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Abstract

Introduction

Rapid detection of abnormal biological values using point-of-care (POC) testing allows clini-

cians to promptly initiate therapy; however, there are concerns regarding the reliability of

POC measurements. We investigated the agreement between the latest generation blood

gas analyzer and central laboratory measurements of electrolytes, bicarbonate, hemoglo-

bin, hematocrit, and glucose.

Methods

314 paired samples were collected prospectively from 51 critically ill patients. All samples

were drawn simultaneously in the morning from an arterial line. BD Vacutainer tubes were

analyzed in the central laboratory using Beckman Coulter analyzers (AU 5800 and DxH

800). BD Preset 3 ml heparinized-syringes were analyzed immediately in the ICU using the

POC Siemens RAPIDPoint 500 blood gas system. We used CLIA proficiency testing criteria

to define acceptable analytical performance and interchangeability.

Results

Biases, limits of agreement (±1.96 SD) and coefficients of correlation were respectively: 1.3

(-2.2 to 4.8 mmol/L, r = 0.936) for sodium; 0.2 (-0.2 to 0.6 mmol/L, r = 0.944) for potassium;

-0.9 (-3.7 to 2 mmol/L, r = 0.967) for chloride; 0.8 (-1.9 to 3.4 mmol/L, r = 0.968) for bicarbon-

ate; -11 (-30 to 9 mg/dL, r = 0.972) for glucose; -0.8 (-1.4 to -0.2 g/dL, r = 0.985) for hemoglo-

bin; and -1.1 (-2.9 to 0.7%, r = 0.981) for hematocrit. All differences were below CLIA cut-off

values, except for hemoglobin.
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Conclusions

Compared to central Laboratory analyzers, the POC Siemens RAPIDPoint 500 blood gas

system satisfied the CLIA criteria of interchangeability for all tested parameters, except for

hemoglobin. These results are warranted for our own procedures and devices. Bearing

these restrictions, we recommend clinicians to initiate an appropriate therapy based on

POC testing without awaiting a control measurement.

Introduction

Critically ill patients are particularly prone to develop severe variations of their electrolytes,

bicarbonate, hemoglobin, and glucose concentrations, either at admission or during the course

of their stay [1]. These disturbances may be related to the severity of diseases and to the inter-

ventions by physicians [2, 3]. Early detection of life-threatening biological variation is required

for clinicians to promptly deliver an appropriate therapy.

Although it is common practice to perform daily blood analyze in intensive care units

(ICUs), the results are inexorably delayed by a few hours when processed by a central labora-

tory (Lab) [4]. Blood gas analyzers have been widely introduced into modern ICUs and offer a

unique opportunity to determine measurements at the point-of-care (POC), and in a time

frame of 2 minutes, not only for blood gases but also many others biological variables [5].

Whether results provided by POC testing are reliable enough remains controversial and

some clinicians still request a “control” measurement from the Lab. Indeed, large differences

between POC testing and Lab have been reported in the literature, particularly for electrolytes

[6–11]. Several factors may contribute to such discrepancies. First, the pre-analytical phase has

a high risk of error, especially with blood gas analysis. Arterial drawing of samples should be

performed under anaerobic conditions. The sample should be homogenized to prevent any

clot formation and analysis should be performed without delay to prevent any metabolism

occurring within the sampled cells [12]. Second, the method of measurement also matters.

Both POC testing and Lab analyzers used Ion-selective electrode (ISE) technology for electro-

lytes assay; however, the measurement is performed on whole-blood samples (direct) for the

former and on diluted plasma (indirect) for the latter [13, 14]. In patients with hypoproteine-

mia, a higher level of sodium has been reported with the indirect ISE assay [15–17]. In con-

trast, bicarbonate, glucose, and hemoglobin are usually determined using different methods.

For glucose, differences seem to be related, at least in part, to hematocrit and pH level [18, 19].

Third, some methodological issues may preclude comparisons between POC testing and

Lab analyzers. For example, some studies have retrospectively used a hospital’s database,

whereas others have compared arterial with venous blood samples. To date, only one study has

investigated the accuracy of the latest generation Siemens RAPIDPoint 500 blood gas system

but this comparison was with a previous model from the same manufacturer that had similar

electrochemical sensors [20]. Therefore, it seems inappropriate to draw evidence-based con-

clusion regarding the interchangeability of assays.

We conducted this prospective observational study in critically ill patients to address the

agreement between a POC blood gas system and central Lab analyzers to measure electrolytes,

bicarbonate, hemoglobin, hematocrit and glucose. We also aimed to investigate the cause of

any discordance between techniques.

Point-of-Care Blood Gas Testing in Critically Ill Patients
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Materials and Methods

The protocol of this study has been registered at https://clinicaltrials.gov/ (NCT 02449226)

and recorded by the French Health Authority (ANSM, ID RCB number: 2015-A00718-41). An

independent ethics committee (Comité de Protection des Personnes Sud-Méditérranée I) has

approved the protocol and has waived the need for written informed consent. Oral informa-

tion was provided to patients or their next of kin before enrollment.

Patients and samples

All samples were collected prospectively over 1-month (June 2015) from patients admitted

into the ICU of the Hôpital Européen Marseille. Patients were included in the study, on a daily

basis, if the attending physician had ordered both biological analyses and arterial blood gases,

and if an indwelling arterial catheter was present. All samples were drawn simultaneously

from an arterial line in the morning (06:00 am) by nurses. BD Vacutainer tubes were collected

after withdrawing 5 mL of blood and processed within two hours at the central Lab. A 3 mL

BD Preset heparinized-syringe was filled and analyzed immediately in the ICU using a POC

Siemens RAPIDPoint 500 blood gas system.

Central laboratory measurements (Lab)

All analyses were performed in the Laboratoire Européen which is located within the Hospital.

Biochemical parameters were determined using Beckman& Coulter AU 5800 chemistry ana-

lyzers and hematological parameters with Beckman Coulter UniCel DxH 800 automated ana-

lyzers. Electrolytes (Na+, K+, and Cl-) were determined using the indirect ISE method.

Bicarbonate and glucose were determined using the UV-enzymatic method (phosphoenolpyr-

uvate and hexokinase, respectively). Total proteins were determined by colorimetry (Biuret

method). Hemoglobin (Hb) was determined by photometry at 525 nm after chemical lyse of

red cells. Hematocrit (Hct) was calculated as the number of red cells (RBC) per the mean cell

volume (MCV), such as: Hct = (RBC × MCV) / 10. The lactescence, hemolysis, and icteric

indexes, automatically displayed by the chemical AU 5800 analyzers, were also collected

prospectively.

RAPIDPoint 500 measurements (POC)

Two POC RAPIDPoint 500 blood gas systems were available in the ICU. The devices work on

a maintenance-free basis with 28-day single-use multiple cartridges. Of the three mounted car-

tridges, one is used for the measurement and contains miniaturized electro-chemical sensors,

one is for washing and wasted fluids, and the third is for calibrations and internal quality con-

trol, and contains calibrated solutions. According to the size of the cartridge, the number of

measurements ranged from 250 to 750. The analyzer automatically calibrates sensors several

times a day, such as: a 1-point calibration every 30 min, a 2-point calibration every 2 hours,

and a complete calibration every 8 hours. Analyses were performed on 200 μL of whole-blood

sample and results were available in 60 s. Electrolytes were determined using the direct ISE

method (potentiometry). Actual bicarbonate ion (HCO3
-

act) was calculated using the follow-

ing formula: HCO3
-

act = 0,0307 × PCO2 × 10(pH– 6,105) where PCO2 is carbon dioxide tension

and pH is potential hydrogen. Glucose was determined by amperometry (glucose-oxidase).

Total hemoglobin was determined by multiwavelength spectrophotometry and hematocrit

was estimated according to the following formula: Hct = Hb × 2.941.

Point-of-Care Blood Gas Testing in Critically Ill Patients
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Inter-assay imprecision

Coefficients of variations (CVs) were determined daily over a 30-day period as part of routine

quality control practice and are presented in Tables 1 and 2. CVs obtained at different levels

were averaged and used for the Deming regression. The between-day imprecision for POC

hemoglobin and POC actual bicarbonate tests cannot be measure directly because these

parameters are calculated according to the above mentioned formulas. The relationship

between hematocrit and hemoglobin being linear, we used the CV of hematocrit for the pur-

pose of hemoglobin. To determine the CV of actual bicarbonate, we computed each value of

HCO3
- according to the respective pH and PaCO2 values (see the formula above), this at each

of the three control level.

Statistical methods

Data are expressed as mean ± standard deviation (SD) unless specified. Statistical analyses were

conducted according to the NCCLS-EP9-A3 guideline [21]. We decided to not exclude outliers.

Agreement between Lab and POC measurements was investigated using the Bland-Altman

method with multiple observations per individual, including bias and limit of agreement

(± 1.96 SD) [22]. We performed Deming regression analysis, which assumes random errors in

both measurement procedures [23]. Precision was determined by Pearson’s coefficient of cor-

relation (r) and determination (r2), and accuracy by the bias correction factor (Cb) and the

concordance correlation coefficient (κ). We used the proficiency testing (PT) criteria to define

acceptable analytical performance (CLIA, 1992) with the following cut-off values [24]: ± 4

mmol/L for Na+; ± 0.5 mmol/L for K+; ± 5% for Cl-; ±6 mg/dL or ± 10% for glucose; ± 6% for

hematocrit; and ± 7% for hemoglobin. No cut-off value was available for HCO3
-. As suggested

by CLIA, differences between means were expressed either in units or as percentages.

To further investigate the cause for any differences between the techniques, we used linear

regression analyses to quantify the relationship with protein, hematocrit, and pH. Statistical

analyses were performed using MedCalc for Windows v15.8 (MedCalc Software, Ostend, Bel-

gium). A p value of<0.05 was considered statistically significant.

Results

We collected 314 paired samples from 51 critically ill patients. The mean age was 69±12 years,

and 32 (69%) were male. The mean SAPS II score (Simplified Acute Physiology Score, ranging

from 0 to 150, with higher value indicating greater severity) was 47±21. Twenty-four patients

(47%) received vasopressor, 34 (67%) received mechanical ventilation, and 14 (27%) did not sur-

vive the ICU. Among the 314 collected paired samples, one was not complete for chloride analy-

sis, one not for bicarbonate, eight not for glucose, and two not for hemoglobin and hematocrit

(analyses not ordered at Lab). The lactescence index was positive in one sample, the hemolysis

index positive in 7, and the icteric index positive in 48 (whatever the values on a 0 to 10-point

scale). The maximum value of the lactescence index was 1; the maximum of the hemolysis index

was 2, and the maximum of the icteric index was 4. There was no interfering substance during

POC analyses. The Dataset of the present study is available in a S1 Dataset accompanying the

manuscript. The range, mean, median and SD of variables of interest are presented in Table 3.

The coefficient of precision, determination, accuracy, and concordance are presented in Table 4.

Sodium

The distribution of sodium (Na) and its difference between assays are presented in S1A and

S1B Fig. The mean difference between assays was 1.3 mmol/L (±1.96 SD, -2.2 to 4.8 mmol/L;

Point-of-Care Blood Gas Testing in Critically Ill Patients
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Fig 1A). Deming regression analysis yielded the equation: Na+ Lab (mmol/L) = 16 + 0.89 Na+

POC (Fig 1B). The difference between methods was correlated with protein (r2 = 0.48,

p<0.0001) and hematocrit (r2 = 0.1, p<0.0001). A difference above the CLIA criteria was

noted for 18 paired samples (5.8%).

Potassium

The distribution of potassium (K) and its difference between assays are presented in S2A and

S2B Fig. The mean difference between assays was 0.2 mmol/L (±1.96 SD, -0.18 to 0.58 mmol/

L; Fig 2A). Deming regression analysis yielded the equation: K+ Lab (mmol/L) = 0.474 + 0.929

K+ POC (Fig 2B). No correlation with protein was observed (p = 0.42). A difference above the

CLIA criteria was noted for 18 paired samples (5.8%).

Chloride

The distribution of chloride (Cl) and its difference between assays are presented in S3A and

S3B Fig. The mean difference between assays was -0.9 mmol/L (±1.96 SD, -3.7 to 2 mmol/L;

Fig 3A), representing a relative difference of 0.9%. Deming regression analysis yielded the

Table 1. Between-day imprecision of the Point-of-Care Siemens RAPIDPoint 500 blood gas system (POC).

Level 1 Level 2 Level 3 Average CV (%)

QC Mean CV (%) QC Mean CV (%) QC Mean CV (%)

Na+, mmol/L 115 115.2 0.32 135 135 0.21 155 155 0.3 0.28

K+, mmol/L 3 3 0.53 5 5 0.28 7 7 0.21 0.34

Cl-, mmol/L 80 80 0.23 100 99.2 0.82 120 117.8 1.25 0.77

pH 7.15 7.15 0.06 7.35 7.35 0.04 7.55 7.55 0.06 0.05

PCO2, mmHg 70 68.4 1.73 40 40 1.47 22 22.2 2.63 1.94

HCO3
-, mmol/L ND ND 1.8 ND ND 1.35 ND ND 2.37 1.84

Glu, mg/dL 200 199.1 1.65 100 99.3 1.65 50 49.5 1.35 1.55

Hb, g/dL 18 18 0.31 14 14 0.38 8 8 0.42 0.34

Hct, % ND ND 0.31 ND ND 0.38 ND ND 0.42 0.34

ND is Not Done, QC is quality control (target), CV is Coefficient of Variation, Na+ is sodium, K+ is potassium, Cl- is chloride, PCO2 is partial pressure of CO2,

HCO3
- is bicarbonate, Glu is glucose, Hb is hemoglobin, and Hct is hematocrit.

doi:10.1371/journal.pone.0169593.t001

Table 2. Between-day imprecision of central laboratory automated analyzers (Lab).

Level 1 Level 2 Level 3 Average CV (%)

QC Mean CV (%) QC Mean CV (%) QC Mean CV (%)

Na+, mmol/L 122 122.8 0.7 ND ND ND 153 153.4 0.7 0.7

K+, mmol/L 3.93 3.96 0.7 ND ND ND 6.64 6.59 1.1 0.85

Cl-, mmol/L 89.9 90 0.65 ND ND ND 111 110.8 0.75 0.7

HCO3
-, mmol/L 10 10.7 3.5 16 17.4 3.9 27 30 2.2 3.2

Glu, mg/dL 103 101 1.65 ND ND ND 240 240 1.35 1.5

Hb, g/dL 4.6 4.7 1.13 12 11.9 1.02 15.6 15.5 1.01 1.05

Hct, % 14.4 14.8 0.9 36.1 36 0.86 47.6 47.8 0.9 0.89

ND is Not Done, QC is quality control (target), CV is Coefficient of Variation, Na+ is sodium, K+ is potassium, Cl- is chloride, HCO3
- is bicarbonate, Glu is

glucose, Hb is hemoglobin, and Hct is hematocrit.

doi:10.1371/journal.pone.0169593.t002
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equation: Cl- Lab (mmol/L) = -1.329 + 1.005 Cl- POC (Fig 3B). The difference between meth-

ods was correlated with protein (r2 = 0.11, p<0.0001).

Bicarbonate

The distribution of bicarbonate (HCO3) and its difference between assays are presented in

S4A and S4B Fig. The mean difference between assays was 0.8 mmol/L (±1.96 SD, -1.9 to 3.4

mmol/L; Fig 4A). Deming regression analysis yielded the equation: HCO3
- Lab (mmol/L) =

0.642 + 1.005 HCO3
- POC (Fig 4B).

Glucose

The distribution of glucose (Glu) and its difference between assays are presented in S5A and

S5B Fig. The mean difference between assays was -10.7 mg/dL (±1.96 SD, -30 to 8.6 mg/dL;

Fig 5A), representing a relative difference of 8%. Deming regression analysis yielded the equa-

tion: Glu Lab (mg/dL) = -9.64 + 0.992 Glu POC (Fig 5B). The difference between methods was

correlated with hematocrit (r2 = 0.07, p<0.0001) but not with pH (p = 0.8). A difference above

the CLIA criteria was noted for 129 paired samples (42.3%).

Table 3. Range, mean, median and standard deviation according to assays (POC and Lab).

Range (min–max) Mean Median SD

POC Lab POC Lab POC Lab POC Lab

Na+, mmol/L 119.4–150.2 121–152 135.4 136.7 134.7 136 5 4.7

K+, mmol/L 2.8–5.8 2.9–5.9 3.9 4.1 3.8 4.1 0.6 0.6

Cl-, mmol/L 86–116 86–115 102.1 101.2 102 101 5.6 5.6

HCO3
-, mmol/L 13.5–43.1 14–43 25.2 26 24.2 25 5.3 5.4

Glu, mg/dL 50–397 32–373 135.4 124.8 129 119 41.5 41

Hb, g/dL 6.1–15.5 5.6–14.7 10.3 9.5 10.2 9.4 1.6 1.5

Hct, % 18–46 16.9–45.2 30.2 29.1 30 28.8 4.7 4.8

POC is Point-of-Care Siemens RAPIDPoint 500 blood gas system, Lab is central Laboratory analyzers, SD is standard deviation, Na+ is sodium (n = 314),

K+ is potassium (n = 314), Cl- is chloride (n = 313), HCO3
- is bicarbonate (n = 313), Glu is glucose (n = 306), Hb is hemoglobin (n = 312) and Hct is

hematocrit (n = 312).

doi:10.1371/journal.pone.0169593.t003

Table 4. Coefficient of precision, determination, concordance and accuracy between assays (POC and Lab).

Precision Determination Concordance Accuracy

r r2 κ Cb

Na+, mmol/L 0.9359 0.8759 0.9013 0.9630

K+, mmol/L 0.9443 0.8917 0.8888 0.9412

Cl-, mmol/L 0.9669 0.9348 0.9553 0.988

HCO3
-, mmol/L 0.9678 0.9366 0.9578 0.9896

Glu, mg/dL 0.9716 0.944 0.9399 0.9673

Hb, g/dL 0.9851 0.9704 0.8728 0.8861

Hct, % 0.9814 0.9631 0.9561 0.9743

POC is Point-of-Care Siemens RAPIDPoint 500 blood gas system, Lab is central Laboratory analyzers, Na+ is sodium (n = 314), K+ is potassium (n = 314),

Cl- is chloride (n = 313), HCO3
- is bicarbonate (n = 313), Glu is glucose (n = 306), Hb is hemoglobin (n = 312) and Hct is hematocrit (n = 312).

doi:10.1371/journal.pone.0169593.t004
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Hemoglobin

The distribution of hemoglobin (Hb) and its difference between assays are presented in S6A

and S6B Fig. The mean difference between assays was -0.78 g/dL (±1.96 SD, -1.35 to -0.21 g/

dL; Fig 6A), representing a relative difference of 8.2%. Deming regression analysis yielded the

equation: Hb Lab (g/dL) = -0.02 + 0.926 Hb POC (Fig 6B). The difference between methods

Fig 1. 1A. Bland-Altman plot showing the difference versus the average of sodium (Na) measured by the central Lab analyzer and by the

POC Siemens RAPIDPoint 500 blood gas system. Bias, upper and lower limits of agreement (±1.96 SD) are represented. The red dotted

line indicates equality (difference = 0). There is one marker for each patient. 1B. Scatter diagram showing Deming regression analysis for

sodium (Na) measured by the central Lab analyzer and by the POC Siemens RAPIDPoint 500 blood gas system. The regression line (solid

line) and the identity line (x = y, dotted line) are represented.

doi:10.1371/journal.pone.0169593.g001

Fig 2. 2A. Bland-Altman plot showing the difference versus the average of potassium (K) measured by the central Lab analyzer and by the

POC Siemens RAPIDPoint 500 blood gas system. Bias, upper and lower limits of agreement (±1.96 SD) are represented. The red dotted

line indicates equality (difference = 0). There is one marker for each patient. 2B. Scatter diagram showing Deming regression analysis for

sodium potassium (K) measured by the central Lab analyzer and by the POC Siemens RAPIDPoint 500 blood gas system. The regression

line (solid line) and the identity line (x = y, dotted line) are represented.

doi:10.1371/journal.pone.0169593.g002
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was correlated with protein (r2 = 0.19, p<0.0001) and hematocrit (r2 = 0.14, p<0.0001). A dif-

ference above the CLIA criteria was noted for 203 paired samples (65%).

Hematocrit

The distribution of hematocrit (Hct) and its difference between assays are presented in S7A

and S7B Fig. The mean difference between assays was -1.1% (±1.96 SD, -2.9 to 0.7%; Fig 7A),

representing a relative difference of 3.7%. Deming regression analysis yielded the equation:

Fig 3. 3A. Bland-Altman plot showing the difference versus the average of chloride (Cl) measured by the central Lab analyzer and by the

POC Siemens RAPIDPoint 500 blood gas system. Bias, upper and lower limits of agreement (±1.96 SD) are represented. The red dotted

line indicates equality (difference = 0). There is one marker for each patient. 3B. Scatter diagram showing Deming regression analysis for

chloride (Cl) measured by the central Lab analyzer and by the POC Siemens RAPIDPoint 500 blood gas system. The regression line (solid

line) and the identity line (x = y, dotted line) are represented.

doi:10.1371/journal.pone.0169593.g003

Fig 4. 4A. Bland-Altman plot showing the difference versus the average of bicarbonate (HCO3) measured by the central Lab analyzer and

by the POC Siemens RAPIDPoint 500 blood gas system. Bias, upper and lower limits of agreement (±1.96 SD) are represented. The red

dotted line indicates equality (difference = 0). There is one marker for each patient. 4B. Scatter diagram showing Deming regression

analysis for bicarbonate (HCO3) measured by the central Lab analyzer and by the POC Siemens RAPIDPoint 500 blood gas system. The

regression line (solid line) and the identity line (x = y, dotted line) are represented.

doi:10.1371/journal.pone.0169593.g004
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Hct Lab (%) = -1.353 + 1.008 Hct POC (Fig 7B). A difference above the CLIA criteria was

noted for 86 paired samples (27.6%).

Discussion

In the present study, we have demonstrated that POC Siemens RAPIDPoint 500 systems and

central Laboratory analyzers fulfilled CLIA PT criteria’s for all tested parameters, except for

Fig 5. 5A. Bland-Altman plot showing the difference versus the average of glucose (Glu) measured by the central Lab analyzer and by the

POC Siemens RAPIDPoint 500 blood gas system. Bias, upper and lower limits of agreement (±1.96 SD) are represented. The red dotted

line indicates equality (difference = 0). There is one marker for each patient. 5B. Scatter diagram showing Deming regression analysis for

glucose (Glu) measured by the central Lab analyzer and by the POC Siemens RAPIDPoint 500 blood gas system. The regression line (solid

line) and the identity line (x = y, dotted line) are represented.

doi:10.1371/journal.pone.0169593.g005

Fig 6. 6A. Bland-Altman plot showing the difference versus the average of hemoglobin (Hb) measured by the central Lab analyzer and by

the POC Siemens RAPIDPoint 500 blood gas system. Bias, upper and lower limits of agreement (±1.96 SD) are represented. The red dotted

line indicates equality (difference = 0). There is one marker for each patient. 6B. Scatter diagram showing Deming regression analysis for

hemoglobin (Hb) measured by the central Lab analyzer and by the POC Siemens RAPIDPoint 500 blood gas system. The regression line

(solid line) and the identity line (x = y, dotted line) are represented.

doi:10.1371/journal.pone.0169593.g006
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hemoglobin. However, these results are warranted only for a careful pre-analytical manage-

ment of samples.

More or less large differences have been reported in studies that have compared direct and

indirect ISE assays to measure electrolytes, especially for sodium [6–11]. The indirect ISE assay

consists of a fixed predilution step with a buffer solution. Normally, serum contains a water

phase (93%) and a non-water or solid phase (7% by volume); the latter being mainly consti-

tuted by proteins and lipids. During the dilution step, the same volume of diluent is always

used and the degree of dilution is estimated on the basis of the expected solid fraction (7%).

However, if the solid fraction decreases, as during hypoproteinemia, dilution becomes less and

measurement of an ion is then overestimated [14, 25]. Hypoproteinemia, as defined by a total

protein content of<60 g/L, was present in 240 (76%) of our samples. We observed, as others

have, higher sodium levels with the indirect ISE assay (mean 1.3 mmol/L) whereas change in

the level of protein accounted for 48% of the difference between assays [15–17]. Eighteen

(5.8%) of our sodium paired samples were found to be outside the CLIA cut-off value (± 4

mmol/L). Using the international classification for hyponatremia [25], errors in staging would

have occurred in two patients with severe hyponatremia, 15 with moderate hyponatremia, and

55 with mild hyponatremia. In contrast, there was no discordance in the diagnosis of hyperna-

tremia (>145 mmol/L).

Potassium and chloride measurements were less affected by the presence of hypoproteine-

mia because we found a weak correlation for chloride and none for potassium. However,

among the 18 (5.8%) potassium paired samples that were outside the CLIA cut-off value of

±0.5 mmol/L, hypoproteinemia was present in 17. The normal range for plasma potassium

level is 3.5–5 mmol/L [26]. In our study, a potassium level of< 3.5 mmol/l was observed in 85

samples when measured by the direct ISE assay (POC) and in only 33 samples using indirect

ISE (Lab). Severe hypokalemia (<3 mmol/L) was observed in eight samples when measured by

POC and in only two samples when measured by Lab. Conversely, a potassium level of>5

mmol/L was observed in 13 samples measured by POC and in 17 measured by Lab. Finally,

severe hyperkalemia (>5.5 mmol/L) was present in two samples when measured by POC and

Fig 7. 7A. Bland-Altman plot showing the difference versus the average of hematocrit (Hct) measured by the central Lab analyzer and by

the POC Siemens RAPIDPoint 500 blood gas system. Bias, upper and lower limits of agreement (±1.96 SD) are represented. The red

dotted line indicates equality (difference = 0). There is one marker for each patient. 7B. Scatter diagram showing Deming regression

analysis for hematocrit (Hct) measured by the central Lab analyzer and by the POC Siemens RAPIDPoint 500 blood gas system. The

regression line (solid line) and the identity line (x = y, dotted line) are represented.

doi:10.1371/journal.pone.0169593.g007
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in four samples measured by Lab. Differences in chloride had never exceeded the CLIA cut-off

limit of ±5%. For all electrolytes, the mean difference between assays remained below the

respective CLIA criteria, defining interchangeability. Because the direct ISE assay is not influ-

enced by protein content, we wonder whether POC blood gas analyzes should be the reference,

provided that errors in the pre-analytical phase are minimized [17].

In the present study, we also compared the calculated (actual) and the measured (serum)

bicarbonate concentrations, with the latter being the reference method. Of note, the total car-

bon dioxide content (including bicarbonate) is higher in venous than in arterial blood [27].

Kumar and co-workers reported, in a retrospective analysis of 17621 samples, a mean differ-

ence of -0.36 mmol/L between measured (venous blood) and calculated (arterial blood) bicar-

bonate [28]. They found that 95.3% of the paired samples had a difference of�2 mmol/L and

only 0.65% of samples were considered as being clinically discordant (�4 mmol/L). We were

the first to compare arterial blood specimens and reported a mean difference of 0.8 mmol/L.

We observed a difference of�2 mmol/L in 56 samples (18%) whereas it exceeded 4 mmol/L in

only five samples (1.6%). Although a CLIA cut-off has not been established for the purpose of

bicarbonate, we may consider that clinical discordance between the two methods is uncom-

mon, which plea for their interchangeability.

Glycemic control is part of routine care for critically ill patients because hyperglycemia is

frequent and is associated with a worse outcome [29]. International guidelines recommend a

target serum glucose level of between 80 and 180 mg/dL [30]. Insulin is the first-line therapy to

control hyperglycemia but is associated with a risk of hypoglycemia [31]. Although the refer-

ence method (hexokinase) is used only by central Lab analyzers, the POC blood gas ampero-

metric method (glucose oxidase) appears to be the most reliable alternative [32, 33]. Using the

CLIA criterion of ± 6 mg/dL for interchangeability, the difference between methods was

higher than the cut-off value in 229 (75%) of the 306 paired samples. However, when using the

alternative CLIA criterion of ±10%, only 129 (42%) samples had a difference higher than the

cut-off value. The whole difference between samples (8%) remained below the limit for inter-

changeability only if defined as ±10%. Moderate hypoglycemia (<60 mg/dL) occurred in one

sample measured by POC and in nine measured by Lab. Only one sample was within the

severe hypoglycemia zone (<40 mg/dL) when measured by Lab and none by POC. The mean

difference between these methods was 10.7 mg/dL, which is in line with data from Pereira

et al, who found a difference of 14 mg/dL [18]. These authors suggested that hematocrit and

pH may interfere with the amperometric method. We found only a relation with hematocrit,

which accounted for 7% of the difference between the methods.

We also investigated the concordance of the hemoglobin assays. The POC RAPIDPoint 500

analyzer quantified the total hemoglobin as the sum of the four moieties (HbO2, HbH, MetHb

and HbCO) using spectrophotometric analysis of whole-blood. The DxH 800 analyzer mea-

sured hemoglobin spectrophotometrically as the absorbance at 525 nm of the colored Hemo-

Chrom-S complex. Although the reference method for hemoglobinometry is

spectrophotometry using hemiglobin-cyanide, cyanide-free reagents have been widely adopted

for safety and environmental purpose [34, 35]. Therefore, the DxH 800 analyzer represents

current standards [36, 37]. We found that hemoglobin was systematically overestimated

(mean 0.8 g/dL) by the POC assay. This result is consistent with the study of Frasca et al who

observed a mean difference of 0.9 g/dL using a previous model (RAPIDPoint 405) [38].

Among potential confounders, high lipid fractions, cell fragments from incomplete hemolysis

and high bilirubin level are recognized [39]. In our population, the difference between hemo-

globin assays was not related to any of those (i.e., the lactescence, hemolysis and icteric index)

but to protein and hematocrit, which account together for 26% of the difference. Therefore, we

assumed that the POC method was the main confounder. Transfusion threshold has moved
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toward lower values in critically ill patients (hemoglobin� 7 g/dL) since the publication of the

TRISS trial [40]. In our population, ten (3%) samples were�7 g/dL when measured by Lab

and only two when measured by POC. From a clinical point of view, a transfusion of packed

red blood cells wouldn’t have been infused while needed in eight cases, if any physicians had

relied on the POC hemoglobin assay. Hemoglobin was the only parameter to not fulfill the

CLIA criteria of interchangeability with a mean difference between methods of 8.2% when the

cut-off was 7%. Among our 312 paired samples, 203 (65%) were above the CLIA cut-off value.

Finally, we compared the hematocrit assays. The DxH 800 analyzer applied the Coulter

principle to determine the red cell counts and the mean cellular volume. The RAPIDPoint 500

analyzer assumed a constant mean corpuscular hemoglobin concentration (2.941) and esti-

mated hematocrit in proportion to the hemoglobin. If the transfusion threshold is based on

the hematocrit, as in cardiac surgery [39], a hematocrit of�21% was observed in nine (3%)

samples measured by Lab and in 6 measured by POC. Among our 312 paired samples, 86

(28%) were above the CLIA cut-off value of 6%. Nevertheless, the mean difference between

methods remained below the CLIA criteria.

Limitations and strengths

Although we attempted to minimize inadequate pre-analytical management by delivering a

1-month preliminary teaching program, we did not assess compliance of health-care workers.

Pre-analytical errors may have contributed to outliers. We used the CLIA PT criteria which

were defined back in the 1980s and reflected the state of the art at that time. Even if inappropri-

ate nowadays, they have still not been updated. Last, our results should be restricted to studied

devices.

Our study also has several strengths. We collected all samples prospectively, through an

arterial line, and simultaneously for both analyses. We avoided contamination by withdrawing

5 ml of blood prior to collect samples, a volume which is higher than three-times the dead

space volume of the apparatus [41]. Analyses were performed without delay. Our samples were

drawn from a representative population of critically ill patients and covered a wide range of

values.

Conclusions

In the present study, we have demonstrated that in a population of critically ill patients, POC

Siemens RAPIDPoint 500 blood gas systems and central laboratory analyzers are interchange-

able for the measurement of electrolytes, bicarbonate, glucose and hematocrit, but not for

hemoglobin. We found a systematic overestimation of hemoglobin with the POC device sug-

gesting an inaccuracy in the method of measurement. Although glucose values were close

enough on average, we observed clinically relevant discrepancies in the range of hypoglycemia.

These results are warranted for our own procedures and devices, and should be interpreted

with caution in others institutions. Bearing these restrictions, we recommend clinicians to ini-

tiate an appropriate therapy based on POC testing without awaiting a control measurement.

Supporting Information

S1 Dataset. DataSet of the 314 paired samples.

(XLSX)

S1 Fig. S1A. Dot plot showing the distribution of sodium (Na) measured by the central Lab

analyzer (Beckman& Coulter AU 5800) and by the Point-of-Care (POC) Siemens RAPIDPoint

500 blood gas system (n = 314). The solid line indicates the mean. S1B. Histogram showing
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the relative distribution of the difference between sodium (Na) measured by the central Lab

analyzer and by the POC Siemens RAPIDPoint 500 blood gas system.

(TIF)

S2 Fig. S2A. Dot plot showing the distribution of potassium (K) measured by the central Lab

analyzer (Beckman& Coulter AU 5800) and by the Point-of-Care (POC) Siemens RAPIDPoint

500 blood gas system (n = 314). The solid line indicates the mean. S2B. Histogram showing

the relative distribution of the difference between potassium (K) measured by the central Lab

analyzer and by the POC Siemens RAPIDPoint 500 blood gas system.

(TIF)

S3 Fig. S3A. Dot plot showing the distribution of chloride (Cl) measured by the central Lab

analyzer (Beckman& Coulter AU 5800) and by the Point-of-Care (POC) Siemens RAPIDPoint

500 blood gas system (n = 313). The solid line indicates the mean. S3B. Histogram showing

the relative distribution of the difference between chloride (Cl) measured by the central Lab

analyzer and by the POC Siemens RAPIDPoint 500 blood gas system.

(TIF)

S4 Fig. S4A. Dot plot showing the distribution of bicarbonate (HCO3) measured by the cen-

tral Lab analyzer (Beckman& Coulter AU 5800) and by the Point-of-Care (POC) Siemens

RAPIDPoint 500 blood gas system (n = 313). The solid line indicates the mean. S4B. Histo-

gram showing the relative distribution of the difference between bicarbonate (HCO3) mea-

sured by the central Lab analyzer and by the POC Siemens RAPIDPoint 500 blood gas system.

(TIF)

S5 Fig. S5A. Dot plot showing the distribution of glucose (Glu) measured by the central Lab

analyzer (Beckman& Coulter AU 5800) and by the Point-of-Care (POC) Siemens RAPIDPoint

500 blood gas system (n = 306). The solid line indicates the mean. S5B. Histogram showing

the relative distribution of the difference between glucose (Glu) measured by the central Lab

analyzer and by the POC Siemens RAPIDPoint 500 blood gas system.

(TIF)

S6 Fig. S6A. Dot plot showing the distribution of hemoglobin (Hb) measured by the central

Lab analyzer (Beckman& Coulter Unicel DxH 800) and by the Point-of-Care (POC) Siemens

RAPIDPoint 500 blood gas system (n = 312). The solid line indicates the mean. S6B. Histo-

gram showing the relative distribution of the difference between hemoglobin (Hb) measured

by the central Lab analyzer and by the POC Siemens RAPIDPoint 500 blood gas system.

(TIF)

S7 Fig. S7A. Dot plot showing the distribution of hematocrit (Hct) measured by the central

Lab analyzer (Beckman& Coulter Unicel DxH 800) and by the Point-of-Care (POC) Siemens

RAPIDPoint 500 blood gas system (n = 312). The solid line indicates the mean. S7B. Histo-

gram showing the relative distribution of the difference between hematocrit (Hct) measured

by the central Lab analyzer and by the POC Siemens RAPIDPoint 500 blood gas system.

(TIF)
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