 years of age. With increasing life expectancy, the global number
of menopausal women aged 50 years and over is estimated to reach 1.2 billion by 2030,
with 47 million new entrants each year [1,2]. In South Korea, the postmenopausal female
population aged over 50 years has increased since 2000. After 2030, over half of the fe-
male population will be postmenopausal (Figure 1), according to the Korean Statistical
Information Service database [3]. Menopause results from declining ovarian function,
and the production of steroid hormones such as estrogen dramatically drops. As a result,
menopause results in such vasomotor symptoms as hot flushes, night sweats, sleep dis-
turbance, vaginal dryness, and even osteoporosis [4]. Women experiencing menopausal
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symptoms have reported significantly reduced health-related quality of life; in the most
severe cases, exogenous estrogens are prescribed [5].
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Figure 1. Transitions of the total female and postmenopausal female populations in South Korea.
The total female population will peak in 2030 then decrease through to 2060. The postmenopausal
female population will continuously increase. After 2030, over half of South Korean females will be
postmenopausal [3].

Estrogen replacement therapy has traditionally been considered beneficial for the
relief and prevention of postmenopausal symptoms and related diseases [6,7]. However,
patients receiving estrogen replacement therapy over the long term are often reluctant to
continue because of side effects including breast cancer, heart disease, and stroke [8,9].
Thus, there is growing interest in the use of phytoestrogens with estrogen-like activity.
Phytoestrogens are natural compounds found in plants and plant-based foods and are
structurally, and sometimes functionally, similar to mammalian estrogens and their active
metabolites [10]. Phytoestrogens such as stilbenes, isoflavonoids, lignans, and flavonoids
are reported to be abundant in red clover plants, flax seeds, and soy plants [11]. When
phytoestrogens bind to the estrogen receptor (ER), they act as agonists or antagonists [12].
They are structurally similar to estrogen; in theory, therefore, they can increase the risk of
breast cancer development [7]. However, some studies on the effects of phytoestrogens
on breast cancer have suggested that phytoestrogens exhibit no effect on cancer or even
exhibit anti-cancer effects [13].

Mycoestrogens, natural fungus-derived products with estrogen-like activity, can be
produced by various Fusarium species [14]. Mycoestrogens have features similar to those of
phytoestrogens and are reported to act as estrogen-receptor agonists [15]. Mushrooms—the
fleshy, spore-bearing fruiting bodies of fungi—have been used as functional foods and
dietary supplements because of various bioactive secondary metabolites that exhibit inter-
esting biological actions [16]. As an example of the estrogen-like activity of a mushroom,
the ethanol extract of the Pleurotus eryngii fruiting body is well documented to exhibit
proliferative effects in ER-positive MCF-7 human breast epithelial cell lines and to promote
ovariectomy-induced bone loss in old female rats [17]. However, the chemical contributors
to the estrogen-like effects of P. eryngii have not yet been identified.

Our group has been conducting extended natural-product research to discover bioac-
tive compounds from Korean wild mushrooms [18–25]. In this context, we investigated
potential bioactive compounds from a methanol (MeOH) extract of the fruiting bodies of
Armillariella tabescens (Scop.) Sing. to show anti-gastritic activity against ethanol-induced
gastric damage in rats. The previous study found that (Z,Z)-9,12-octadecadienoic acid,
isolated from A. tabescens as a fatty acid, exhibited anti-inflammatory activity involved in
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anti-gastritic activity [23]. A. tabescens, belonging to the Tricholomataceae family, is known as
the “Luminous Fungus” in China. This mushroom has been used in traditional medicine
to treat cholecystitis, to regulate bile-duct pressure, and to improve liver function [26,27].
Previous studies of A. tabescens extracts have reported that the extracts exhibit antitumor
and immunomodulatory activities [23,28,29]. However, few studies of A. tabescens have
investigated its chemical constituents, despite the potential pharmacological applications.
Previous chemical investigations of A. tabescens have reported armillarisins A and B, which
exhibited biological activities including antifungal effects and anti-infection properties
against gastritis and hepatitis [26,27]. In our ongoing research on A. tabescens, we found
that the MeOH extract of the fruiting bodies of A. tabescens showed estrogen-like effects
in the estrogen-receptor-positive MCF-7 breast cancer cell line. The estrogen-like effect of
A. tabescens has not previously been reported. Thus, the present study was conducted to
further investigate the active MeOH extracts to identify potential mycoestrogens. Herein,
we describe the isolation and structural characterization of eight compounds and evaluate
their estrogen-like effects in MCF-7 cells; we also characterize the bioactivity of the active
compound as a mycoestrogen.

2. Results
2.1. Bioactivity-Guided Fractionation of the MeOH Extract of A. tabescens

We examined MCF-7 cell proliferation after treatment with the MeOH extract of
A. tabescens using Ez-Cytox reagents. Cell proliferation increased to 152.61 ± 4.73% after
treatment, with 100 µg/mL of the MeOH extract compared with the untreated cells, and this
effect was mitigated by ICI 182,780, an estrogen receptor (ER) antagonist (Figure 2A). Based
on this result, the MeOH extract was successively solvent partitioned with hexane, CH2Cl2,
EtOAc, and n-BuOH to give four main fractions: hexane-soluble, CH2Cl2-soluble, EtOAc-
soluble, and n-BuOH-soluble. LC/MS and TLC analyses indicated that the hexane-soluble
and CH2Cl2-soluble fractions had similar chemical profiles, which allowed us to consolidate
the hexane- and CH2Cl2-soluble fractions, yielding the HCF for further experiments. For the
bioactivity-guided fractionation of the MeOH extract, the estrogen-like effects of the three
main fractions (HCF, EtOAc-soluble, and n-BuOH-soluble) were evaluated using a cell-
proliferation assay to identify the active fraction. Of the fractions tested, cell proliferation
increased to 169.01 ± 5.91% after treatment with the HCF fraction compared with the
untreated cells, and this effect was mitigated by the ICI 182,780 (Figure 2B).
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2.2. Isolation and Identification of Compounds from the Active Fraction

Based on the results of the bioactivity-guided fractionation for estrogen-like effects,
chemical investigation of the active HCF fraction was conducted to identify the chemical
contributors to the estrogenic activity of the MeOH extract of A. tabescens. Chemical
investigation of the EA fraction, using column chromatography and preparative and
semi-preparative high-performance liquid chromatography (HPLC) purification, led to the
isolation and identification of four steroids (1–4) and four fatty acids (5–8) from the active
fraction (Figure 3). The structures of compounds 1–8 (Figure 4) were determined to be 9,11-
dehydroergosterol peroxide (1) [30], ergosterol peroxide (2) [30], (17R)-17-methylincisterol
(3) [31], (3β,5α,22E)-ergost-22-en-3-ol (4) [32], (Z,Z)-9,12-octadecadienoic acid (5) [33], (9E)-
8-oxo-9-octadecenoic acid (6) [34], hexadecanoic acid (7) [35], and (9Z)-9-octadecenoic acid
(8) [36], by comparing their 1H and 13C NMR spectra (Figures S1–S9) with those previously
reported in the literature and by LC/MS analysis (Figures S10–S17).
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2.3. Effects of Compounds on the Proliferation of MCF-7 Cells

All the isolated compounds 1–8 were tested for their effects on MCF-7 cell proliferation
to investigate their estrogenic activity. Among the tested isolates 1–8, only (3β,5α,22E)-
ergost-22-en-3-ol (compound 4) promoted cell proliferation in MCF-7 cells. Cell prolifer-
ation increased to 163.23 ± 4.23%, 384.38 ± 3.07%, and 429.33 ± 2.52% after treatment
with 25 µM, 50 µM, and 100 µM of compound 4, respectively, and the effects were mit-
igated by the ICI 182,780, an ER antagonist (Figure 5A). Cell proliferation increased to
201.71 ± 4.47%, 266.82 ± 8.72%, and 294.87 ± 7.31% after treatment with 25 nM, 50 nM,
and 100 nM, respectively, of 17β-estradiol (E2) as a positive control, compared with the
untreated cells (Figure 5B). These results proved that compound 4 is an effective phytoe-
strogen demonstrating E2-like activity in the proliferation of estrogen-receptor-positive
breast cancer cells.
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2.4. Effect of (3β,5α,22E)-Ergost-22-en-3-ol on the Protein Expression of Phospho-PI3K, PI3K,
Phospho-Akt, Akt, Phospho-ERα, and ERα

To support the proliferation-promoting effects of (3β,5α,22E)-ergost-22-en-3-ol (4),
the activation of ERα and related pathways were evaluated using Western blot analysis.
Compared with untreated cells, 25 µM, 50 µM, and 100 µM of compound 4 induced a
concentration-dependent increase in the protein expression of p-ERK, p-PI3K, p-Akt, and p-
ERα (Figure 6). Furthermore, this effect was mitigated by treatment with 100 nM ICI. When
ICI was present, the expression of p-ERK, p-PI3K, p-Akt, and ERα failed to increase after
treatment with 100 µM of compound 4 (Figure 7). These results proved that the responses
of ERK, PI3K, and Akt to compound 4 depend on the functioning of ER (Figure 8).
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Figure 6. Effect of (3β,5α,22E)-ergost-22-en-3-ol (compound 4) on the protein expression of phospho-
extracellular-signal-regulated kinase (p-ERK), ERK, phospho-phosphatidylinositol 3-kinase (p-PI3K),
PI3K, phospho-Akt (p-Akt), Akt, phospho-estrogen receptor α (p-ERα), and ERα in MCF-7 cells.
(A) Protein expression levels of p-PI3K, PI3K, p-Akt, Akt, p-ERα, ERα, and glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) in MCF-7 cells treated or untreated with 25 µM, 50 µM, and
100 µM compound 4 for 24 h. (B–E) Bar graph presents the densitometric quantification of Western
blot bands. * Significant difference between cells treated with compound 4 and the untreated
cells (n = 3 independent experiments, p < 0.05, Kruskal–Wallis nonparametric test). Data are the
mean ± SEM.
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ERK, phospho-phosphatidylinositol 3-kinase (p-PI3K), PI3K, phospho-Akt (p-Akt), Akt, phospho-
estrogen receptor α (p-ERα), and ERα in MCF-7 cells. (A) Protein expression levels of p-PI3K, PI3K,
p-Akt, Akt, p-ERα, ERα, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in MCF-7 cells
treated or untreated with concentrations of 100 µM compound 4, either with or without 100 nM ICI
182,780 (ICI) for 24 h. (B–E) Bar graph presents the densitometric quantification of Western blot bands.
* Significant difference between cells treated with compound 4 and the untreated cells. # Significant
reduction in co-treatment with ICI compared to treatment with compound 4 alone (n = 3 independent
experiments, p < 0.05, Kruskal–Wallis nonparametric test). Data are represented as mean ± SEM.
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ergost-22-en-3-ol via estrogen receptor α (ERα)-dependent signaling pathways in MCF-7 estrogen-
receptor-positive breast cancer cells.

3. Discussion

Few previous studies have investigated the compounds isolated from A. tabescens. Our
previous chemical studies on A. tabescens have shown the presence of steroids, alkaloids,
nucleic acids, and fatty acids. (Z,Z)-9,12-Octadecadienoic acid, a fatty acid, is known to
possess anti-inflammatory activity [23]. Extending from our previous study, the present
study found that the MeOH extract of A. tabescens had estrogen-like effects on MCF-7 cells.
Eight compounds were isolated from the active fraction, the hexane- and CH2Cl2-soluble
fraction showing estrogen-like effects. Of the eight compounds tested, only (3β,5α,22E)-
ergost-22-en-3-ol (compound 4) promoted cell proliferation in MCF-7 cells. Co-treatment
with ICI 182,780, an ER antagonist, inhibited the proliferation-stimulatory effect. These
results indicated that compound 4 exhibited a proliferation-stimulatory effect via the ER
in MCF-7 cells. Its proliferation-stimulatory effect was confirmed by the expression of
proteins related to the ER signaling pathway. The binding of estrogen to the G-protein-
coupled estrogen receptor (GPER) activates the ERK and PI3K/Akt pathways [37,38].
ERK is a family of mitogen-activated protein kinases (MAPKs) stimulated by peptide
hormones, cellular stress, and cytokines. It regulates the proliferation of ER-positive breast
cancer cells [39]. The activated PI3K/Akt pathway regulates cellular growth, survival, and
proliferation in normal estrogen-responsive tissues [40,41]. Ginsenoside Rg1, a chemical
component of ginseng, has been reported to possess estrogen-like effects and promote
ER signaling via the ERK and PI3K/Akt pathways [42]. Various studies have reported
the estrogen-like effect of acacetin, a flavonoid, and its possible mechanism has also been
evaluated as the ERK and PI3K/Akt pathway [43–45]. In our study, (3β,5α,22E)-ergost-22-
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en-3-ol also induced a concentration-dependent increase in the protein expression of p-ERK,
p-PI3K, p-Akt, and p-ERα in MCF-7 cells, similar to that of other reported phytoestrogens.
Therefore, it was concluded that the estrogen-like effect of (3β,5α,22E)-ergost-22-en-3-ol
was mainly mediated via ERα. These cell-based results demonstrated for the first time
that the extract of A. tabescens exhibited potent estrogen-like effects. Among the isolates,
(3β,5α,22E)-ergost-22-en-3-ol was the main contributor to the estrogen-like effect of A.
tabescens; it may be a potential candidate for further verification in animal experiments,
towards finding estrogen-like drugs to eventually help postmenopausal women.

4. Materials and Methods
4.1. General Experimental Procedures

Optical rotations were measured using a Jasco P-2000 polarimeter (Jasco, Easton, MD,
USA). Ultraviolet (UV) spectra were acquired using an Agilent 8453 UV-visible spectropho-
tometer (Agilent Technologies, Santa Clara, CA, USA). NMR spectra were measured using
a Bruker AVANCE III 700 NMR spectrometer operating at 700 MHz (1H) and 175 MHz (13C;
Bruker, Billerica, MA, USA). Preparative high-performance liquid chromatography (HPLC)
was performed using a Waters 1525 Binary HPLC Pump with a Waters 996 Photodiode
Array Detector (Waters Corporation, Milford, CT, USA) and an Agilent Eclipse C18 column
(250 × 21.2 mm, 5 µm; flow rate: 5 mL/min; Agilent Technologies, Santa Clara, CA, USA).
Semi-preparative HPLC was performed using a Shimadzu Prominence HPLC System with
SPD-20A/20AV Series Prominence HPLC UV-Vis detectors (Shimadzu, Tokyo, Japan) and
a Phenomenex Luna phenyl-hexyl column (250 × 10 mm inner diameter [ID], flow rate:
2 mL/min; Phenomenex, Torrance, CA, USA). Liquid chromatography–mass spectrometry
(LC/MS) analysis was performed using an Agilent 1200 Series HPLC system equipped with
a diode array detector and 6130 Series ESI mass spectrometer using an analytical Kinetex
C18 100 Å column (100 × 2.1 mm, 5 µm; flow rate: 0.3 mL/min; Phenomenex, Torrance,
CA, USA). Column chromatography was performed using silica gel 60, 230–400 mesh, and
reverse-phase (RP) C18 silica gel, 230–400 mesh (Merck, Darmstadt, Germany). Sephadex
LH-20 (Pharmacia, Uppsala, Sweden) was used for molecular-sieve column chromatog-
raphy. Thin-layer chromatography (TLC) was conducted using precoated silica gel F254
plates and RP-18 F254s plates (Merck). Spots on TLC were detected using UV light and
heating after dipping in anisaldehyde sulfuric acid.

4.2. Fungus Material

Fresh fruiting bodies of A. tabescens were collected from Hwasung, Gyeonggi-do,
Korea, in September 2014. Samples of fungal material were identified by one of the authors
(K.H.K.). A voucher specimen (SKKU 2015-09-BN) was deposited in the herbarium of the
School of Pharmacy, Sungkyunkwan University, Suwon, Korea.

4.3. Extraction and Isolation

Shade-dried and chopped A. tabescens mushrooms (310 g) were extracted with 80%
aqueous MeOH three times (each 3 L × 24 h) at room temperature. The resulting extracts
were filtered, and the filtrate concentrated under reduced pressure using a rotary evaporator
(EYELA, Tokyo Rikakikai Co., Tokyo, Japan). The resultant MeOH extract (28.7 g) was
suspended in distilled water (700 mL) and successively solvent-partitioned three times
using hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-BuOH),
which yielded a hexane-soluble fraction (0.9 g), a CH2Cl2-soluble fraction (1.0 g), an
EtOAc-soluble fraction (0.3 g), and an n-BuOH-soluble fraction (1.7 g). LC/MS and TLC
analyses indicated that the hexane-soluble and CH2Cl2-soluble layers had similar chemical
profiles, allowing us to consolidate the hexane- and CH2Cl2-soluble layers for further
experiments. The active hexane- and CH2Cl2-soluble fraction (HCF; 1.9 g) was subjected
to silica-gel (230–400 mesh, Merck, Kenilworth, NJ, USA) column chromatography (CC),
using a gradient solvent system of hexane/EtOAc from 30:1 to 1:1, to yield eight fractions
(Fr. A1–A8). Fr. A1 (353 mg) was purified by semi-preparative HPLC (solvent system
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of 91% MeOH) using a Phenomenex Luna phenyl-hexyl column (250 × 10 mm ID, flow
rate: 2 mL/min) to isolate compound 5 (13.1 mg). Fr. A3 (192 mg) was separated by
preparative HPLC (solvent system of 83% MeOH) using an Agilent Eclipse C18 column
(250 × 21.2 mm ID, flow rate: 5 mL/min) to obtain seven fractions (Fr. A31–A37). Fr. A37
(85 mg) was further purified by semi-preparative HPLC (solvent system of 88% MeOH)
using the Phenomenex Luna phenyl-hexyl column system to yield compound 3 (1.7 mg).
Fr. A4 (174 mg) was fractionated with preparative HPLC (gradient solvent system of
85–100% MeOH), using the above conditions of the Agilent Eclipse C18 column, to give
five fractions (Fr. A41–A45). Fr. A45 (94 mg) was further purified using preparative
HPLC (solvent system of 84% MeOH) with the same column to obtain five subfractions (Fr.
A451–A455). Fr. A455 (53 mg) was separated by semi-preparative HPLC (solvent system of
87% MeOH) using a Phenomenex Luna phenyl-hexyl column, which yielded compounds 7
(7.3 mg) and 8 (2.4 mg). Fr. A7 (24.6 mg) was directly subjected to semi-preparative HPLC
(solvent system of 90% MeOH) using a Phenomenex Luna phenyl-hexyl column to purify
compounds 1 (0.9 mg) and 2 (1.2 mg). Fr. A8 (380 mg) was separated on a Sephadex LH-20
column using a solvent system of CH2Cl2/MeOH (2:8), and five fractions were obtained
(Fr. A81–A85). Fr. A83 (155 mg) was separated by preparative HPLC (gradient solvent
system of 70–100% MeOH) using an Agilent Eclipse C18 column to give five subfractions
(Fr. A831–A835). Fr. A834 (14.8 mg) was further purified using semi-preparative HPLC
(solvent system of 76% MeOH) using a Phenomenex Luna phenyl-hexyl column to yield
compound 6 (0.9 mg), and Fr. A835 (24 mg) was also purified by semi-preparative HPLC
(solvent system of 85% MeOH) using the same column to yield compound 4 (1.0 mg).

4.4. Cell Culture

The ER-positive MCF-7 human breast epithelial cell line (American Type Culture Collec-
tion, Manassas, VA, USA) was cultured in Roswell Park Memorial Institute-1640 (RPMI1640)
medium (Cellgro, Manassas, VA, USA) with 100 µg/mL streptomycin, 100 U/mL penicillin,
and 10% fetal bovine serum (Gibco BRL, Grand Island, NY, USA). MCF-7 cells were stored
at 37 ◦C in an incubator with a CO2 concentration of approximately 5%.

4.5. E-Screen Assay

MCF-7 cells were cultured in 24-well plates to a final concentration of 1 × 105 cells
per well in RPMI medium without phenol red (Gibco BRL, Grand Island, NY, USA) with
100 µg/mL streptomycin, 100 U/mL penicillin, and 5% charcoal-dextran stripped human
serum (Innovative Research, Novi, MI, USA) for 24 h. MCF-7 cells were treated with MeOH
extract (5–100 µg/mL), HCF (5–100 µg/mL), the isolated compounds 1–8 (5–100 µM), and
17β-estradiol (E2; 5–100 nM), either with or without ICI 182,780 (100 nM), for 144 h. Ez-
Cytox reagents (Daeil Lab Service Co., Seoul, Korea) were added to each well and incubated
for 40 min. The absorbance of each well was read at 450 nm using a microplate reader
(PowerWave XS).

4.6. Western Blot Analysis

MCF-7 cells were cultured in 6-well plates at a final concentration of 4 × 105 cells
per well in RPMI medium without phenol red (Gibco BRL, Grand Island, NY, USA) with
100 µg/mL streptomycin, 100 U/mL penicillin, and 5% charcoal-dextran stripped human
serum (Innovative Research, Novi, MI, USA) for 24 h. MCF-7 cells were treated with com-
pound 4 (25 µM to 100 µM) for 24 h. Proteins (20 µg) from MCF-7 cells were fractionated
by SDS-PAGE (10% polyacrylamide gel) and transferred onto a polyvinylidene fluoride
(PVDF) membrane. Phospho-extracellular signal-regulated kinase (p-ERK), ERK, phospho-
phosphatidylinositol 3-kinase (p-PI3K), PI3K, phospho-Akt, Akt, phospho-estrogen re-
ceptor α (p-ERα), ERα, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Cell
Signaling Technology) were used as primary antibodies. Protein bands were visualized on
a FUSION Solo Chemiluminescence System (PEQLAB Biotechnologie GmbH, Erlangen,
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Germany) using ECL Advance Western blotting detection reagents (GE Healthcare, Little
Chalfont, UK).

4.7. Statistical Analysis

All experiments were performed in triplicate. All analyses were performed using
SPSS Statistics ver. 19.0 (SPSS Inc., Chicago, IL, USA). Non-parametric comparisons of
samples were conducted using the Kruskal–Wallis test to analyze the results. Differences
were considered statistically significant at p < 0.05.

5. Conclusions

In this study, we reported the estrogenic effect of (3β,5α,22E)-ergost-22-en-3-ol isolated
from the MeOH extract of the fruiting bodies of A. tabescens in MCF-7 estrogen-receptor-
positive breast cancer cells. Our results demonstrated that (3β,5α,22E)-ergost-22-en-3-ol
significantly increased the proliferation of MCF-7 cells, which was associated with the
activation of ERK, PI3K, Akt, and ERα. (3β,5α,22E)-Ergost-22-en-3-ol may have potential
for use in controlling the estrogenic activity involved in menopausal symptoms.

Supplementary Materials: The following supporting information can be downloaded online. Figure S1:
The 1H NMR spectrum of 1 (CDCl3, 700 MHz), Figure S2: The 1H NMR spectrum of 2 (CDCl3,
700 MHz), Figure S3: The 1H NMR spectrum of 3 (CDCl3, 700 MHz), Figure S4: The 13C NMR
spectrum of 3 (CDCl3, 175 MHz), Figure S5: The 1H NMR spectrum of 4 (CD3OD, 700 MHz),
Figure S6: The 1H NMR spectrum of 5 (CDCl3, 700 MHz), Figure S7: The 1H NMR spectrum of 6
(CDCl3, 700 MHz), Figure S8: The 1H NMR spectrum of 7 (CDCl3, 700 MHz), Figure S9: The 1H
NMR spectrum of 8 (CDCl3, 700 MHz), Figure S10: Total ion chromatogram (TIC) of compound
1 in the LC/MS analysis, Figure S11: TIC of compound 2 in the LC/MS analysis, Figure S12: TIC
of compound 3 in the LC/MS analysis, Figure S13: TIC of compound 4 in the LC/MS analysis,
Figure S14: TIC of compound 5 in the LC/MS analysis, Figure S15: TIC of compound 6 in the LC/MS
analysis, Figure S16: TIC of compound 7 in the LC/MS analysis, Figure S17: TIC of compound 8
in the LC/MS analysis, Figure S18: UV chromatogram of LC/MS (detection wavelength was set
as 254 nm) of (A) hexane-soluble and (B) CH2Cl2-soluble factions, Figure S19: TLC analysis of (A)
hexane-soluble and (B) CH2Cl2-soluble factions.
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