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In external-beam radiotherapy, using external markers is one of the most reliable 
tools to predict tumor position, in clinical applications. The main challenge in this 
approach is tumor motion tracking with highest accuracy that depends heavily on 
external markers location, and this issue is the objective of this study. Four commer-
cially available feature selection algorithms entitled 1) Correlation-based Feature 
Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to 
find optimum location of external markers in combination with two “Genetic” and 
“Ranker” searching procedures. The performance of these algorithms has been 
evaluated using four-dimensional extended cardiac-torso anthropomorphic phan-
tom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface 
were taken into account to simulate internal and external motions, respectively. 
The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) 
as prediction model was considered as metric for quantitatively evaluating the 
performance of proposed feature selection algorithms. To do this, the thorax surface 
region was divided into nine smaller segments and predefined tumors motion was 
predicted by ANFIS using external motion data of given markers at each small 
segment, separately. Our comparative results showed that all feature selection 
algorithms can reasonably select specific external markers from those segments 
where the root mean square error of the ANFIS model is minimum. Moreover, the 
performance accuracy of proposed feature selection algorithms was compared, 
separately. For this, each tumor motion was predicted using motion data of those 
external markers selected by each feature selection algorithm. Duncan statistical 
test, followed by F-test, on final results reflected that all proposed feature selec-
tion algorithms have the same performance accuracy for lung tumors. But for liver 
tumors, a correlation-based feature selection algorithm, in combination with a 
genetic search algorithm, proved to yield best performance accuracy for selecting 
optimum markers.
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I. INTRODUCTION

In external-beam radiotherapy, the goal is to deliver uniform dose to tumor volume while 
minimizing the dose to healthy surrounding tissues. However, in thoracic region intrafractional 
organs motions caused by heartbeat, gastrointestinal, and especially breathing phenomena may 
lead to a significant uncertainty in target localization and therefore reduce treatment quality.(1)  
in order to address this target-localization uncertainty, several studies have been performed 
by suggesting improved techniques that some of them are now clinically available.(2–18) An 
older strategy associated with this issue is to define a wider margin around gross target volume 
(GTV), including tumor volume and its motion trajectory, as internal target volume (ITV).(19) 
By this approach, a great amount of high dose will be received by normal tissues inside the ITV 
region that may cause serious side effects. Clinically-available strategies to compensate target 
motion error are: 1) breath-holding,(8-10, 12) 2) motion gated radiotherapy,(20) and 3) real-time 
tumor tracking.(21) In the latter two cases, the patient can breathe freely during irradiation while 
breathing motion is monitored continuously. For this, an additional noninvasive monitoring 
device in combination with X-ray imaging is needed to track tumor motion. Some of these 
devices include: real-time fluoroscopy,(2) electromagnetic tracking,(4,16) ultrasound,(5,6,18) live 
MRI,(13,15,17) and external surrogates.(7,11) Among these, the latter is now clinically applied 
due to its reliability in tumor motion estimation. There are several surrogates to correlate with 
tumor motion, such as: spirometer,(3,22) strain gauge,(22) time-of-flight camera,(14) ribcage,(23) 
and external markers.(7) In radiotherapy with external markers, tumor motion is correlated 
with external marker motion using a consistent correlation model. For this purpose, an internal 
fiducial maker is implanted inside or near the tumor volume, and both external and internal 
markers’ motions are detected by infrared optical tracking and stereoscopic X-ray imaging 
systems, respectively. When external–internal motion data are synchronously captured, a con-
sistent correlation model should be configured before treatment using a synchronized training 
dataset. After model configuration, tumor motion may be tracked during treatment, using only 
external motion data as input. Several correlation models have been developed ranging from 
linear to non-deterministic approaches with different performance accuracy and computational 
time.(24–32) Comprehensive studies have been reported taking into account different aspects of 
available correlation models in our previous reports.(33–35) It should be noted that the success 
degree of a correlation model at tumor motion prediction strongly depends on the number and 
location of external markers as input dataset providers.(36–38)

In most clinical practices, the location of external markers is determined empirically, which 
is highly operator-dependent and is constrained by the possibility of missing optimum location. 
Dong et al.(38) performed a mathematical study to investigate optimum markers location using 
Bregman distance-based algorithm. In this study, we have proposed an alternative nonlinear 
strategy based on feature selection algorithms to find the best location of external markers 
on the thorax surface automatically, where no study has been performed before on this issue.

The feature selection concept was introduced by Liu and Motoda(39) as a dimensionality 
reduction strategy for data mining. In this method, irrelevant features are detected and then 
removed to yield the most effective reduced dataset for predictive models. Accordingly, these 
models may avoid overtraining as a possible drawback during construction, while useless data 
points are removed automatically from the given dataset. Various feature selection algorithms 
have been proposed, with intrinsic advantages and disadvantages.(40) Some of them are com-
mercially available for various situations.(41–44)

Four commercial feature selection algorithms were used in this work — 1) Correlation-based 
feature selection (Cfs),(45) 2) classifier, 3) principal components, and 4) relief(46) — in combina-
tion with two Genetic and Ranker searching procedures. To do this, the Weka open-source data 
mining software package dedicated on various feature selection and clustering algorithms was 
utilized as valuable tool.(47)
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The required dataset used in this work was extracted from four-dimensional extended car-
diac–torso (4D XCAT) anthropomorphic phantom developed by Segars et al.(48) This phantom 
1) includes 3D anatomical information of different organs of human body, and 2) simulates 
motion of dynamic organs located in the thorax region of the patient body to mimic real respi-
ratory and heartbeat motion patterns.

When each feature selection algorithm is used to select optimum external markers among 
total given markers, the motion datasets of selected markers are correlated with internal motion 
of a typical implanted lung or liver tumor using an external–internal correlation model. An 
adaptive neuro-fuzzy inference system (ANFIS) is proposed here as a consistent correlation 
model to estimate tumor position information. The ANFIS model was chosen due to its proven 
robustness in finding reasonable complex relationship between two given datasets.(32,35) ANFIS 
is especially robust in situations where the dataset is not perfect and has a high degree of vari-
ability, far from presenting a regular or semi-regular pattern. 

In order to test the performance of proposed feature selection algorithms at finding optimum 
markers location, the thorax region was divided into several smaller segments and motion 
information of given external markers at each segment were utilized as input file of an ANFIS 
model, separately. Root mean square error (RMSE) of ANFIS output was considered as a metric 
tool for quantitatively evaluating the performance of proposed feature selection algorithms. 
In this way, the RMSE of ANFIS model output for each segment represents the “importance 
degree” of that segment as optimum location of external markers. Moreover, the performance 
of proposed strategy is compared with empirical methods that are clinically available and sug-
gested by prior studies.(36,38,49,50) To do this, the RMSE of ANFIS as fed by feature selection 
algorithms and empirical method were compared quantitatively. 

 
II. MATERIALS AND METHODS

2.1 Dataset generation and its properties
A simulation study was performed using a commercially available NURBS-based 4D XCAT 
anthropomorphic phantom to simulate motion of dynamic organs caused mainly by breathing 
phenomena.(48) The computational XCAT phantom is based on respiratory gated 4D CT data 
and respiratory mechanics.(51,52) This phantom was chosen due to combined advantages of 
pixel-based and geometry-based phantoms and was quite robust to simulate human body with 
multiple resolutions and various anatomies. XCAT phantom enables user to change functional 
variables that control respiration, in order to generate deformable 4D CT models according to 
the real conditions that must be simulated. The main controllable parameters are: 1) motions of 
beating heart only, respiration only, or combined mode; 2) maximum diaphragm motion; and 
3) maximum anterior–posterior expansion of the chest wall. Moreover, using this phantom, 
tumors with spherical shapes can be added at arbitrary organs of the simulated patient body. A 
deformable registration map can also be extracted by a spline-based representation approach.(53)

In this study, six different respiratory cycles were generated with reasonable breathing 
amplitude and frequency to mimic real respiratory patterns (Table 1). For instance, maximum 
anterior–posterior expansion of chest wall and time of respiratory period were determined using 
amplitude and frequency of respiratory motion signals of real patients treated with CyberKnife 
Synchrony System (Accuray Inc., Sunnyvale, CA) at Georgetown University Medical Center 
(Washington DC).

Based on extracted dataset from XCAT phantom, since displacements of tumors and external 
markers in left–right (LR) direction is negligible, this dimension was eliminated from total 
dataset and the rest of motion dataset at anterior–posterior (AP) and superior–inferior (SI) 
directions were considered. It should be noted that LR motion is negligible according to 3D 
motion datasets of real patients treated with Synchrony CyberKnife system. During motion 
data extraction, the time interval between two data acquisition steps was assumed to be 25 ms.
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In order to assess optimum external markers location, several points were defined 1) on 
the thorax region of phantom surface as external markers, and 2) inside lung and liver organs 
as internal markers representing tumor location. Forty-nine points were uniformly distributed 
onto the surface of the chest and abdominal regions of the phantom, each of them representing 
external surrogates. The scheme of depicted points was started from the abdominal region, 
averaging 5 cm distance in vertical and horizontal directions (Fig. 1, left side). As seen in 
this figure, the proposed spatial scheme of given points was divided into nine smaller regions 
including four to nine external markers.

Concerning tumors simulation, three points in the right lung and three points in the left lung 
were considered in upper, middle, and lower lobes of lung (Fig. 1, right side). Moreover, three 
points were assumed to be the origin of tumors located at lower, middle and upper lobes of liver.

2.2 Feature selection algorithms
Feature selection is introduced as useful available technique required at data preprocessing step 
for data mining. In this technique the number of features (the external markers, in this work) 
is reduced by removing irrelevant, redundant, or noisy data. Therefore, most effective and 
remarkable data extracted through total dataset in this strategy can improve the performance 
accuracy and result in a better assessment condition.

Table 1. Characteristics of six different respiratory cycles created by XCAT Phantom.

 Maximum
 Anterior–
 Posterior Maximum Time of
 Expansion of Diaphragm Respiratory Breathing
 Chest Wall Motion Period Cycle
 (CM) (CM) (S) Number

 1.2 2 5 1
 0.7 1.7 5 2
 0.5 1.2 4 3
 1.3 2.2 6 4
 1 1.8 5.5 5
 0.5 1 3.5 6

Fig. 1. Left panel, external surrogates simulation depicted in nine regions. RUM = Right Upper Markers, MUM = Middle 
Upper Markers, LUM = Left Upper Markers, RMM = Right Middle Markers, MMM = Middle Middle Markers, LMM = 
Left Middle Markers, RLM = Right Lower Markers, MLM = Middle Lower Markers, LLM = Left Lower Markers. Right 
panel, internal tumors in lung. RUT = Right Upper Tumor, LUT = Left Upper Tumor, RMT = Right Middle Tumor, LMT = 
Left Middle Tumor, RLT = Right Lower Tumor, LLT = Left Lower Tumor, and in liver as: UT_liver = Upper Tumor in 
liver, MT_liver = Middle Tumor in liver, LT_liver = Lower Tumor in liver.
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In order to find best location of external markers, four feature selection algorithms were 
employed using the Weka software package.(47) Table 2 lists these algorithms including fea-
ture evaluation and searching methods. In this Table, the last two rows process total features 
with corresponding searching algorithm on a case-by-case basis and remove the unnecessary 
features. For this purpose, a test criterion was predefined to remove unnecessary features. The 
other feature selection methods illustrated in this table evaluate the space of feature subset 
searched by the proposed Genetic searching method. The last two methods shown in Table 2 
are potentially faster, with less performance accuracy.(54)

The proposed feature selection algorithms are briefly described below:

1.  “Correlation based Feature Selection Subset Evaluation” considers predictive value of each 
feature individually along with the degree of redundancy among them.(45)

2.  “Classifier Subset Evaluation” uses a classifier to evaluate sets of features in the training 
data. In our study, the classifier used for estimating the accuracy of subsets was “zeroR,” 
which predicts the average value for a numeric class.

3.  “Principal Components” were used for analysis and transformation.
4.  “ReliefF Attribute Evaluation” evaluates the worth of a feature by repeatedly sampling an 

instance and considering the value of the given feature for the nearest instance of the same 
and a different class.(55)

Apart from the four proposed feature selection algorithms shown at Table 2, there are two 
searching procedures known as Genetic and Ranker searches. The proposed Genetic algorithm 
uses a simple genetic algorithm(56) and the Ranker search method ranks features by their indi-
vidual evaluations. Genetic algorithms (GAs) use a heuristic searching algorithm that works 
according to concepts of natural selection and genetics. In this method, useful solutions for 
data optimization and searching processes emerge.(56)

Moreover, before using feature selection algorithms, in order to reduce the number of inputs, 
principal components analysis (PCA) was implemented for two Y and Z variables, and then 
the first principal component was utilized. Principal component analysis (PCA) statistically 
transforms a set of potentially correlated variables into linearly uncorrelated variables, called 
principal components, that may be equal to or less than the number of original variables. After 
transformation, the first principal component has the largest possible variance among all gener-
ated principal components.(57) By applying PCA algorithm, a small amount of data will be lost 
when the first component of all markers covers more than 90% of variance. PCA transforms 
the 2D motion data of external markers into a monodimensional signal, by projecting the two-
dimensional coordinates in the principal component space.

2.3 Data analysis and feature selection criteria using ANFIS correlation model
At first, the motion data of external–internal markers was fed to PCA algorithm to reshape AP 
and SI motion data format from 2D Y-Z information into a monodimensional signal containing 
both AP and SI motion information. It should be noted that the performance of feature selec-
tion algorithms (without PCA implementation) is based on most effective motions data on Y 

Table 2. Feature evaluation methods associated with proposed searching methods.

 Feature Selection Feature Evaluation Method Search Method for
 Algorithm Number for Feature Selection Feature Selection

 1  CfsSubsetEval Genetic Search
 2  ClassifierSubsetEval Genetic Search
 3 Principal Components Ranker
 4  ReliefFAttributeEval Ranker

CfsSubsetEval = Correlation based Feature Selection Subset Evaluation; ClassifierSubsetEval = Classifier Subset 
Evaluation; ReliefFAttributeEval = ReliefF Attribute Evaluation.
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and Z independently, without considering to find a compromise between both Y and Z motions 
data for a typical external marker. This issue is important for us because we are looking for an 
optimum external marker, not its motion properties only on Y or Z direction. 

Hence, PCA analysis was used in order to select the best markers with whole-motion 
information.

The external motion data processed by PCA was then given to proposed feature selection 
algorithms. Therefore, the output of PCA signal, which is monodimensional, is the only input 
dataset for all feature selection algorithms. Taking into account nine tumors, a total of 9 × 4 = 
36 computational processes were calculated. Required motion data for feature selection algo-
rithms was taken from breathing cycle data shown at Table 1.

Moreover, in order to investigate the performance of proposed feature selection algorithms 
to discover optimum markers location, an alternative method was used based on an external–
internal correlation model as benchmark. In this strategy, at first, without considering feature 
selection algorithms, motion information of external markers was correlated with internal 
motion data and the best correlation represents the best placement of external markers. Then 
we can compare best placement of external markers with markers selected by feature selection 
algorithms. For this purpose, the thorax surface was divided into nine smaller segments, as 
shown in Fig. 1 (left side). In this figure, each segment includes four to nine points representing 
external markers. For nine small segments on the thorax surface external markers of each seg-
ment must be correlated with nine lung and liver tumors using ANFIS model. Therefore, total 
number of models running is 9 × 9 = 81. It should be noted that the input data of ANFIS were 
already processed by PCA algorithm to reduce data dimensionality and to avoid computational 
complexity and model overtraining. For a given tumor, the best segment is chosen according 
to the least RMSE of ANFIS model output among nine calculations. The procedure was used 
for nine tumors with same calculations and the best segment was selected for each tumors. It 
should be noted that for each calculation, ANFIS model was executed ten times and the aver-
age of RMSE was reported as the final value. RMSE between benchmarked and model output 
was calculated according to the following metric:

  (1)
 

RMSE = (Ai – Pi)2
N

i = 1
∑1

N

where, N is the number of predicted samples, Ai is ith output in the dataset as real position 
information, and Pi is the ith predicted output by the model.

As the next step, the results of ANFIS model were compared with results of four feature 
selection algorithms in finding optimum markers placement. Furthermore, in order to select 
the best performance among feature selection algorithms, 2D movement dataset of the chosen 
markers by each algorithm was given to ANFIS model and then model outputs were compared 
with each other, quantitatively.

Figure 2 shows a schematic layout of 1) Principal Component Analysis in data processing 
requirement of feature selection algorithm, and 2) ANFIS correlation model configuration at 
pretreatment step and model performance during treatment. When optimum external makers 
were selected, their motion data were as synchronized with internal tumor motion for model 
constructing. As depicted at the dashed smaller rectangular in this figure, ANFIS configuration 
is done at training step using synchronized external–internal training dataset for determining 
model parameters. After configuration, the model can infer tumor trajectory using only motion 
data of the selected external marker.

Moreover, in order to compare our strategy with currently used empirical methods, tumor 
motion was predicted by means of five external markers located on abdominal, diaphragm, 
and above-tumor sites as common available locations for external markers in clinical applica-
tions.(36,38,49,50)
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In summary, to find the optimum spatial pattern of external markers, an alternative non-
linear strategy based on feature selection algorithms was used. Four commercially available 
feature selection algorithms were utilized as comparative study using two Genetic and Ranker 
search methods. After implementing feature selection algorithms, the output of each method 
was considered as required external motion dataset for ANFIS correlation model. The RMSE 
of ANFIS output was taken into account as test criterion for evaluating our proposed strategy. 
The required motion dataset was provided by means of 4D XCAT anthropomorphic phantom.

2.4 ANFIS correlation model
Generally, when the system is working properly there is a reasonable relationship between 
several datasets generated by this system as output. This relation may be simple (linear) or 
complicated (nonlinear) depending on system complexity. For nonlinear systems, several mod-
els are proposed to correlate two datasets with different parameters extracted from a unique 
system. These models work on the basis of nondeterministic mathematical rules to estimate 
proper correlations between datasets with an uncertainty error.

In this work, we utilized our ANFIS correlation model by implementing the fuzzy logic 
toolbox of MATLAB (MathWorks Inc., Natick, MA).(58) ANFIS is presented as a powerful 
tool for modeling numerous processes by combining the abilities of a fuzzy system with the 
numeric power of neural network system. It extracts fuzzy rules from numerical data with 
a highly variable range of input/output dataset and adaptively constructs a rule base, where 
calculations are impossible or difficult using normal mathematics approaches. In this study, 
we used the robustness of ANFIS particularly as a correlation model for respiratory motion 
tracking where the same calculations with normal mathematical methods would be difficult 

Fig. 2. Flowchart of a typical tumor motion prediction by ANFIS using optimum external markers chosen by a typical 
feature selection method in combination with PCA preprocessing algorithm.
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or less accurate, due to the high degree of uncertainty of breathing phenomena. Our ANFIS 
correlation model must be trained using external–internal motion data at synchronized form in 
training step. After configuration, the model is able to track tumor motion as a function of time 
using only external motion data. Model training was done by motion information of 5 phases 
and the last phase was used for model test (Table 1).

 
III. RESULTS 

In this work, five external markers were assumed to make proper correlation with internal tumor 
motion. It should be considered that the number of utilized external markers is clinically flex-
ible ranging from three to five. According to Fig. 1, each external marker belongs to a specified 
segment as depicted on thorax region.

Generally, each segment has its own degree of importance due to two major factors:  
1) correlation of a corresponding marker with tumor motion, and 2) its motion amplitude 
during respiration. In the proposed algorithm, this degree of importance is increased when a 
large number of external markers belonging to a typical segment are selected by our proposed 
feature selection algorithms.

The number of optimum external markers from a given segment was selected by each feature 
selection algorithm. The selection procedure was repeated using all proposed methods and then 
the summation of all chosen external markers at each segment was calculated for each tumor, 
individually (Table 3). This summation value can represent the importance degree of each seg-
ment. For example, to predict LLT, the number of selected markers from LLM segment was 
two by CfsSubsetEval, one by ClassifierSubsetEval, one by Principal Components, and none by 
ReliefFAttributeEval. Therefore, the summation of all selected markers from this example is four.

According to Table 3, without considering tumor location, the most important segments are 
middle lower and right lower for optimum marker selection as predicted by all feature selec-
tion algorithms. In other words, three lower segments have the highest degree of importance 
where six upper and middle segments with lower values are far away from participation as 
optimum external markers.

In order to validate feature selection algorithms, the motion of each tumor was separately 
predicted by feeding ANFIS model using specific markers of each segment directly without 
using feature selection algorithms. The same calculations were done for all tumors placed at nine 
segments using ANFIS model for tumor motion prediction. The results are shown in Fig. 3 as a 
radar plot that illustrates RMSE calculated between ANFIS model output and the real position 
of each tumor. As seen in this figure, lower segments including LLM, MLM and RLM have 
the least RMSE in comparison with other segments for each tumor. Therefore, the mentioned 
segments are determined as proper location for external markers in order to make consistent 
correlation with tumor motion. Taking into account results of Table 2, segments with highest 

Table 3. Total number of external markers for each segment onto thorax surface selected by proposed feature selec-
tion algorithms.

 UT_Liver MT_Liver LT_Liver RUT LUT RMT LMT RLT LLT Tumor Marker

 3 3 3 3 4 4 4 3 4 LLM
 7 7 7 6 7 6 6 8 7 MLM
 7 7 7 8 6 7 7 6 6 RLM
 0 0 0 0 0 0 0 0 0 LMM
 2 2 2 2 2 2 2 2 2 MMM
 0 0 0 0 0 0 0 0 0 RMM
 1 1 1 1 1 1 1 1 1 LUM
 0 0 0 0 0 0 0 0 0 MUM
 0 0 0 0 0 0 0 0 0 RUM
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importance degree proposed with our algorithm are exactly same as segments with least RMSE 
indicated in Fig. 3. This means that the performance of proposed feature selection algorithms 
is reasonable at finding proper segments to select external markers.

As seen in Fig. 3, liver tumors can be predicted with less error compared to lung tumors. In 
addition, among lung tumors maximum and minimum prediction errors belong to tumors located 
at upper lobe of left lung (LUT) and lower lobe of right lung (RLT), respectively. Figure 4 shows 
prediction errors of predefined tumors, using ANFIS model fed by markers located empirically 
and selected automatically by feature selection algorithms.

In order to perform non-parametrical statistical analysis, an F-test was applied to compare 
the performances of feature selection algorithms and empirical method. Furthermore, a Duncan 
test was implemented to evaluate the mean error of these algorithms. The results of two statisti-
cal tests were shown at Fig. 5.

Based on Duncan test for liver tumors (Fig. 5), except for the Principal Components feature 
evaluation method in combination with Ranker search method, which has the worst perfor-
mance among the four proposed algorithms, other feature selection algorithms had better per-
formance than the empirical method. Furthermore, the best performance results by using the 
correlation-based feature selection subset evaluation in combination with the Genetic search 
method. Quantitatively, the ratio of RMSE by CfsSubsetEval method to Principal Components, 
ClassifierSubsetEval, ReliefFAttributeEval, and empirical method are 0.2, 0.4 , 0.6, and 0.3, 
respectively. For lung tumors, based on Duncan statistical test, the accuracy of all feature 
selection algorithms is almost same in an acceptable range and better than empirical method.

 

Fig. 3. Root mean square error of tumor motion prediction via ANFIS model, using external markers from each segment, 
for all tumors.

Fig. 4. Root mean square error of tumor motion prediction via ANFIS using all feature selection algorithms from Table 2 
and without using any feature selection algorithm (Empirical Method), for all tumors.
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IV. DISCUSSION

In radiation treatment, many tumors located in thorax and abdomen regions move semi-regularly, 
mainly due to respiration. This motion is problematic during therapeutic beam irradiation, and 
may result in undesirable dose distribution on tumor volume and may also deliver high dose to 
healthy non-target tissues. Several efforts have been made to compensate this intra-fractional 
motion error. Among them, continuous X-ray imaging may be ideal for tumor motion moni-
toring but a large amount of additional imaging dose received by patient is a serious concern 
according to ALARA principles. As a solution, external surrogates-based radiotherapy has been 
proposed to minimize additional imaging dose. In this approach, the internal tumor motion is 
correlated with the external thorax surface using a proper internal–external correlation model. 

In this strategy, the success of the correlation model in tumor motion tracking is strongly 
affected by the number and location of external markers. In most clinical practice, the location 
of external markers is chosen empirically; that is, operator-dependent. Moreover, few studies 
have been performed to mathematically investigate optimum location of external markers. 

In this study we presented a general framework that comprehensively investigates the effect 
of feature selection algorithms in external markers placement on the performance of correla-
tion model using XCAT as an available anthropomorphic phantom. Using the XCAT phantom, 
internal organs at thorax region such as lung and liver are easily accessible to define any arbi-
trary tumors at different sites with different sizes where there is no option in real conditions for 
undertaking the same investigation. In contrast, since simulating different organs with detailed 
information and motion issues are not exactly the same as in a real patient body due to phan-
tom simplification, some uncertainty errors may arise during phantom performance. But these 
mismatching errors are reasonable within an acceptable range. In this phantom, the parameters 
of respiratory cycles and diaphragm motion can easily be changed as well to simulate various 
displacements that posed a limitation in the prior study.(38)

Nine tumors (three in liver and six in lung) with 49 points representing external markers 
were defined using XCAT phantom to generate comprehensive datasets for finding optimum 
external markers location. Moreover, six different respiratory cycles with different patterns 
were constructed in order to simulate different respiratory conditions close to motion data of 
real patients. Four feature selection algorithms in combination with two searching methods 
were proposed in this work to automatically select optimum location of external markers using 
the Weka software package.

Final analyzed results represented that all proposed feature selection algorithms work 
reasonably at selecting proper location of external markers. As shown in Table 3 and Fig. 3, 
there is a good agreement between the number of selected external markers of each segment 
and corresponding RMSE of ANFIS from that segment. But, in detail, for liver tumors, the 
Correlation-Based Feature Selection Subset Evaluation method in combination with the Genetic 
search method has the best performance.

Fig. 5. Duncan test to compare mean error of liver tumors motion prediction using four feature selection algorithms, and 
without using them (Empirical Method).
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As illustrated in Fig. 4, for each tumor motion prediction there is at least one feature selec-
tion algorithm that has better performance (less RMSE) than the empirical method. Therefore, 
feature selection algorithms are proved to increase treatment quality by selecting optimum 
locations of external markers.

Comparing lung tumors vs. liver tumors it is worth mentioning that total lung tumors have 
larger prediction error using ANFIS against total liver tumors by a ratio of 2.7:1. Among lung 
tumors, LUT and RLT have maximum and minimum prediction error, respectively. 

The ratio of ANFIS output error using external markers located at lower segments versus 
the two middle and upper segments was around 0.8. However, 85% of markers selected by the 
four feature selection algorithms belonged to the lower segment, while this percent was 10% 
and 5% for middle and upper segments, respectively. Moreover, the ratio of motion amplitude 
for lower segment to middle and upper segments was 1.06 and 1.3, respectively. Therefore, the 
great numbers of external markers were selected from the segments which had largest motion 
amplitude and highest correlation with tumor motion. It should be noted that using these two 
parameters (amplitude and correlation) is a typical way of marker placement for tumor motion 
tracking in clinical practice.(38) This fact showed the robustness of feature selection algorithms 
in detecting optimum location of external markers, as is the main purpose of this study. 

It should be considered that the relation between selected external markers motion and tumor 
motion was independent of the distance between markers locations and tumor site.

Future studies can be performed in investigating feature selection algorithms adaptively to 
determine number and location of external markers in real patient data using deformable image 
registration techniques.(59) In this work thoracic 4D CT or CBCT data with several phases will 
be used. A mesh of pixels (points) will be determined on the patient’s thorax in a reference 
phase and propagated to other phases using deformable image registration of the relevant CT 
(CBCT) images. Moreover, an intelligent model will be used to find the best feature selection 
algorithm between numbers of them.

 
V. CONCLUSIONS

In this study, we used a 4D XCAT phantom to investigate several feature selection algorithms 
to find optimum external marker locations which have the best correlation with internal 
tumor motion. We realized that feature selection algorithms have better performance in 
regard with empirical method. The best feature selection algorithm for liver tumors was the 
CfsSubsetEvalfeature evaluation algorithm in combination with the Genetic search algorithm, 
which offers best marker locations to predict tumor motion using ANFIS model. For lung 
tumors, all four proposed feature selection algorithms had reasonable performance with similar 
precision. Most of the markers are selected from the segments with largest motion amplitude 
that have highest correlation with tumor motions. Finally, though the study here focuses on 
optimal marker placement using XCAT phantom, the proposed concept can be implemented 
on real patient data in our future studies.
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