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Abstract

The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous
system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic
immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the
importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the
macrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully
characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99
and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions
and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to
effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of
current approaches but offers a four-fold improvement in speed.
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Introduction

Cryptococcus neoformans (serotypes A and D) and C. gattii (serotypes

B and C) are encapsulated basidiomycetous yeasts that are the

causative agents of cryptococcosis [1]. C. neoformans mainly infects

immunocompromised individuals for example those with HIV

infection, leukemia and other cancers or undergoing corticosteroid

treatment [2]. Within this species, serotype A isolates have been

found to cause the majority of infections [2]. In contrast, C. gattii is

a primary and emerging pathogen of healthy individuals; in

particular in North America where serotype B subgroup VGIIa is

responsible for approximately 95% of infections in outbreaks in

British Columbia, Canada and in the Pacific Northwest [3,4].

Cryptococcal infection can be asymptomatic, chronic or acute.

Infection is thought to occur via inhalation of desiccated yeast cells

or spores [1,5]. The initial pulmonary colonization is most often

asymptomatic or presents with cold-like symptoms such as

coughing and mild fever but pneumonia and acute respiratory

stress syndrome have been reported in severe cases [6,7]. The

disease then typically disseminates from the primary site of

infection to the central nervous system leading to meningitis and

meningoencephalitis that are fatal without rapid clinical interven-

tion. In addition, cryptococcosis can occasionally present as a

secondary infection of skin, lungs, prostate and eye [2]. Globally,

cases of cryptococcal meningitis are estimated to be 957,900 of

which 624,700 result in death each year [8].

Macrophages seem to play a critical role in the progression and

outcome of cryptococcal infections. Yeast cells are internalised by

alveolar macrophages shortly after infection [9,10] and can then

survive and proliferate within the host cell, eventually escaping by

cell lysis [10,11,12,13,14,15,16] or a novel non-lytic expulsive

mechanism [17,18]. The ability to reside within macrophages,

together with the phenomenon of lateral yeast cell transfer from

one macrophage to another [11,14] have led to the suggestion that

cryptococci may disseminate within the host via a ‘Trojan Horse’

mechanism [19,20].

Research into the interaction between Cryptococcus and macro-

phages in recent years has established this as a model system for

investigation of cryptococcal virulence, since intracellular yeast

proliferation in macrophages correlates well with virulence data

from mice [15,21]. However, experimental approaches to quantify

macrophage parasitism rely on time-lapse imaging and/or manual

colony counts of isolated yeast, both of which are low throughput,

time-consuming methods. To facilitate faster analysis of crypto-

coccal intracellular parasitism, we have been investigating the use

of fluorescently tagged yeast together with flow cytometry. Here,

we report the production of two cryptococcal strains that show

strong, stable GFP expression: a GFP-positive C. neoformans

serotype A type strain H99 and a GFP-positive C. gattii serotype

B type strain R265 (an isolate from the ongoing Vancouver Island

Outbreak [4]). We have extensively characterised both strains and

show that their responses to environmental and host stress

conditions and their virulence in the macrophage model system

remain unaltered. Using these strains, we report a flow cytometric

approach for accurate, high throughput quantification of macro-

phage parasitism. Taken together, these findings represent a
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powerful resource for the cryptococcosis research community and

should facilitate rapid advances in our understanding of

cryptococcal virulence.

Results

Random genomic integration and expression of a GFP
construct in C. neoformans H99 and C. gattii R265

To achieve constitutive GFP expression, we created a construct

where GFP is under the control of the actin promoter and

tryptophan terminator. Both sequences, obtained from NCBI for

the C. neoformans strain JEC21 (AY483215), were used for the

design of overlapping primers. The three overlapping PCR

products were combined into the vector pRS426 [22] to create

a GFP construct using the homologous recombination machinery

of S. cerevisiae. Afterwards, the construct was recovered by PCR

and ligated into the vector pAG32 [23], which was used as shuttle

vector for biolistic bombardment (Figure 1A). Three individual

biolistic transformations yielded a range of hygromycin B resistant

and GFP expressing C. gattii R265 colonies but only two

transformant C. neoformans H99 colonies. All positive colonies were

re-streaked onto selective YPD plates. Eight C. gattii R265 strains

(R265_GFP6, R265_GFP13, R265_GFP14, R265_GFP15,

R265_GFP17, R265_GFP18, R265_GFP20, R265_GFP21) sta-

bly expressing GFP were randomly selected for further analysis. Of

the two transformed H99 colonies, one showed unstable GFP

expression that was lost after being re-streaked and hence only a

single GFP-expressing H99 strain was used for further analysis. As

a first step to analyse these GFP-strains, we assessed growth in

YPD media at 25uC. Strains R265_GFP20 and R265_GFP21

showed a statistically significant reduction in growth rate in YPD

compared to the parental R265 strain and these two strains were

therefore excluded from further analysis. However, none of the

remaining mutants were altered in their ability to growth in YPD

media (Figure 1B).

GFP expressing strains show no altered response to
stress conditions

Within this host environment Cryptococcus encounters a variety of

stresses. The five selected GFP-positive strains were tested in an in

vitro system for their ability to cope with different stress conditions

in comparison with their parental strains (Figure 2 and Table S1).

Growth rates of all five GFP-expressing strains were indistinguish-

able from their respective parental strains at two different

temperatures (25uC and 37uC). In addition, none of the strains

were altered in their response to hypoxia (3% oxygen or treatment

with 0.05, 0.1 and 0.3 mM CoCl2 [24]), oxidative (0.25, 0.5, 1 and

5 mM H2O2) or nitrosative (1, 5 and 20 mM NaNO2) stress, or

exposure to cell wall damage (0.005, 0.01 and 0.05% SDS or 0.05,

0.1 and 0.3 M NaCl). NaNO2 treatment did not reduce growth at

any of the chosen concentrations. However, concentrations as low

as 250 mM and 500 mM NaNO2 have been shown to induce a

transcriptional or translational response, respectively, to this stress

[25]. Hence, we believe the chosen concentrations were sufficient

to reveal potential stress-mediated growth defects due to

integration of GFP. Thus, none of the GFP-expressing strains

show any significant changes in their response to stress conditions.

GFP expressing strains show no alteration in virulence in
macrophages

Since macrophage/cryptococcal interactions are critical for

disease progression [26,27], we tested whether the expression of

GFP altered cryptococcal behaviour within phagocytic effector

cells. Using the J774 macrophage-like cell line, we tested each of

the GFP positive strains for a) phagocytic uptake (Figure 3A), b)

intracellular proliferation (Figure 3B) and c) the occurrence of

expulsion (Figure 3C). All of the GFP-expressing strains were

indistinguishable from their parental strains in each parameter

tested (Table S1). Thus, expression of GFP in these strains does

not alter their ability to parasitize macrophages.

GFP expression is entirely distinct from Cryptococcus
autofluorescence

Imaging by epifluorescence showed that GFP expressing strains

expressed strong cytoplasmic green fluorescence that was entirely

absent from parental strains (Figure 4A). To distinguish between

GFP fluorescence and autofluorescence we imaged our strains by

spectral confocal microscopy. In agreement with our epifluores-

cence data, with identical image capture and processing, the

parental strains had no discernable fluorescence relative to the

GFP expressing strains (Figure 4B). After phagocytosis of yeast by

Figure 1. GFP expressing mutants. (A) Plasmid map of pAG32
containing GFP construct and GFP-construct with primer localisation
below. (B) Growth rate analysis of the GFP-positive strains. Yeast were
grown in YPD media at 25uC with rotation (20 rpm). Colony forming
units were counted at time point 0 and 24 hours and relative strain
growth calculated. Plasmid map was created using the PlasMapper 2.0
[60]. (* P-Value ,0.05, *** P-Value ,0.001).
doi:10.1371/journal.pone.0015968.g001
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macrophages there was no change in fluorescence in either the

GFP expressing strains or the parental strains (Figure 4C).

Furthermore, time lapse imaging of intracellular H99 for 9 hours

resulted in no observable increase in autofluorescence in

comparison to the fluorescence of the GFP expressing H99 strain

(Figure S1). The autofluorescence of our two parental strains was

only visible with a 5-fold increase in laser power and maximum

detector sensitivity (Figure 4D). This autofluorescence was not

visibly altered after phagocytosis by macrophages (Figure 4E). In

addition, we include here the 32 individual, 6 nm wavelength

channel images for each strain, both intracellular and extracellu-

lar, and note that the spectra of GFP and Cryptococcus autofluo-

rescence are sufficiently different to allow spectral un-mixing

when, unlike in our strains, GFP fluorescence is too weak to allow

separation by intensity (Figures S2–12).

GFP expressing strains can be used for automated
analysis of cryptococcal interaction with macrophages

To date, analysis of cryptococcal interactions with macrophages

has required elaborate and time-consuming experimental ap-

proaches. Potentially, flow cytometric-based systems offer an

accurate but high-throughput alternative strategy for analysing

intracellular proliferation. Since the GFP-positive strains described

above are unaltered in their behaviour in macrophages, we used

these strains to develop a flow cytometry-based methodology for

quantifying intracellular proliferation of cryptococci after lysis of

mammalian cells. Analysis of fluorescence and forward scatter by

flow cytometry showed all five GFP expressing strains were clearly

distinct from both the non-GFP expressing parental strains and

from uninfected macrophages (Figure 5A). Similar data were

obtained for R265-GFP (data not shown). Our previously

published method for assaying proliferation within macrophages

requires lysis of macrophages followed by manual counting of

numerous replicate samples using either a haemocytometer or by

plating on YPD plates and counting colony forming units (CFU)

[15,28]. To validate our flow cytometry based method, we took

replicate samples from macrophage infections with the same GFP-

expressing strain and compared proliferation quantification by

flow cytometry, CFU and haemocytometer count. Comparison of

Cryptococcus proliferation from all three counting methods showed

no significant differences. Thus, flow cytometry offers a reliable

and rapid alternative to manual count-based methods of analysis

(Figure 5B).

A non-lytic method of quantifying macrophage-
Cryptococcus interaction by flow cytometry

To date, all methods for quantifying intracellular cryptococcal

proliferation involve a lysis step to free any intracellular yeast cells

for counting. Lysis is methodologically undesirable since it

increases processing time, increases the risk of sample loss and

may potentially damage intracellular cryptococci. Accutase, a

proteolytic and collagenolytic enzyme mix, allows detachment and

dissociation of mammalian cells without significantly influencing

viability from culture plates in vitro [29] potentially enabling us to

quantify fungal burden within infected macrophages without lysis.

J774 macrophage cultures were infected with H99_GFP, incubat-

ed according to the protocol for IPR assays and then treated with

the enzyme mix instead of being lysed. Flow cytometry

demonstrated that extracellular yeast cells, macrophages and

macrophages with intracellular yeast cells formed three distinct

regions based upon their size (forward scatter, FSC) and GFP

fluorescence intensity (Figure 6A). Using fluorescence activated

cell sorting we separated the region of macrophages containing

intracellular yeast. Assessment of the purity of this region by

microscopy revealed that this population contained .90%

macrophages with intracellular yeast. By comparing events

counted for uninfected macrophages versus events counted for

macrophages with intracellular cryptococci we could accurately

quantify percentage phagocytosis (Figure 6B). In addition, by

calculating fluorescence intensity, we were able to quantify

intracellular cryptococcal proliferation without the need to lyse

the macrophage culture (Figure 6C).

Discussion

Here we describe the generation of Cryptococcus type strains

expressing GFP; C. gattii GFP-positive serotype B R265 strains and

a C. neoformans GFP-positive serotype A H99 strain. Despite strong,

stable GFP expression, these strains are indistinguishable from

non-fluorescent parental isolates in terms of growth rate, stress

tolerance or their ability to parasitize macrophages. We then used

these strains to develop and validate a flow cytometry based assay

for quantifying intracellular cryptococcal proliferation. The

fluorescence of our GFP expressing cells far exceeds any

autofluorescence, even when intracellular, and in addition can

be spectrally distinguished by appropriate confocal techniques if,

unlike in our strains, GFP fluorescence is at a similar level as

autofluorescence. Endogenous GFP expression has substantial

advantages over exogenous fluorescent labels since it does not

require any secondary manipulations such as staining or treatment

with a probe and thus can be directly used for analysis. Although

GFP is generally regarded as a protein that does not influence

cellular processes, it is known that in Salmonella enterica expression of

GFP alters establishment of the intracellular niche in epithelial

cells and macrophages [30]. However, careful analysis indicates

that the GFP expressing cryptococci reported here show no

significant differences in their stress responses or behaviour within

macrophages.

GFP and its molecular cousins [31] offer many advantages over

dye labelling previously used to track Cryptococcus in vivo and in vitro

[19,20,32,33,34]. For example the commonly used dye FITC is

quenched in acidic conditions, a major disadvantage for studies in

macrophages. In addition, a number of these dyes show

photoxicity in comparison to GFP, a major impediment to live

imaging. Our GFP is stably expressed and is not diluted by

proliferation, making long term study in vivo a possibility.

Furthermore, multi-colour expression systems have been estab-

lished that could be easily adapted to allow the tracking of many

members of an infective population simultaneously [35].

The interaction with macrophages plays a key role in the

outcome of cryptococcal infections. After phagocytosis, Cryptococcus

manipulates host macrophages to establish itself as an intracellular

parasite that can survive and proliferate within the macrophage

phagolysosome [10]. This intracellular niche might help to explain

how Cryptococcus stays latent within infected individuals and also

how the yeast disseminates within the host. Phagocytosis,

Figure 2. Response of GFP expressing strains to stress. The stress tolerance of the GFP-expressing isolates was tested by incubation under
stress conditions for 24 hours followed by relative CFU analysis. Neither high temperature (A), hypoxia (B), oxidative stress (C), nitrosative stress (D),
SDS exposure (E) or high salt (F) resulted in any significant differences in survival relative to non-GFP expressing parental strains (Table S1). Data are
presented as means of at least three independent repeats with 2 times standard error.
doi:10.1371/journal.pone.0015968.g002
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intracellular proliferation and the ability to exit macrophages in a

non-lytic manner (expulsion) are important parameters in under-

standing Cryptococcus-macrophage interactions [9,13,14,15,17,18,2

8,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56].

In particular, the ability to proliferate within these host cells is an

important pathogenesis feature as it correlates with in vivo virulence

data from mice [15]. However, to date the analysis of intracellular

proliferation and yeast uptake by phagocytes has required time

consuming methods, thus preventing high throughput screening or

related experimental approaches. The data presented here describe

GFP-positive derivatives of widely used Cryptococcus strains coupled

with a flow cytometry approach that enables efficient and high-

throughput analysis of virulence parameters in the macrophage

model system. Flow cytometry allows the analytical, and physical (by

fluorescently activated cell sorting), separation of infected macro-

phages and therefore this population can be separately assessed for

immune regulatory changes. Furthermore, our methodology poten-

tially permits high throughput examination of drugs and anti-fungal

components from both new and existing libraries, and, critically, the

ability to analyse within the host macrophage environment.

In summary, we report a reliable tool for rapid and simple

quantification of cryptococcal macrophage parasitism, which can

easily be transferred to other in vivo and in vitro model systems.

Materials and Methods

Biolistic transformation
C. neoformans serotype A strain H99, originally isolated from

patient cerebrospinal fluid, and C. gattii serotype B strain R265, a

clinical isolate from an outbreak on Vancouver Island, Canada,

were transformed with a GFP construct by biolistic bombardment

[57]. The insertion cassette was constructed by PCR amplification

with overlapping primers (Table 1) of the C. neoformans JEC21 act1

promoter (AY483215), the GFP coding sequence and the C.

neoformans JEC21 trp1 terminator (AY483215) followed by lithium

acetate transformation in the uracil negative Saccharomyces cerevisiae

strain MLY40 [58] to achieve homologous recombination of

overlapping DNA fragments into the plasmid pRS426. The

plasmid was recovered from S. cerevisiae, electroporated into

Escherichia coli DH5a and the GFP construct isolated by PCR

(Table 1). After digestion with XhoI and BamHI the promoter/

GFP/terminator cassette was ligated into the shuttle vector

pAG32 [23] for biolistic DNA delivery. The GFP construct

containing shuttle vector pAG32 was directly used for biolistic

transformation. For biolistic bombardments, parental strains H99

and R265 were grown overnight in 50 ml YPD media at 30uC and

180 revolutions per minute in a shaker. Cells were collected by

centrifugation for 5 minutes at 900 rcf and washed with dH2O.

Yeast cells were resuspended in J of the original volume, 300 ml

aliquots spread in the centre of 1 M sorbitol YPD plates and left to

dry at 30uC. Ten ml of gold particles (0.25 g of 0.6 mm beads in

750 ml ethanol) were mixed with 2 ml of 1 mg/ml DNA, 10 ml

2.5 M CaCl2 and 2 ml of spermidine-free base and incubated for 5

minutes at room temperature to attach the DNA to the gold

particles. Free DNA was removed by a wash step with ethanol, the

Figure 3. Analysis of intracellular virulence parameters. J774
macrophages were infected with GFP-positive isolates or their parental
strains and analysed for yeast uptake (A) maximal intracellular yeast cell
proliferation (IPR) (B) and occurrence of cryptococcal expulsion (C). No
statistically significant differences were found between the GFP-
expressing strains and their parental counterpart (Table S1). Data are
presented as mean (n$3) with 2 times standard error (A+B) or
accumulated data from three independent repeats (C).
doi:10.1371/journal.pone.0015968.g003
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bead-DNA complexes resuspended in 12 ml ethanol and applied to

the centre of a microcarrier biolistic disc (2.5 cm, pre-washed in

ethanol, BioRad). The gold microcarrier were accelerated in a

helium-generated vacuum (1350psi rupture discs, BioRad) and

shot onto the 1 M sorbitol plates containing Cryptococcus in a

BioRad PDS-1000/He biolistic particle delivery system. After

Figure 5. Automated counting of intracellular Cryptococcus proliferation within macrophages. (A) GFP-tagged strains were first analysed
for their expression profile. All GFP-expressing strains are clearly discernable from GFP-negative cryptococci or cell debris. (B) Replicate samples were
used for quantifying intracellular yeast cell numbers after macrophage infection via haemocytometer (black bars), CFU count (grey bars) or flow
cytometry (white bars). For all of the strains, there was no statistically significant difference between any of the three counting methods. Data are
presented as means with 2 times standard error from at least three independent repeats.
doi:10.1371/journal.pone.0015968.g005

Figure 4. Imaging analysis of cryptococcal GFP fluorescence and autofluorescence. (A) GFP expressing strains exhibit a strong
fluorescence signal that is absent in the parental strains. Epifluorescence images were captured and processed identically for each parental strain and
transformant. (B and C) Spectral confocal images of parental strains and transformants showing absence of observable green fluorescence in parental
strains when compared to the GFP expressing transformants either alone (B) or after phagocytosis by a macrophage (C). (D and E) Spectral confocal
images of autofluorescence of parental strains either alone (D) or after phagocytosis by a macrophage (E). Spectral images were captured over 32
channels, 6 nm apart, between 500.1 nm and 691.3 nm. Spectral images images have been coloured to their actual fluorescent spectra. For separate
channels of spectral images see Figures S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13. Scale bars are 5 mm.
doi:10.1371/journal.pone.0015968.g004
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transformation, yeast cells were recovered for 5 hours at 30uC, the

cells lawn washed off with 1 ml liquid YPD media, plated on

selective media containing 250 mg/ml hygromycin B and

incubated for 5 days at 30uC. Three individual transformations

were carried out with 10 plates being objected to biolistic

bombardment each time [57].

Yeast cells and growth conditions
Cryptococcal strains were incubated in liquid YPD media (1%

peptone, 1% yeast extract, 2% D-(+)-glucose) for 24 hours at 25uC

on a rotator at 20 revolutions per minute prior to experimental

use. Fluorescence images of yeast cells were taken after growth in

YPD media overnight at 25uC on a rotator at 20 revolutions per

minute with a Zeiss Axiovert 135 TV microscope with 100 x oil

immersion Plan-Neofluor objective.

Stress treatment
GFP expressing strains were tested for their susceptibility towards

cellular stresses with the following conditions: hypoxia (3%, CoCl2),

oxidative (H2O2), nitrosative (NaNO2) and cell wall (sodium dodecyl

Figure 6. Assessment of virulence parameters in the macrophage model system after treatment with Accutase. Macrophages were
infected with the GFP-positive H99 strain H99_GFP and cultured in the same way as for a normal infection assay. Samples were taken at standard time
points but instead of cell lysis, the cultures were treated with Accutase to detach and dissociate cells. (A) Extracellular yeast, uninfected macrophages
and macrophages with intracellular yeast cells show three distinct populations in a scatter plot. (B) Phagocytic uptake can be quantified by
comparing the proportions of infected and uninfected macrophages using flow cytometry. Results are not statistically different between the two
approaches. (C) Intracellular proliferation can also be determined with this approach by calculating fluorescence intensity. Results are not statistically
different from IPR measurements with a haemocytometer, by CFU counts or flow cytometry counting after macrophage lysis. Data are presented as
means with 2 times standard error from at least three independent repeats.
doi:10.1371/journal.pone.0015968.g006
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sulphate (SDS) and NaCl) in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 2 mM L-glutamine, 100 U/ml

penicillin and 100 U/ml streptomycin (assay medium), the medium

routinely used in macrophage assays. Cryptococcal cells from

24 hours cultures were washed three times with phosphate buffered

saline (PBS), counted in a haemocytometer and adjusted to 105 cells

per ml in assay medium. One ml of yeast solution was incubated

with the appropriate stress in 48-well plates and left at 37uC and 5%

CO2 for 24 hours without shaking. To assess the influence of stress

conditions on cryptococcal growth, serial dilutions were plated and

colony-forming units (CFUs) counted after 0 and 24 hours. CFUs

relative to time point 0 were calculated.

Mammalian cells and growth conditions
The macrophage-like cell line J774 [59] was used for this study

and growth conditions were as described before [15,28]. The cells

were used between passage 5 and 20 after thawing and cultured in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

2 mM L-glutamine, 100 U/ml penicillin and 100 U/ml strepto-

mycin and 10% fetal bovine serum (culture medium) at 37uC and

5% CO2.

Macrophage virulence assays
Infections of macrophages with Cryptococcus, phagocytosis assays,

proliferation assays and live-cell imaging was performed as

described before [15,28]. Briefly, 1 ml of J774 cells (105 cells/

ml) in culture medium was plated into 24 well plates and incubated

for 24 hours at 37uC and 5% CO2 before start of the assay. Cells

were activated with 1 mg/ml of the immune stimulant phorbol

myristic acetate (PMA) in assay medium (as culture medium but

without 10% fetal bovine serum) for 1 hour at 37uC and 5% CO2.

At the same time, yeast cells from 24 hours cultures were washed

three times with PBS and opsonized with 10 mg/ml of 18B7

antibody (a gift of Arturo Casadevall) for 1 hour at 37uC. Then,

macrophage infection with yeast cells (1:10 ratio) was allowed to

proceed for 2 hours in assay medium at 37uC and 5% CO2. After

this incubation time, uninternalized yeast cells were removed by

extensive washing with PBS and the effectiveness of washing

assessed by light mircrosopy. For assessment of phagocytosis,

macrophages were plated on acid-washed (1 M HCl) 13 mm glass

coverslips and, after infection, fixed with 4% paraformaldehyde for

20 minutes at 4uC. The coverslips were washed with PBS and

dH2O and then mounted with Mowiol (Calbiochem, Nottingham,

UK) mounting media (100 mM Tris-HCl, pH 8.5, 9% Mowiol,

25% glycerol) onto glass slides. At least 1,000 cells were assessed

for intracellular yeast cells and percentage phagocytosis calculated

as percentage of cells with internalized Cryptococcus. For intracel-

lular proliferation, infected macrophages were further incubated in

assay medium at 37uC and 5% CO2 and samples taken after 0, 18,

24, 48 and 72 hours. Extracellular yeast were removed by washing

with 200 ml PBS and collected, intracellular yeast cells were

collected by macrophage lysis in a total of 200 ml dH2O and

number of yeast cells counted with a haemocytometer, by plating

serial dilutions and assessing CFU and by flow cytometry. Yeast

cell numbers were compared to time point 0 and maximal

intracellular proliferation (IPR) (typically after 24 hours) was used

as measure for intracellular proliferative capacity (highest

intracellular yeast cell number divided by the initial yeast count

at time point 0). For live-cell imaging, infected macrophages were

kept in assay medium and plates transferred into a control culture

chamber (OKOLAB) at 37uC and 5% CO2. Images were taken

every 90 seconds for 20 hours with a Nikon Digital Sight DS-

Qi1MC camera on a Nikon Eclipse TE2000-U microscope with

20 x phase contrast objective and 1 x optivar and compiled to

time-lapse movies using the software NIS-Elements AR 3.0. The

number of expulsion events was counted by eye.

Spectral confocal microscopy
Both yeast alone and macrophages with intracellular yeast were

imaged live in 96-well imaging plates (BD Biosciences). Confocal

images were captured on an A1-R instrument (Nikon) with 60 x

objective (CFI Plan Apo TIRF oil 1.49NA) in galvo scanner mode

with spectral detector in manual mode using NIS elements AR

software (Nikon). The A1-R Z-axis was driven with a piezo drive

(Mad City labs, Madison, WI). Spectral images were coloured and

merged in NIS elements AR software (Nikon). Contrast was

adjusted in Photoshop CS3 (Adobe). Laser and detector settings

for each strain are given in the legend for figures S2–13.

Timelapse imaging
After phagocytosis of cryptococci, J774 macrophage cells were

washed three times and imaged in DMEM without phenol red.

Cells were imaged on a TE2000 (Nikon) microscope enclosed in a

temperature controlled and humidified environmental chamber

(OKOLAB) with 5% CO2 at 37uC. Time lapse images were

captured with a Digital Sight DS-Qi1MC camera (Nikon), 20 x

objective (Ph1 PLAN APO), using NIS elements AR software

(Nikon). Images were captured every 2 minutes for 9 hours.

Accutase treatment
J774 macrophages were detached and separated by Accutase

(PAA) treatment. The cells were incubated with the undiluted

Table 1. Primer.

Fragment Sequence (59-39)

Act1 promoter Forward: TTGGGTACCGGGCCCCCCCTCGAGGTCGACGGTATCGATAAGGCTGCGGGAGGTGAGCTGG

Reverse: TCCTCGCCCTTGCTCACCATAGACATGTTGGGCGAGTTTTAC

GFP coding sequence Forward: GTAAAACTCGCCCAACATGTCTATGGTGAGCAAGGGCGAGGAG

Reverse: CCTTACGGCCTTCACAATTACTTGTACAGCTCGTCCATGCCG

Trp1 terminator Forward: CGGCATGGACGAGCTGTACAAGTAATTGTGAAGGCCGTAAGG

Reverse: AGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATATCAGAAGAGATGTAGAAACAGTTTCG

GFP construct Forward: GTAGGATCCAGGCTGCGGGAGGTGAGCTGG

Reverse: TAGGATCCGAAGAGATGTAGAAACGAGTTTCG

Primers used for construction of the GFP cassette and biolistic transformation in Cryptococcus strains.
doi:10.1371/journal.pone.0015968.t001
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proteolytic and collagenolytic enzyme mix for 15 minutes at 37uC
and then gently dissociated by pipetting to ensure a single cell

suspension; cell separation was checked by eye by light

microscopy.

Flow cytometry
Samples were fixed by adding an equal volume of 2%

formaldehyde and 2% fetal bovine serum in PBS. Flow cytometry

parameters were measured using a FACSCaliber instrument (BD

Biosciences) and analysed with CellQuestPro (BD Biosciences). To

enable comparison of different samples/time points, we assessed

the number of events over a fixed time period. Intracellular

proliferation was calculated by measuring the geometric mean of

GFP fluorescence of macrophages containing cryptococci and this

value normalised to the geometric mean of extracellular

cryptococci (to adjust for any inherent variation in GFP

florescence within the Cryptococcus population) and multiplied by

the number of macrophages containing cryptococci. The resulting

value for each time point was divided by the initial value at time

point zero and the maximum ratio taken as the maximum

proliferation rate.

Fluorescently activated cell sorting of macrophages
containing cryptococci

Five confluent 75 cm2 flasks of J774 macrophages were

incubated with opsonised cryptococci for 2 hours, washed with

PBS and detached using Accutase as described above. Cells were

pelleted and resuspended in 3 mls of cell culture media. Cells were

sorted, using a FACSAria II (BD Biosciences), into cell culture

media and plated at 16105/ml.

Statistical analysis
At least three individual repeats were performed for each

experiment. Results for yeast growth, yeast stress response, IPRs

and percentage phagocytosis were analysed for statistically

significant differences using a one-way analysis of variance along

with multicomparisons (Tukey’s honestly significant difference test).

For assessment of expulsion, results from at least three individual

assays were tested for statistical significant differences using a Chi2-

test. P-values of ,0.05 were considered to be statistically significant.

Supporting Information

Figure S1 Time lapse phase contrast and fluorescent images of

intracellular H99 and H99_GFP were captured every 2 minutes

for 9 hours. There is no observable change in H99 autofluores-

cence in comparison to the H99_GFP strain.

(TIF)

Figure S2 Individual spectral channel images of the H99 GFP

strain. A1R confocal settings used were: 5126512 pixel scan area,

32 channels with 6 nm resolution between 500.1 nm and

691.3 nm, 1.2 mW 488 laser line, 166 spectral detector gain,

163 transmitted light detector gain, 0.08 mm/pixel.

(TIF)

Figure S3 Individual spectral channel images of the H99 strain.

A1R confocal settings used were: 5126512 pixel scan area, 32

channels with 6 nm resolution between 500.1 nm and 691.3 nm,

1.2 mW 488 laser line, 166 spectral detector gain, 143 transmitted

light detector gain, 0.09 mm/pixel.

(TIF)

Figure S4 Individual spectral channel images of the

R265_GFP6 strain. A1R confocal settings used were: 5126512

pixel scan area, 32 channels with 6 nm resolution between

500.1 nm and 691.3 nm, 1.2 mW 488 laser line, 137 spectral

detector gain, 167 transmitted light detector gain, 0.09 mm/pixel.

(TIF)

Figure S5 Individual spectral channel images of the R265 strain.

A1R confocal settings used were: 5126512 pixel scan area, 32

channels with 6 nm resolution between 500.1 nm and 691.3 nm,

1.2 mW 488 laser line, 137 spectral detector gain, 143 transmitted

light detector gain, 0.08 mm/pixel.

(TIF)

Figure S6 Individual spectral channel images of intracellular

H99_GFP strain. A1R confocal settings used were: 5126512 pixel

scan area, 32 channels with 6 nm resolution between 500.1 nm

and 691.3 nm, 1.2 mW 488 laser line, 173 spectral detector gain,

140 transmitted light detector gain, 0.12 mm/pixel.

(TIF)

Figure S7 Individual spectral channel images of intracellular

H99 strain. A1R confocal settings used were: 5126512 pixel scan

area, 32 channels with 6 nm resolution between 500.1 nm and

691.3 nm, 1.2 mW 488 laser line, 173 spectral detector gain, 140

transmitted light detector gain, 0.10 mm/pixel.

(TIF)

Figure S8 Individual spectral channel images of intracellular

R265_GFP strain. A1R confocal settings used were: 5126512

pixel scan area, 32 channels with 6 nm resolution between

500.1 nm and 691.3 nm, 1.2 mW 488 laser line, 145 spectral

detector gain, 140 transmitted light detector gain, 0.10 mm/pixel.

(TIF)

Figure S9 Individual spectral channel images of intracellular

R265 strain. A1R confocal settings used were: 5126512 pixel scan

area, 32 channels with 6 nm resolution between 500.1 nm and

691.3 nm, 1.2 mW 488 laser line, 137 spectral detector gain, 167

transmitted light detector gain, 0.09 mm/pixel.

(TIF)

Figure S10 Individual spectral channel images of autofluores-

cence of H99 strain. A1R confocal settings used were: 5126512

pixel scan area, 32 channels with 6 nm resolution between

500.1 nm and 691.3 nm, 6 mW 488 laser line, 255 spectral

detector gain, 110 transmitted light detector gain, 0.11 mm/pixel.

(TIF)

Figure S11 Individual spectral channel images of autofluores-

cence of R265 strain. A1R confocal settings used were: 5126512

pixel scan area, 32 channels with 6 nm resolution between

500.1 nm and 691.3 nm, 6 mW 488 laser line, 255 spectral

detector gain, 110 transmitted light detector gain, 0.11 mm/pixel.

(TIF)

Figure S12 Individual spectral channel images of autofluores-

cence of intracellular H99 strain. A1R confocal settings used were:

5126512 pixel scan area, 32 channels with 6 nm resolution between

500.1 nm and 691.3 nm, 6 mW 488 laser line, 255 spectral detector

gain, 110 transmitted light detector gain, 0.11 mm/pixel.

(TIF)

Figure S13 Individual spectral channel images of autofluores-

cence of intracellular R265 strain. A1R confocal settings used

were: 5126512 pixel scan area, 32 channels with 6 nm resolution

between 500.1 nm and 691.3 nm, 6 mW 488 laser line, 255

spectral detector gain, 110 transmitted light detector gain,

0.11 mm/pixel.

(TIF)
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Table S1 Statistical Analysis. P-values of statistical analysis of

results from CFU counts from stress treatments and intracellular

virulence assays of GFP-positive strains compared to parental

strains.

(DOC)
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