
ORIGINAL RESEARCH ARTICLE
published: 13 January 2015

doi: 10.3389/fchem.2014.00116

Concise synthesis of the A/BCD-ring fragment of gambieric
acid A
Haruhiko Fuwa*, Ryo Fukazawa and Makoto Sasaki

Graduate School of Life Sciences, Tohoku University, Sendai, Japan

Edited by:

Bastien Nay, Centre National de la
Recherche Scientifique, France

Reviewed by:

Irina Bakunina, Russian Academy of
Sciences, Russia
Bogdan Olenyuk, University of
Southern California, USA

*Correspondence:

Haruhiko Fuwa, Graduate School of
Life Sciences, Tohoku University,
2-1-1 Katahira, Aoba-ku, Sendai
980-8577, Japan
e-mail: hfuwa@m.tohoku.ac.jp

Gambieric acid A (GAA) and its congeners belong to the family of marine polycyclic
ether natural products. Their highly complex molecular architecture and unique biological
activities have been of intense interest within the synthetic community. We have
previously reported the first total synthesis, stereochemical reassignment, and preliminary
structure–activity relationships of GAA. Here we disclose a concise synthesis of the
A/BCD-ring fragment of GAA. The synthesis started from our previously reported synthetic
intermediate that represents the A/B-ring. The C-ring was synthesized via an oxiranyl anion
coupling and a 6-endo cyclization, and the D-ring was forged by means of an oxidative
lactonization and subsequent palladium-catalyzed functionalization of the lactone ring. In
this manner, the number of linear synthetic steps required for the construction of the
C- and D-rings was reduced from 22 to 11.
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INTRODUCTION
In 1992, Nagai, Yasumoto, and co-workers reported the iso-
lation of gambieric acid A (GAA, 1) and its natural con-
geners, gambieric acids B–D (GAB–GAD, Figure 1) (Nagai et al.,
1992a,b). Gambieric acids (GAs) are the secondary metabolites of
the ciguatera causative dinoflagellate Gambierdiscus toxicus and
belong to the family of marine polycyclic ether natural prod-
ucts (Yasumoto and Murata, 1993; Murata and Yasumoto, 2000).
The gross structure and the relative configuration of the poly-
cyclic ether region of GAs were determined on the basis of
extensive 2D NMR experiments. The complete stereochemical
assignment of GAs was subsequently made through conforma-
tional analysis of GAB on the basis of nuclear Overhauser effect
(NOE) correlations coupled with 3JH,H values, application of
chiral anisotropic reagents, and chiral HPLC analysis of degra-
dation products (Morohashi et al., 2000). However, our synthesis
and NMR spectroscopic analysis of a series of suitably designed
A/B-ring model compounds of GAs strongly indicated that the
absolute configuration of the polycyclic ether domain of GAs
needs to be unambiguously established through total synthe-
sis (Fuwa et al., 2008a, 2009a). The trans-fused polycyclic ether
backbone of GAs is the common structural characteristic shared
among the family of marine polycyclic ether neurotoxins, e.g.,
brevetoxins, ciguatoxins, and gambierol. Nonetheless, it has been
reported that GAA shows only moderate toxicity against mice or
cultured mammalian cells (Nagai et al., 1992b) and only weakly
displaces binding of tritiated dihydrobrevetoxin B ([3H]-PbTx-
3) to voltage-gated sodium channels (Inoue et al., 2003). Instead,
GAs are known to impart extraordinary potent antifungal activ-
ity against Aspergillus niger, which is approximately 2000 times
greater than that of amphotericin B (Nagai et al., 1993). In addi-
tion, it has been described that GAA is a possible endogenous
growth-regulating factor of G. toxicus (Sakamoto et al., 1996).
Unfortunately, the molecular basis for the biological activities

of GAs has not been elucidated at all, partly due to the natu-
ral scarcity of these substances. The molecular complexity and
intriguing biological activities of GAs have attracted the attention
of the synthetic community (Kadota et al., 2001a,b; Clark et al.,
2004, 2005; Sato and Sasaki, 2005, 2007; Fuwa et al., 2007, 2008a,
2009a,b, 2010; Roberts and Rainier, 2007; Saito and Nakata, 2009;
Tsubone et al., 2011a,b).

We have recently completed the first total synthesis of GAA to
establish its absolute configuration as that shown by 1 (Fuwa et al.,
2012; Ishigai et al., 2013; Sasaki and Fuwa, 2014). Our synthe-
sis entailed convergent assembly of the A/BCD- and F′GHIJ-ring
fragments, i.e., 2 and 3, respectively, by means of Suzuki–Miyaura
coupling (Miyaura and Suzuki, 1995; Sasaki and Fuwa, 2008;
Suzuki, 2011) to give the endocyclic enol ether 4, followed by
closure of the E- and F-rings via a stereoselective allylation
of a thioacetal (Suga et al., 2014) and a ring-closing metathe-
sis (Hoveyda and Zhugralin, 2007), respectively, to construct
the nonacyclic polyether core 5 (Figure 2). Moreover, we have
prepared several synthetic analogs of GAA by diversifying the
synthetic route from the nonacyclic ether 5 and investigated the
structure–activity relationships (SARs) of the peripheral sub-
stituents on the polycyclic ether skeleton (Ishigai et al., 2013).
Toward the elucidation of the SARs of GAA in greater detail, how-
ever, it deemed indispensable to improve the synthetic availability
of 2 and 3. Here we describe a concise synthesis of the A/BCD-ring
fragment 2 of GAA, wherein the C-ring was constructed by using
an oxiranyl anion coupling/6-endo cyclization sequence (Mori
et al., 1997a,b, 1998) and the D-ring was forged via an oxidative
lactonization and subsequent palladium-catalyzed functionaliza-
tion of the derived lactone.

MATERIALS AND METHODS
Detailed experimental procedure and compound characterization
data are furnished in the Supplementary Material.
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FIGURE 1 | Structures of gambieric acids A–D.

FIGURE 2 | Outline of our total synthesis of gambieric acid A. aq., aqueous; 9-BBN-H, 9-borabicyclo[3.3.1]nonane; DMF, N,N-dimethylformamide; dppf,
1,1′-bis(diphenylphosphino)ferrocene; NAP, 2-naphthylmethyl; rt, room temperature; THF, tetrahydrofuran; TMS, trimethylsilyl.

RESULTS AND DISCUSSION
As delineated in Figure 3, our previous synthesis of 2 (Fuwa
et al., 2012; Ishigai et al., 2013) relied upon Suzuki–Miyaura
coupling of an alkylborane prepared in situ from the A/B-
ring exocyclic enol ether 6 with the enol phosphate 7, fol-
lowed by ring-closing metathesis of the derived enol ether (Fuwa
and Sasaki, 2008b). The closure of the C-ring was achieved
by means of stereoselective methylation of the thioacetal 9
(Nicolaou et al., 1989; Fuwa et al., 2001), and subsequent elab-
oration of the D-ring completed the synthesis of 2. Although
sufficient quantities of 2 for the total synthesis could actually

be prepared, the synthetic sequence from 6 to 2 was rather
lengthy (19 steps), partly because multiple steps were required
for the introduction of the 1,3-diaxial methyl groups onto the
D-ring.

With our previous synthesis in mind, we devised an improved
synthesis of 2, which is outlined in Figure 4. Currently, a number
of synthetic methods are available for the synthesis of tetrahy-
dropyran derivatives (Nasir et al., 2014). We envisioned that the
C-ring could be efficiently constructed in a concise manner by
exploiting the chemistry developed by Mori et al. (1997a,b, 1998).
Thus, a coupling of the triflate 11, which represents the A/B-ring,
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FIGURE 3 | Outline of our previous synthesis of the A/BCD-ring fragment 2 of gambieric acid A. Cy, cyclohexyl; mCPBA, m-chloroperoxybenzoic acid; d.r.,
diastereomer ratio; Mes, 2,4,6-trimethylphenyl (mesityl); TBS, t-butyldimethylsilyl.

FIGURE 4 | Improved synthesis plan toward 2. TBDPS, t-butyldiphenylsilyl; TES, triethylsilyl; Tf, trifluoromethanesulfonate (triflate); Tol, p-tolyl.

with an oxiranyl anion generated from the epoxy sulfone 12,
followed by acid-catalyzed cleavage of the silyl ether and spon-
taneous 6-endo cyclization would directly afford the A/BC-ring
tricycle 13. Meanwhile, the oxiranyl anion chemistry cannot be
directly applied to the D-ring with 1,3-diaxial methyl groups.
Accordingly, we planned to construct the D-ring via the lactone
14. Functionalization of lactones is a versatile means for the syn-
thesis of cyclic ethers (e.g., Nicolaou et al., 1997; Suga et al., 2014).
A palladium-catalyzed vinylation of an enol phosphate or triflate
derived from 14 would give the diene 15. Chemo- and stereos-
elective epoxidation of 15 and subsequent stereoselective reduc-
tion of the resultant epoxide would allow a rapid access to the
targeted 2.

Initially, we prepared the epoxy sulfone 12 and examined its
use in a model system (Figure 5). The synthesis of 12 started with
the known methyl ketone 16 (Edmunds et al., 1997). Coupling
of 16 with a lithiated sulfoxide generated in situ from 17 (Satoh
et al., 1989; Mori et al., 1998) provided the chlorohydrins

18a (36%) and 18b (46%) as a separable mixture. The minor
diastereomer 18a was treated with a base and then oxidized
with mCPBA to afford the epoxy sulfone 12 (89%, two steps).
At this stage, however, we were unable to establish the absolute
configuration of the newly introduced stereogenic centers of
12. Accordingly, we reacted an oxiranyl anion prepared from 12
with the triflate 21 as a model experiment. The triflate 21 was
readily prepared from the known alcohol 19 (Inoue et al., 1999)
in three steps, including silylation, ozonolysis/NaBH4 reduction,
and triflation. Treatment of a mixture of 12 and 21 with n-BuLi
in THF/HMPA at −100◦C cleanly provided the desired coupling
product 22 (95%). Exposure of 22 to TsOH·H2O in CHCl3 at
55◦C resulted in cleavage of the TES ether and spontaneous
6-endo cyclization, as expected, to afford the ketone 23 in 93%
yield as a single stereoisomer (d.r. >20:1). Here we were able
to establish the stereostructure of 23 by an NOE experiment as
shown, thus confirmed the absolute configuration of the epoxy
sulfone 12.
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FIGURE 5 | Synthesis of epoxy sulfone 12 and a model study for the

construction of the C-ring. DMAP, 4-(dimethylamino)pyridine; HMPA,
hexamethylphosphoramide; LDA, lithium diisopropylamide; NOE, nuclear
Overhauser effect; TsOH, p-toluenesulfonic acid.

With the requisite epoxy sulfone 12 available, we proceeded
to construct the C-ring in the real system, as shown in Figure 6.
Sequential triflation/silylation (Mori et al., 1997a) of the AB-
ring diol 24 (Fuwa et al., 2012; Ishigai et al., 2013) gave the
triflate 11. This was immediately coupled with an oxiranyl anion
generated from 12 under the same conditions employed above
(n-BuLi, THF/HMPA, −100◦C) to afford the coupling product
25. Subsequent treatment of 25 with TsOH·H2O in CHCl3 at 0◦C
led to the ketone 13 in 76% overall yield from 24. Stereoselective
reduction of 13 with NaBH4 afforded the alcohol 26 (96%,
d.r. >20:1). The absolute configuration of the C18 and C19 stere-
ogenic centers was confirmed by NOE experiments, as shown.
Thus, we successfully elaborated the C-ring in only four steps
from 24.

Next, we investigated the construction of the D-ring, as shown
in Figure 7. Removal of the silyl group from 26 with TBAF gave
the diol 27 (92%), which was oxidized with TEMPO/PhI(OAc)2

(Hansen et al., 2003) to directly afford the lactone 14 (92%).

We investigated the functionalization of the lactone ring of
14 to elaborate the D-ring. Exposure of 14 to KHMDS in the
presence of (PhO)2P(O)Cl smoothly provided the enol phos-
phate 28 (Nicolaou et al., 1997). Initially, we examined the
palladium-catalyzed vinylation of 28 under Suzuki–Miyaura con-
ditions (Miyaura and Suzuki, 1995; Suzuki, 2011), as sum-
marized in Table 1. Treatment of 28 with vinylboronic acid
pinacol ester under the influence of aqueous Cs2CO3 solu-
tion and PdCl2(dppf)·CH2Cl2 catalyst, however, did not give
the diene 15 at all and only returned the enol phosphate 28
(entry 1). Changing the catalyst to Pd(PPh3)4 was also ineffec-
tive (entry 2). We suspected that the low reactivity of the enol
phosphate 28 would stem from the steric bulk of the α-methyl
group (e.g., Nicolaou et al., 1997). Thus, we also prepared the
enol triflate 29 (Tsushima et al., 1989) as a more reactive sur-
rogate. Because our previous studies have shown that highly
reactive enol triflates favor palladium catalyst with electron defi-
cient supporting ligands (Sasaki et al., 1998, 2002), we examined
Suzuki–Miyaura coupling of 29 with vinylboronic acid pinacol
ester under the influence of the Pd2(dba)3/Ph3As catalyst system
(entries 3 and 4). To our dismay, we isolated 15 in only moderate
yields under these conditions. These unsatisfactory results could
be ascribed to undesirable hydrolysis of 29 under alkaline con-
ditions. Accordingly, we turned our attention to Stille coupling
of 29 with vinyl(tri-n-butyl)stannane by the action of Pd(PPh3)4

catalyst and LiCl in 1,4-dioxane at 80◦C (Scott and Stille, 1986)
(entry 5). Under these conditions, we were able to isolate the diene
15 in 63% overall yield from 14. Here it was necessary to purify
the diene 15 by aqueous 20% KF and DL-serine workup and
by flash column chromatography using potassium carbonate–
silica gel to scavenge organotin byproducts and palladium salts
(Leibner and Jacobus, 1979; Harrowven et al., 2010; Yoshimura
et al., 2011), as traces of these weakly Lewis acidic contami-
nants were found to adversely affect the outcome of subsequent
epoxidation process.

Our final task was to elaborate the diene 15 to the A/BCD-
ring fragment 2 via chemo- and stereoselective epoxidation of
15 and subsequent reductive opening of the derived epoxide
30 (Figure 7). Thus, treatment of 15 with DMDO in CH2Cl2
at −78◦C provided the epoxide 30 as a single stereoisomer
(d.r. >20:1, judged by 1H NMR analysis). This epoxide was iso-
lated by aqueous workup and immediately reduced with DIBALH
in THF at −78 to −40◦C to afford the tertiary alcohol 31 in 86%
yield (two steps). The chemoselectivity of the epoxidation of 15
was secured by the differential reactivity of the enol ether and
the terminal olefin (Fujiwara et al., 1999; Clark et al., 2007). The
stereochemical outcome of the epoxidation of 15 with DMDO
was in accordance with that of glycal derivatives (Halcomb and
Danishefsky, 1989; Allwein et al., 2002) and could be reasoned by
considering stereoelectronic effect as well as the steric bulk of the
axial methyl group at the C19 position (e.g., 32). The purity of
the diene 15 was crucial for the success of the epoxidation; when
15 containing traces of organotin byproducts and/or palladium
salts was used, in situ hydrolysis of the epoxide 30 with traces of
adventitious H2O occurred as a serious side reaction. Meanwhile,
the stereoselectivity of the DIBALH reduction of the epoxide 30
could be explained by considering the aluminum ate complex
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FIGURE 6 | Construction of the C-ring.

FIGURE 7 | Construction of the D-ring and completion of the synthesis of 2. DIBALH, diisobutylaluminum hydride; DMDO, dimethyldioxirane; KHMDS,
potassium bis(trimethylsilyl)amide; ROE, rotating-frame Overhauser effect; TBAF, tetra-n-butylammonium fluoride; TEMPO, 2,2,6,6-tetramethylpiperidin-1-oxyl.

33 as the intermediate, as previously proposed by Majumder
et al. (2006). Our initial attempts to reduce 30 with DIBALH in
CH2Cl2 at −78◦C resulted in only 19% yield of the tertiary alco-
hol 31 and the exocyclic enol ether 34 was isolated alongside in

44% yield. The undesired product 34 might arise from an SN2′-
type reduction of 33. Consequently, we chose to perform the
reduction in THF to reduce the Lewis acidity of DIBALH as well
as to solvate the presumed oxocarbenium ion intermediate 33.
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Table 1 | Examination of palladium-catalyzed vinylation of enol phosphate 28 and triflate 29.

Entry Substrate Reagents and conditions Yield (from 14) (%)

1 28 vinylBpin, aq. Cs2CO3, PdCl2(dppf)·CH2Cl2, DMF, 50◦C 0

2 28 vinylBpin, aq. Cs2CO3, Pd(PPh3)4, DMF, 50◦C 0

3 29 vinylBpin, aq. Cs2CO3, Pd2(dba)3, Ph3As, DMF, rt 39

4 29 vinylBpin, aq. NaHCO3, Pd2(dba)3, Ph3As, DMF, rt 20

5 29 vinylSnBu3, Pd(PPh3)4, LiCl, 1,4-dioxane, 80◦C 63

dba, dibenzylideneacetone; pin, pinacolate.

Other reducing conditions, such as Et3SiH/BF3·OEt2 (Clark et al.,
2007) or NaBH3CN (Zimmermann et al., 2000), gave unsatis-
factory results. Finally, silylation of 31 with TMSOTf/2,6-lutidine
afforded the A/BCD-ring fragment 2 in 91% yield.

CONCLUSIONS
In this paper, we described a concise synthesis of the A/BCD-ring
fragment 2 of GAA, which is significantly improved over our pre-
vious synthesis in terms of “step economy” (Wender et al., 2008).
Starting from the A/B-ring diol 24, the C-ring was rapidly con-
structed by means of an oxiranyl anion coupling and subsequent
6-endo cyclization. The D-ring was first forged as a six-membered
lactone and further elaborated via a Stille coupling. The present
synthesis minimized the use of protecting group chemistry and
enabled rapid synthesis of 2 from 24 in just 11 linear steps, which
compares favorably with our previously reported synthesis (22
linear steps from 24).
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