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Optimization of avian perching manoeuvres

Marco KleinHeerenbrink1,3, Lydia A. France1,2,3, Caroline H. Brighton1 & Graham K. Taylor1 ✉

Perching at speed is among the most demanding flight behaviours that birds 
perform1,2 and is beyond the capability of most autonomous vehicles. Smaller birds 
may touch down by hovering3–8, but larger birds typically swoop up to perch1,2—
presumably because the adverse scaling of their power margin prohibits hovering9 
and because swooping upwards transfers kinetic to potential energy before 
collision1,2,10. Perching demands precise control of velocity and pose11–14, particularly 
in larger birds for which scale effects make collisions especially hazardous6,15. 
However, whereas cruising behaviours such as migration and commuting typically 
minimize the cost of transport or time of flight16, the optimization of such unsteady 
flight manoeuvres remains largely unexplored7,17. Here we show that the swooping 
trajectories of perching Harris’ hawks (Parabuteo unicinctus) minimize neither time 
nor energy alone, but rather minimize the distance flown after stalling. By combining 
motion capture data from 1,576 flights with flight dynamics modelling, we find that 
the birds’ choice of where to transition from powered dive to unpowered climb 
minimizes the distance over which high lift coefficients are required. Time and energy 
are therefore invested to provide the control authority needed to glide safely to the 
perch, rather than being minimized directly as in technical implementations of 
autonomous perching under nonlinear feedback control12 and deep reinforcement 
learning18,19. Naive birds learn this behaviour on the fly, so our findings suggest a 
heuristic principle that could guide reinforcement learning of autonomous perching.

The exquisite perching performance of birds has inspired many efforts 
to achieve similar capabilities in autonomous aircraft10,12,13,18,20–24. 
Perching is made demanding by the lack of a runway to bleed speed 
after landing, which creates a precise targeting requirement that is 
exacerbated by the difficulty of maintaining control authority at the 
low airspeeds needed before touchdown10,12,20. Although some kinetic 
energy is converted to gravitational potential energy when climbing to 
perch1,2,10, most is either lost through aerodynamic drag or dissipated on 
impact3,7,25–27. Powerful aerodynamic braking is therefore key to avoiding 
a dangerously energetic collision, but the high angles of attack that this 
requires will compromise control as the wing stalls10,12,20,24. Birds delay 
the onset of stall by executing a characteristic rapid pitch-up manoeu-
vre when perching1,2,6,22,24,28, but the rapidity of this manoeuvre leaves 
little room for error and makes the optimization of its entry conditions 
critical18. This begs the question of how the perching trajectories of 
birds are optimized and offers a tractable test case for understanding 
how animals optimize complex unsteady motions7.

Hawks learn to swoop upwards to a perch
To address these questions, we rigged a large custom-built motion 
capture studio to record n = 4 captive-bred Harris’ hawks flying between 
perches for food (Methods and Supplementary Video 1). The hawks 
wore retroreflective markers enabling us to reconstruct their flight 
trajectories at a sampling rate of 120 or 200 Hz (Fig. 1). Three of the birds 
were juvenile males that had only flown short distances previously and 
thus were initially naive to the task; the other was an experienced adult 

female. We collected trajectory data from 1,585 flights at perch spacing 
of 5, 7, 9 or 12 m and perch height of 1.25 m, after an initial familiariza-
tion period comprising 100 flights per bird made at perch spacing of 
12 m. Perch spacing was held at 12 m for the following 2–3 weeks, to 
allow us to confirm the stability of the behaviour, and was subsequently 
randomized daily at 5, 7 or 9 m. The juvenile birds flew directly between 
the perches by flapping for the first few flights of their familiarization 
period (Fig. 2a) but soon adopted the indirect swooping behaviour 
characteristic of experienced birds (Fig. 2b–e). Swooping was initiated 
by jumping forward into a dive involving several powerful wingbeats, 
which transitioned into an unpowered climb finishing with a rapid 
pitch-up manoeuvre that ended with the body almost vertical and with 
the wings outstretched as the feet contacted the perch (Fig. 1). Climb-
ing was mainly executed by gliding, with occasional ventral excursions 
of the wings that we interpret as corrective control inputs rather than 
as wingbeats supplying thrust to offset drag (Extended Data Fig. 1).

We summarized the geometry of each trajectory by measuring the 
position of its lowest point, having low-pass filtered the bird’s verti-
cal position to remove the body oscillations associated with flapping 
(Methods). We took the trajectory’s lowest point as a proxy for the 
location of the transition from powered dive to unpowered climb (see 
Extended Data Fig. 1 for validation) and used a linear mixed effects 
model to characterize how this location varied with perch spacing 
over all 1,585 flights, excluding 9 outliers with high residual error. The 
relative longitudinal position of the observed transition point (mar-
ginal mean ± standard error (s.e.) at mean perch spacing, 61.3 ± 1.16% 
of perch spacing distance) did not vary significantly in relation to perch 
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spacing distance (regression coefficient ± s.e., −0.139 ± 0.15% m−1; 
t(1,574) = −0.91; P = 0.36). By contrast, the relative depth to which the 
birds dived (marginal mean ± s.e. at mean perch spacing, 3.22 ± 0.51% 
of the perch spacing distance) increased linearly with perch spacing 
distance (regression coefficient ± s.e., 1.06 ± 0.078% m−1; t(1,574) = 13.5; 
P < 0.0001). In each case, the consistency with which different individu-
als adopted qualitatively similar swooping behaviour at different perch 
spacing distances (Fig. 2) suggests that they may have acquired this 
through individual learning optimizing some common performance 
objective. What might this objective function be?

Optimizing the swoop-to-perch manoeuvre
Flying between perches is energetically demanding because of the 
high aerodynamic power requirements of slow flight, and our hawks 
were usually panting visibly by the end of a session. Guided by previous 
work on perching parrotlets7, we theorized that the hawks would have 
learned trajectories minimizing the energetic cost of flying between 
the perches. An alternative hypothesis is that they learned trajectories 
minimizing the time of flight16, which would make sense for a predator 
adapted to exploit fleeting feeding opportunities17 and would also 
maximize the net rate of energy gain when flying at speeds below the 
minimum power speed16. Could optimization of either performance 
objective explain the swooping behaviour that we observed? Diving 
exploits gravity to reach higher speeds more quickly29, so a swooping 
flight path might be expected to reduce flight duration, analogous to 
the brachistochrone problem in which a curved path minimizes the time 
of travel for a particle falling under gravity between two points spaced 
vertically and horizontally30. Diving might also be expected to reduce 
the energy required for flight, by raising the bird’s airspeed closer to 
its minimum power speed29. It therefore seems intuitive that swooping 
could reduce both the energetic cost and time of flight.

We used a simplified flight dynamics model to predict how the birds’ 
performance on these two objectives varied with their behaviour. We 
used a two-phase model of perching, comprising a powered dive switch-
ing to an unpowered glide. For the purposes of the main optimization 
analysis, we constrained the aerodynamic lift and power to be constant 
for each flight phase (see Methods for justification and validation). This 
first-order modelling approach avoids the need to make any detailed 
assumptions on variation in lift and power as well as the need to model 
the flapping wing kinematics explicitly. The resulting model captures 
both the indirect swooping flight behaviour of experienced birds and 
the direct flight behaviour of naive birds. Our simulations incorporated 

inter-individual variation in mass, wingspan, wing area, take-off speed 
and landing speed (Table 1). We modelled aerodynamic drag using a 
theoretical drag polar parameterized with wind tunnel measurements 
from Harris’ hawks31 and determined thrust as the ratio of power to 
airspeed. Aerodynamic ground effect is expected to reduce drag when 
flying over a surface32,33, but the birds only dived close to the ground 
at the perch spacing of 12 m (Fig. 2e) and for so brief a period of time 
that modelling this33 made little difference to the predicted flight tra-
jectory (Extended Data Fig. 2). We therefore ignore ground effect in 
the optimization, which simplifies its implementation considerably.

For a given take-off speed (V0), the model’s powered phase is param-
eterized by its initial dive angle (γ0), constant lift setting (Ldive) and con-
stant power setting (Pdive). The entry conditions for the glide phase are 
given by the transition speed (VT) and the position (xT,yT) of the bird at 
the end of this powered dive phase, such that the constant lift setting 
for the unpowered glide phase (Lglide) is uniquely determined by the 
constraint that the bird must intercept the perch at some given landing 
speed (Vend). Enforcing this constraint with respect to the bird’s mean 
landing speed (Table 1) allowed us to identify a set of feasible parameter 
settings {γ0,Ldive,Pdive} for each bird and each perch spacing distance that 
would bring the bird safely to the perch (Extended Data Fig. 3). For any 
given power setting Pdive, these feasible parameter settings map onto 
a line of feasible transition points {xT,yT} characterizing the full range 
of feasible perching trajectories at that power output (Extended Data 
Fig. 3). We determined the best-fitting power setting separately for each 
bird by minimizing the mean squared distance between the observed 
transition points and the line of feasible transition points (Extended 
Data Fig. 3). This yielded specific power estimates ranging from 18.9 to 
23.2 W kg−1 (Table 1) for the powered dive, which is comfortably below 
the maximum power that Harris’ hawks have available to use when 
climbing34,35.

Swooping does not minimize time or energy
The line of feasible transition points ranges from almost-level flight 
trajectories involving a short powered phase and a long glide phase 
(Fig. 3a–d) through to almost-level flight trajectories involving a long 
powered phase and a short glide phase (Fig. 3e–h); intermediate tran-
sition points are associated with deep swooping trajectories resem-
bling those observed in experienced birds (Fig. 3i–l). For the same dive 
power Pdive, alternative transition points above the line require reverse 
thrust to be added on the glide phase to arrive at the same safe land-
ing speed, whereas points below the line require additional thrust to 
reach the perch. Such alternatives are outside the scope of the model, 
owing to their requirement for positive or negative power on the glide, 
but may be feasible for birds capable of touching down in hover. The 
optimization yields some unexpected findings. First, although diving 
more steeply allows faster speeds to be reached sooner in the powered 
phase as expected, shortening the glide phase proves more effective in 
reducing flight duration. The time-optimal solution therefore involves 
a long, shallow powered dive and a short glide (Fig. 3e–h). Second, 
although the efficiency of lift production is enhanced at faster speeds 
as expected, more energy is needed in a deeper dive because of the 
higher lift required to swoop up to the perch. The energy-optimal solu-
tion therefore involves an almost-level flight trajectory, with a short, 
flat powered phase and a long glide (Fig. 3a–d). It follows that neither 
time nor energy minimization straightforwardly explains the deep 
swooping flight behaviour that our birds acquired, at least not under 
the modelled constraints of constant lift and power.

To verify that this result was not merely an artefact of model reduc-
tion, we compared the time and energy minima predicted assuming 
constant lift and power to the observed and estimated distributions 
of time and energy cost across flights (Fig. 4). To do so, we assessed 
the duration of the observed flights directly and evaluated their ener-
getic cost by using the drag polar to estimate the time history of the 
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Fig. 1 | Schematic of a characteristic swooping trajectory and data 
acquisition. Harris’ hawks were flown between perches in a purpose-built 
motion capture studio, wearing a template of retroreflective markers close to 
the centre of mass (inset; tail markers also shown). Swooping was initiated by a 
take-off jump, followed by a powered dive (yellow line). This transitioned at its 
lowest point (black dot) into an unpowered climb (blue line), finishing with a 
rapid pitch-up manoeuvre that ended with the body almost vertical and with 
the wings outstretched as the feet contacted the perch.
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aerodynamic power output from the time history of the observed flight 
velocity. Apart from confirming the validity of our constant power 
approximation (Fig. 4a), this analysis showed that the time and energy 
that the birds expended when perching were suboptimal when com-
pared with their respective minima under the constraints of constant 
lift and power (Fig. 4b). Hence, although it is plausible that trajectories 
of shorter duration or lower energetic cost might exist given variable 
lift and power, these are not the trajectories that the birds used. We 
conclude that the birds did not shape their flight behaviour to minimize 
either time or energy alone. It is possible in principle that the birds 
jointly optimized time and energy, but, in the absence of any prior 

expectation of what form this trade-off might take, it is reasonable to 
ask whether the birds were optimizing a different kind of performance 
objective altogether. What might this be?

Swooping minimizes stall distance
Minimizing either time or energy under the model requires high lift 
coefficients CL = 2L/(ρV2S) to be sustained in the glide phase, where L 
is lift, ρ is air density, V is airspeed and S is wing area. This is necessary 
to induce the high drag needed to brake with high force in the short 
glide phase minimizing flight time (Fig. 3e–h) and to support body 
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Fig. 2 | Measured swooping trajectories of perching Harris’ hawks.  
a, Ontogeny of 45 flight trajectories recorded at a perch spacing of 12 m during 
the initial familiarization period for juvenile bird ‘Toothless’; earlier flights are 
shown in red, with later flights shown in blue. Note the more direct trajectory 
taken on earlier flights and quick acquisition of a swooping trajectory 

characteristic of experienced birds. b–e, Spatial histograms showing pooled 
trajectory data from n = 1,585 flights for all n = 4 hawks at a perch spacing of 5 m 
(b), 7 m (c), 9 m (d) and 12 m (e); see supporting code (https://doi.org/10.6084/
m9.figshare.16529328). These spatial histograms do not include trajectories 
recorded during the initial familiarization period.

Table 1 | Measurements and model parameters by bird.

Bird Sex Age m (kg) b (m) S (m2) V̄0 (m s−1) V̄end (m s−1) P mˆ /dive  (W kg−1) Vmp (m s−1)

Drogon Male Juv. 0.660 1.01 0.1895 3.9 2.3 23.2 10.2

Rhaegal Male Juv. 0.620 1.02 0.1918 4.0 2.5 18.9 10.8

Ruby Female Adult 0.874 1.08 0.2146 3.9 2.3 22.4 9.8

Toothless Male Juv. 0.738 1.07 0.2098 3.8 2.5 22.7 10.1

Morphological data and summary flight statistics for each bird. Juv., juvenile; m, total mass; b, wingspan; S, wing area; V̄0, mean observed take-off speed; V̄end, mean observed landing speed; 
P mˆ /dive , best-fitting specific power setting; Vmp, estimated minimum power speed in level flight.

https://doi.org/10.6084/m9.figshare.16529328
https://doi.org/10.6084/m9.figshare.16529328


94  |  Nature  |  Vol 607  |  7 July 2022

Article

weight at the low airspeeds sustained in the long glide phase minimiz-
ing energetic cost (Fig. 3a–d). High lift coefficients may be achieved 
transiently during unsteady perching manoeuvres36,37, but stall cannot 
be delayed indefinitely and will compromise control authority when it 
occurs10,12,20,24. We therefore propose that birds aim to minimize the dis-
tance from the perch at which high lift coefficients become necessary 
to complete the glide phase. We tested this hypothesis by identifying 
the transition point that minimized the distance flown at CL > 4. We set 
this threshold lift coefficient high to avoid penalizing the comparably 
high lift coefficients achieved transiently in a rapid pitch-up manoeu-
vre38, but found the resulting solutions to be robust to the selection of 
lower threshold lift coefficients (Extended Data Fig. 4). Exceeding the 

threshold lift coefficient on the glide need not mean that a trajectory 
will fail, but rather that flapping may become necessary to maintain 
control authority after the stall, at a cost that will presumably scale with 
the distance remaining to the perch. This cost could manifest itself in 
several ways, including through (1) the control effort needed to steer 
a trajectory under high aerodynamic load; (2) the energy needed to 
flap the wings to achieve such high loads; and (3) the requirement to 
stabilize gaze against wingbeat oscillations on final approach.

Minimizing the distance flown at CL > 4 produced deep swooping 
trajectories (Fig. 3i–l) resembling those observed in experienced 
birds (Fig. 2b–d), with transition points whose predicted locations 
were statistically indistinguishable from those that we observed 
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Fig. 3 | Optimal perching trajectories minimizing different cost functions 
at different perch spacings. a–l, Thick coloured lines show trajectories 
predicted for the juvenile bird ‘Drogon’ at perch spacing of 5 m, 7 m, 9 m or 12 m 
under the two-phase perching model, comprising a powered dive (yellow line) 
transitioning into an unpowered glide (cyan line), and minimizing energetic 

cost (a–d), flight duration (e–h) or distance flown after the stall (i–l).  
The location of the optimal transition point (black cross) along the line of 
feasible transition points (grey line) is only close to the mean observed 
transition point (black dot) if the stall distance is optimized (i–l); observed 
trajectories are shown as a spatial histogram (lilac shading).
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Fig. 4 | Comparison of observed and modelled flight performance.  
a, Two-dimensional histograms of estimated power (P) over all observed flight 
trajectories, estimated under the drag model given the observed variation in 
flight velocity. Red lines plot the fixed power settings assumed in the main 
optimization analysis, with P = Pdive in the powered dive phase and P = 0 in the 
unpowered glide phase. b, Histograms showing the birds’ observed or 
estimated performance against each of the three objectives of energetic cost, 
time of flight and distance flown after the stall over the trajectories observed at 
each combination of bird identity and perch spacing. Vertical lines indicate the 

corresponding model optima subject to the constraints of constant lift and 
power (red, energy optimal; blue, time optimal; black, stall optimal). Energetic 
cost was evaluated by integrating the positive power required to offset the 
modelled drag between the defined take-off and landing points of the 
observed flight trajectories and is expressed as specific energy relative to body 
mass; time of flight was assessed as the time difference between the defined 
take-off and landing points; and stall distance was defined as the greatest 
distance from the landing point for which CL > 4 in the glide phase (dashed lines 
indicate transitions where the glide phase initiated at CL > 4).
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(linear mixed effects model of deviation from predictions; mean 
longitudinal deviation, −0.52% (95% confidence interval (CI), −2.0%, 
0.97%); mean vertical deviation, 0.41% (95% CI, −0.010%, 0.91%)). The 
close quantitative match of observations and predictions across all 
combinations of perch spacing and bird identity (Fig. 5) is therefore 
consistent with our hypothesis that the hawks learned perching tra-
jectories minimizing stall distance. To verify the robustness of this 
conclusion, we relaxed the model’s constraints of constant lift and 
power by evaluating the distance that the birds would have flown at 
CL > 4 given the time history of their observed flight velocity. In most 
cases, the birds substantially outperformed the model (Fig. 4b),  
which is just as we would expect if they had optimized any actual 
variation in their lift (Extended Data Fig. 5) to maintain lower lift 
coefficients (Extended Data Fig. 6) and to minimize the distance 
flown after the stall.

Conclusions
In summary, our birds learned swooping trajectories that enabled 
them to reach the perch in a glide, by postponing stall until they were 
as close to the perch as possible. This heuristic is expected to be of 
particular importance to larger birds whose power margin prohibits 
hovering9, but may also be relevant to smaller birds that choose to 
swoop rather than to hover when perching. Although this behaviour 
does not necessarily minimize energy consumption (Fig. 4b), it avoids 
any hazardous loss of control authority and may aid visual fixation of 
the perch by avoiding wingbeat perturbations on approach (Extended 
Data Fig. 1). How might this heuristic principle be implemented in 

practice? Learning to minimize stall distance on the fly requires aer-
omechanical information (for example, from feather1,2 or muscle39 
proprioceptors) and distance information (for example, from static 
visual5 or optic flow7,11,40 cues) to be combined. Fly-by-feel concepts41–45 
may therefore prove critical to the learning and control of perching in 
autonomous vehicles. Moreover, it seems likely that our birds would 
have learned the optimized position of the transition point as a virtual 
target for trajectory control, analogous to the ‘entry gate’ approach 
adopted in one recent implementation of autonomous perching18. 
Our findings suggest a heuristic for guiding reinforcement learning of 
autonomous perching, for which the identification of an appropriate 
reward function is critical18.
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Methods

Experimental set-up
We flew n = 4 captive-bred Harris' hawks (Parabuteo unicinctus) between 
two 1.25-m-high A-frame perches positioned 5, 7, 9 or 12 m apart in 
a purpose-built motion capture studio (Fig. 1 and Supplementary 
Video 1). The sample comprised an experienced adult female (age, 
7 years) and three inexperienced juvenile males (ages, ≤0.5 years) 
(Table 1). The sample size was determined in line with related work 
on perching7 and on grounds of practicality (that is, the sample size 
was not predetermined using statistical methods), noting that each 
hawk required housing separately in its own large aviary and could only 
be flown until satiation. The inexperienced birds had only previously 
flown during a brief period of fitness training conducted immediately 
before the experimental trials. The flights were undertaken in a window-
less hall measuring 20.2 m × 6.1 m, with a minimum ceiling height of 
3.8 m and walls hung with camouflage netting to provide visual contrast. 
Flicker-free LED lights provided a mixture of direct 4,000 K lighting 
and indirect 5,000 K lighting at approximately 1,000 lux, designed to 
mimic overcast morning or evening light.

Experimental design
We collected trajectory data over an experimental period comprising 
5–6 weeks of flight testing per bird. Each bird was flown individually 
between the perches, on a variable number of flights of up to approxi-
mately 50 per session. The birds were motivated to fly from the take-off 
perch by the presentation of a small food reward on the landing perch 
and usually responded immediately to this stimulus. The session was 
ended if the bird appeared tired or lacking in motivation, and the birds 
received a larger food reward at the end of the session. The birds were 
initially flown with perch spacing of 8 m to introduce them to the testing 
environment and establish the measurement protocol. Perch spac-
ing was then held at 12 m for approximately 2–3 weeks to allow us to 
identify when the birds’ behaviour had stabilized, before being rand-
omized at 5, 7 or 9 m daily thereafter. All individuals were flown repeat-
edly under all experimental conditions. Blinding the experimenters to 
the test condition was not possible because the experiment involved 
flying each bird between two perches at a fixed spacing distance that 
was varied experimentally. The identity of the bird and the spacing 
of the perches were therefore known to the experimenters and are 
implicit in the resulting data structure, but the physical nature of the 
measurements means that this is unlikely to have biased the results.  
We treated the first 100 flights at a perch spacing of 12 m for each bird as 
an initial familiarization period, by the end of which their flight behav-
iour had stabilized. The flights from this familiarization period are not 
included in the main analysis but are illustrated in Fig. 2a for the bird  
Toothless.

Ethics statement
This work was approved by the Animal Welfare and Ethical Review Board 
of the Department of Zoology, University of Oxford, in accordance 
with university policy on the use of protected animals for scientific 
research, permit no. APA/1/5/ZOO/NASPA, and was considered not to 
pose any significant risk of causing pain, suffering, damage or lasting 
harm to the animals.

Motion capture
We reconstructed the birds’ flight trajectories using a 20-camera 
motion capture system (Vicon Vantage 16, Vicon Motion Systems), 
mounted 3 m above the floor on scaffolding fixed around the walls. The 
motion capture system was turned on at least 1 hour before the start 
of the experiments and was calibrated shortly before the first session 
(Vicon Active Calibration Wand), using Vicon Nexus 2 software for data 
acquisition. The motion capture cameras were set to record at 120 or 
200 Hz under stroboscopic 850-nm infrared illumination, well outside 

the visible spectrum of these birds46, and a set of four high-definition 
video cameras (Vicon Vue) recorded synchronized reference video at 
120 or 100 Hz, respectively. Each hawk was fitted with a rigid marker 
template comprising four 6.4-mm-diameter spherical retroreflective 
markers (Fig. 1) worn on a falconry backpack secured by a pair of Teflon 
ribbons (TrackPack Mounting System, Marshall Radio Telemetry). 
The birds sometimes wore other retroreflective markers carried on 
fittings on the head, wings or tail (Supplementary Video 1), but these 
were not included in the present analysis. A pair of 9.5-mm-diameter 
spherical retroreflective markers was fixed to either end of each perch 
to identify the perch axis.

Marker reconstruction
We used Vicon Nexus 2.7.6 software to reconstruct the positions of 
the markers within the flight volume, using a coordinate system corre-
sponding to the principal axes of the flight hall. We removed any flights 
for which there were long sections of missing data or for which the bird 
did not land at the perch, resulting in a sample of n = 1,585 complete 
flight trajectories suitable for analysis. This comprised n = 649 flights 
recorded at perch spacing of 12 m, n = 324 flights at perch spacing of 
9 m, n = 279 flights at perch spacing of 7 m and n = 333 flights at perch 
spacing of 5 m. The backpack and tail mount markers were usually vis-
ible on >70% of the recorded frames, but, because of a challenging com-
bination of dense marker placement, intermittent marker occlusion 
and high-speed motion, the proprietary marker tracking algorithms 
were not uniformly successful in matching markers between frames. In 
addition, patches of specular reflection sometimes appeared as spuri-
ous markers. Consequently, although the Nexus software reconstructed 
the positions of all visible markers to a high degree of accuracy, it was 
not always able to label each marker reliably or to identify every marker 
on every frame. We therefore wrote a custom script in MATLAB v2018a 
(Mathworks) that analysed the pattern of pairwise distances between 
markers in the rigid templates to label the anonymous markers.

Marker labelling
The anonymous markers were labelled separately for each frame by 
using Procrustes analysis to match any visible markers to the known 
backpack template. We used the centroid of the resulting set of candi-
date backpack markers as an initial estimate of backpack position and 
fitted a quintic spline to interpolate its position on frames with missing 
data. We then used our initial or interpolated estimate of the backpack’s 
position on each frame to define a search volume matched to the size 
of the backpack template and labelled any other markers falling within 
this search volume as candidate backpack markers. This two-stage 
labelling approach was able to accommodate missing markers and 
occasional spurious markers and successfully identified the correct 
number of markers in >80% of all frames in which the backpack mark-
ers were visible. As the backpack sat directly between the scapulars, we 
took the centroid of the candidate backpack markers to approximate 
the position of the bird’s centre of mass and estimated its velocity and 
acceleration by fitting and differentiating the smoothest quintic spline 
function passing through the positions measured on each frame.

Trajectory analysis
The birds’ characteristic swooping behaviour involves a powered 
dive transitioning into an unpowered climb (Fig. 1). Because the birds 
morphed smoothly from flapping to gliding, it was not possible to 
identify a unique point at which this transition occurred with reference 
to the wing kinematics. Instead, we identified the transition as occur-
ring at the lowest point in the bird’s flight trajectory (Supplementary 
Video 1), which we determined having low-pass filtered the trajectory 
to remove body oscillations due to flapping (forwards–backwards fil-
tering implemented using a sixth-order Butterworth filter with a 2-Hz 
cut-off; supporting code). Identifying the transition from powered to 
unpowered flight as the lowest point of the trajectory makes sense from 
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first principles (see ‘Flight dynamics model’ below) and is supported 
empirically by visual inspection of the heave oscillations removed by 
filtering the motion capture data (Extended Data Fig. 1), which confirms 
that these oscillations mainly occur before the transition point.

Take-off and landing
Each flight was initiated by a take-off jump during which the feet 
remained in contact with the perch. This jump ended with a jerk as 
the feet released from the perch, but the noise associated with the 
measured acceleration, particularly during flapping, makes it an unreli-
able marker of the onset of the flight phase. We therefore defined flight 
proper as beginning when the backpack reached a horizontal distance 
of 0.65 m from the take-off perch axis, this threshold distance being 
determined through visual inspection of the angular acceleration traces 
over many flights. The point of contact with the landing perch was 
likewise associated with a pronounced linear and angular acceleration, 
but for similar reasons we define the flight proper as ending when the 
backpack reached a horizontal distance of 0.35 m from the landing 
perch axis. The difference in these two threshold distances relates to 
the fact that the bird’s legs are extended caudad at take-off and ventrad 
at landing. We found that the backpack was located approximately 
0.30 m above the perch at take-off and approximately 0.15 m above 
the perch at landing, which we used to define the initial and terminal 
conditions for the flight dynamics modelling.

Flight dynamics model
We built a simplified flight dynamics model to assess what performance 
objectives were optimized by the birds’ swooping flight trajectories 
(supporting code). From first principles, any flight behaviour that 
begins and ends in a stationary state must minimally involve an accelera-
tion phase followed by a deceleration phase, and, as the perch spacing 
was insufficient for the birds to reach their minimum power speed, it is 
safe to assume that there will have been no intermediate steady flight 
phase. We therefore model perching as a two-phase flight behaviour. 
Gravity will assist both phases in their entirety if the bird dives through-
out the acceleration phase and climbs throughout the deceleration 
phase. For continuity, we therefore assume that the transition between 
the phases occurs in horizontal flight.

A centripetal lift force (L) is necessary to produce the convex trajec-
tory that these assumptions imply, and a tangential drag force (D) is 
assumed to dissipate kinetic energy throughout the flight. The inte-
grated drag losses must be exactly balanced by the bird’s integrated 
aerodynamic power output (P), net of any transfer of gravitational 
potential energy. As a first-order modelling approach, we assume con-
stant power output (P = Pdive) on the acceleration phase and zero power 
output (P = 0) on the deceleration phase, which we thereby treat as a 
glide. Likewise, we assume that the lift force remains constant at a set-
ting (L = Ldive) on the acceleration phase and L = Lglide on the deceleration 
phase. In other words, we assume that lift and power remain constant at 
their mean values for each phase. This represents the simplest possible 
implementation of the physical constraints on the problem, but we relax 
these assumptions later to assess the validity of the model (see below).

The bird’s aerodynamic power output implies a tangential aerody-
namic thrust force T = P⁄V, where V is the bird’s airspeed neglecting any 
induced velocity component. We model the opposing aerodynamic 
drag as
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where ρ = 1.23 kg m−3 is air density and where Sb = 0.00813m2/3 is an 
empirical scaling relationship47 modelling body frontal area Sb as a 

function of body mass m. Here b is wingspan and S is wing area, both 
of which are assumed to be maximal throughout the manoeuvre 
(Table 1). The first term of equation (1) represents the induced drag 
and models how lift production is powered by the kinetic energy of 
the flow past the wings in a form that ensures that this energy cost 
remains bounded at low speeds48. The second term of equation (1) 
represents the contributions of profile and parasite drag31. We mod-
elled the dimensionless induced drag factor k = 1.623 and the profile 
drag coefficient C = 0.003Dpro

 as empirical constants. These were 
fitted by regressing the drag measurements of an empirical glide 
polar for a Harris’ hawk31 against the predictors on the right-hand 
side of equation (1) while holding the parasite drag coefficient fixed 
at an estimated value49 of C = 0.2Dpar . Treating CDpro

 and CDpar
 as con-

stants means that equation (1) does not capture the high profile and 
parasite drag produced at high angles of attack, but the expression 
for the induced drag predicts high drag at high lift coefficients 
CL = 2L/(ρV2S) and can therefore be treated as capturing this effect 
by proxy.

With these assumptions, the rate of change in airspeed and flight 
path elevation angle (γ) can be written using Newton’s second law as
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where g is gravitational acceleration and m is the bird’s mass. We mod-
elled the resulting flight trajectories in lab-fixed Cartesian coordinates 
(x,y) by coupling equations (1) and (2) for V ̇ and ̇γ with the component 
kinematics equations:
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2 2 . We integrated these ordinary differential equations 

numerically using the ode45 solver in MATLAB, which is based on an 
explicit Runge–Kutta (4,5) formula, the Dormand–Prince pair.

Trajectory simulations
We simulated each bird separately to account for inter-individual 
variation in flight morphology (Table 1). We matched the initial speed 
V(0) of the simulations to the mean take-off speed V̄0 observed for each 
bird at the threshold horizontal distance of 0.65 m from the take-off 
perch (Table 1). We treated the initial dive angle γ(0) = γ0 as a free  
parameter γ0 < 0, so the initial conditions for integrating equation (3) 
were V V γ= ¯ cosx 0 0  and V V γ= ¯ siny 0 0  with x(0) = 0.65 m, y(0) = 1.55 m. 
Coupling equations (1) and (2) with equation (3), any given combination 
of parameter settings {γ0,Ldive,Pdive} defines a unique powered dive  
trajectory. A subset of these powered dive trajectories pass through 
the horizontal, in the sense of having a point (xT,yT) where Vy = 0 with 
VT = Vx > 0, which is satisfied when Ldive > mg cos γ0 (equation (2b)).  
This represents the set of reachable combinations of position and speed 
at which the transition from powered dive to unpowered glide can 
occur in horizontal flight under the model.



The initial conditions for the glide phase are given by the position 
(xT,yT) and velocity (VT,0) of the bird at this transition point. The cor-
responding parameter settings {γ0,Ldive,Pdive} for the powered dive 
phase therefore define a family of possible flight trajectories for the 
glide phase, which is in turn parameterized by its own constant lift 
setting (L = Lglide). Hence, for any given combination of parameter 
settings {γ0,Ldive,Pdive}, we are left to solve for the unique value of Lglide 
that produces a trajectory intercepting the point of contact with the 
landing perch at x = s − 0.35 m and y = 1.40 m, where s is the perch 
spacing. In practice, there are only certain combinations of param-
eter settings {γ0,Ldive,Pdive} that will bring the simulated bird to the 
landing perch at a realistic speed. It therefore proved most efficient 
to solve the glide phase backwards in time from the point of contact 
with the landing perch and to match the solutions for the two flight 
phases at the transition point (supporting code). We fixed the initial 
speed of this backwards simulation of the glide phase to the mean 
landing speed V̄end observed for each at the threshold horizontal dis-
tance of 0.35 m from the landing perch (Table 1). For the purposes of 
finding matching solutions, we treated both the flight path angle at 
the point of contact (γend) and the constant lift setting for the glide 
phase (Lglide) as free parameters. These parameters {γend,Lglide} then 
become fixed for a given combination of parameter settings 
{γ0,Ldive,Pdive} once the matching solution for the powered dive phase 
is found.

Feasible trajectory search
We define feasible trajectories under the model as those that bring 
an individual bird to its landing perch at the same mean speed and 
position as we observed in the experiments. For any given constant 
power setting Pdive, this constraint defines a line of feasible transi-
tion points corresponding to a line of feasible parameter settings 
{γ0,Ldive}. We implemented the search for feasible transition points as 
a constrained minimization problem solved using an interior-point 
algorithm in MATLAB 2020a. For a given constant power setting Pdive, 
we constrained the difference in transition point position (xT,yT) 
and velocity (VT,0) between the end of the powered dive phase and 
start of the unpowered glide phase to be zero and solved for the 
parameter settings {γ0,Ldive} and {γend,Lglide} that would have placed the 
transition point at the landing perch. We then took these parameter 
settings as initial values when solving for the parameter settings that 
would have caused the transition point to be placed a small increment 
ahead of the perch, which we set as the target of the minimization. 
We repeated this process to place the transition point another small 
increment in distance ahead of the perch, inheriting the parameter 
settings of the previous solution as initial values for the next round 
until the complete line of feasible transition points had been found 
(Extended Data Fig. 3). Other transition points falling close to this 
line could also be physically feasible in the sense of bringing the 
bird to the landing perch, but these will be associated with higher or 
lower speeds than those observed at the point of contact. Finally, we 
determined the constant power setting Pdive for each bird by finding 
the value that minimized the mean squared distance between the 
observed transition points and the line of feasible transition points 
(Extended Data Fig. 3).

Trajectory optimization
The unique mapping that exists between the parameter settings 
{γ0,Ldive,Pdive} and the transition point {xT,yT,VT} for each bird means 
that any property of a given flight trajectory is also a property of its 
transition point. This includes the duration (τ) and energetic cost (E) 
of the flight and the distance flown after the stall (dstall), each of which 
may be considered a candidate objective function for minimization. 
We identified the optimal transition point at which each of these 
objectives was minimized by a direct search along the line of feasi-
ble transition points. Under the two-phase model of perching, the 

duration of a flight trajectory is implicit in its solution as τ = τdive + τglide. 
Minimizing the total flight duration τ therefore entails jointly minimiz-
ing the duration of the powered dive phase τdive and unpowered glide 
phase τglide. By contrast, given the constant power assumption, the 
energetic cost of a flight trajectory is simply E = Pdiveτdive, so, for a given 
constant power setting Pdive, minimizing the energetic cost of the flight 
is equivalent to minimizing the duration of the powered dive phase 
τdive alone. Wing stall is a complex phenomenon, so we did not model 
its effects directly. However, because lift varies as L = ρV2SCL/2, stall is 
implicit in the very high values of the lift coefficient CL that are needed 
to meet the constant lift requirement (L = Lglide) at the low speeds V 
reached as the bird decelerates on approach to the perch. Minimiz-
ing the distance flown after the stall therefore amounts to penalizing 
flight at values of CL exceeding some specified threshold, which we 
implemented by minimizing the distance flown at CL > 4. In practice, 
the predicted location of the optimal transition point was robust to 
this choice of threshold, moving ≤1.5% of perch spacing distance per 
unit decrement in the threshold value of CL (Extended Data Fig. 4).

Model validation
Our modelling makes considerable simplifications with respect to 
the real-world flight dynamics and control inputs, by treating the bird 
as a point mass and constraining lift, thrust and drag production in 
particular ways (see ‘Flight dynamics model’ above). We make these 
simplifications because we aim for a generalized parameterization that 
appropriately captures fundamental properties of the observed flights 
while allowing us to assess performance against the different objective 
functions even outside of the observed range of flight behaviour. In so 
doing, we ignore the complications of flapping flight dynamics, which 
would result in non-monotonic accelerations and reduced propulsive 
and aerodynamic efficiency. Nevertheless, by low-pass filtering the 
motion capture data, we already observe flight performance smoothed 
across wingbeats, and, by adjusting the model’s constant power setting 
to best match our observations, we implicitly calibrate the unknown 
reductions in propulsive and aerodynamic efficiency.

The model bird has limited control options compared with a real 
bird, with lift and power assumed to be held constant on each flight 
phase in the main optimization analysis. We tested the validity of these 
assumptions by estimating the actual variation in lift and power for 
the observed flight trajectories. We used central differencing of the 
filtered trajectories to estimate the time history of velocity and accel-
eration for each flight. After subtracting gravity from the estimated 
acceleration, we decomposed the acceleration into its centripetal and 
tangential aerodynamic components corresponding to lift and net 
thrust-drag, respectively. We then used equation (1) to estimate the 
drag for each time instant and solved for the power from the observed 
tangential acceleration (equation (2a)). We found that the estimated 
power output remained approximately constant during the powered 
dive phase, closely matching the power settings that we had fitted to 
the observed transition points for each bird (Fig. 4a). The negative 
power estimate at the end of the glide phase suggests a deficiency in 
the model’s drag prediction at high angles of attack, but the near-zero 
power predicted over most of the glide phase on the longer flights 
confirms that the model performs as intended at lower angles of attack. 
For the purposes of evaluating the total energetic cost of each flight, we 
integrated only the positive power contributions between the defined 
points of contact.

We found that the lift did not remain constant as our simplified 
model assumes, ramping up quickly after take-off and dropping sharply 
before landing; between these points, the lift increased more gradu-
ally (Extended Data Fig. 5). Because of this variation in lift production, 
the estimated lift coefficients remain below the default threshold lift 
coefficient for most of the flight, with CL < 4 for much of the glide phase 
(Extended Data Fig. 6). Notwithstanding this actual variation in lift 
within a flight, both the overall depth of the trajectory and the total 
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induced drag cost depend predominantly and unambiguously on 
the mean lift. By varying the lift within each flight phase, a bird could 
only subtly outperform our simplified model, whereas implement-
ing this variation in the optimization would increase the dimension 
of the parameter space and would require the introduction of more 
speculative assumptions.

Statistical analysis
We modelled the longitudinal and vertical position of the observed 
transition points as a proportion of perch spacing distance using a 
linear mixed effects model (fit1me) in MATLAB 2020a. We treated the 
mean centred perch distance as a covariate and individual as a random 
effect, such that RelativePosition ~ 1 + MeanCentredPerchDistance +  
(1 + MeanCentredPerchDistance|BirdID), using two-tailed P values 
for statistical inference. The model for relative longitudinal position 
identified 9 of the 1,585 observed transition points as outliers, with 
residuals more than three times the residual standard deviation. 
Two of these outliers were attributable to motion capture error; 
the remainder corresponded to non-swooping flight behaviours 
(7 flights) and/or trajectories at perch spacing of 5 m for which the 
transition occurred at a local rather than global minimum in height 
(3 flights). As these outliers are unrepresentative of the swooping 
behaviour analysed in this paper, we excluded them from this and 
subsequent analyses, leaving a slightly smaller sample of 1,576 flights  
(supporting code).

To test how well the flight dynamics model predicted the observed 
transition points, we fitted the longitudinal and vertical distances 
between the predicted optima and the observed transition points 
using a linear mixed effects model. We treated the combination of 
perch distance and individual as a random effect to account for  
the single prediction for each experimental condition, such that  
Distance ~ 1 + (1|PerchDistance:BirdID). In this model, a significant 
intercept indicates a systematic deviation between the observed 
and predicted transition points. We computed the sample mean 
and covariance matrix of the longitudinal and vertical position of 
the observed transition points at every combination of individual 
identity and perch distance and generated the percentiles of the  
corresponding bivariate normal distribution by computing their 
squared Mahalanobis distance from the mean using the chi-squared 
distribution on 2 degrees of freedom.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The motion capture data that support the findings of this study are 
available in figshare with the identifier https://doi.org/10.6084/
m9.figshare.16529328.

Code availability
Custom algorithms and a published summary of the analysis code 
are available in figshare with the identifier https://doi.org/10.6084/
m9.figshare.16529328. 
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Extended Data Fig. 1 | Plot of body heave oscillations removed by lowpass 
filtering. Two-dimensional histogram of vertical heave oscillations removed 
by lowpass filtering the body trajectory against longitudinal distance from the 
lowest point of the filtered trajectory. The orange line shows the associated 

mean specific power as shown in Fig. 4 of the main text. While some wing 
motion occurs beyond the observed transition points, the power – and hence 
the thrust – tends to be substantially reduced.
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Extended Data Fig. 2 | Impact of ground effect on the line of feasible 
transition points. We assessed the impact of ground effect by re-evaluating 
the powered dive phase (red) and unpowered glide phase (blue) with an 
aerodynamic model of ground effect33 included for the same set of feasible 
parameter settings as we had identified previously without ground effect 
(black). Whereas the powered dive transitions smoothly into the unpowered 
glide for the original solutions without ground effect (black), the introduction 
of ground effect without any changes to the model parameters necessarily 
results in a small mismatch between the two flight phases. The extent of this 
mismatch is shown by the arrows plotting the change in position of the 
transition point predicted at the end of the powered dive (red arrows) and the 
start of the unpowered glide (blue arrows) for trajectories satisfying the 
take-off and landing constraints. The effect, shown here for the bird “Drogon”, 
is marginal; the enlarged inset shows the effect on transition points close to the 
ground at 12 m perch spacing for which the impact of ground effect is greatest.
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Extended Data Fig. 3 | Flow diagram summarising the key steps in model 
optimization. We begin with a parameter search to find combinations of 
parameter values {γend,Lglide} and {γ0,Ldive,} for which the end of the powered 
phase matches the start of the unpowered phase at a given power setting (Pdive). 
This search defines the set of feasible transition points for that power setting, 
and is done separately for each combination of perch spacing and bird identity. 
We then calibrate the power setting for each bird separately over all perch 

distances, such that the distance between the observed transition points and 
the respective line of feasible transition points is minimized. Finally, we map 
the relevant properties of these feasible trajectories onto the line of feasible 
transition points as a function of the position along this line (s), and identify the 
optimal location of the transition point that minimizes each of the performance 
objectives (i.e. energy expenditure E, time of flight τ, and stall distance dstall).
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Extended Data Fig. 4 | Effect of lift coefficient threshold on location of 
transition points minimizing distance flown post-stall. In the main text,  
the location of the stall-optimal transition point is determined by minimizing 
the distance flown at lift coefficients CL > 4. Decreasing this penalty threshold 
causes the optimum to move closer to the landing perch along the line of 
feasible transition points, eventually reaching a point of minimum distance 
from the landing perch at some specific decrement ∆CL, depending on 
individual bird and perch spacing. We quantified the sensitivity of the solution 
to the choice of penalty threshold by expressing the maximal displacement of 
the optimal transition point along the line of feasible transitions points relative 
to the corresponding decrement in penalty threshold ∆CL. The points for each 
bird represent 5 m, 7 m, 9 m, and 12 m perch spacing, and the displacement of 
the optimal transition point is normalized by perch spacing distance. Note the 
robustness of the location of the stall-optimal transition point to the choice of 
penalty threshold (displacement sensitivity < 1.5% of perch spacing distance 
per unit decrement in the penalty threshold value of CL).
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Extended Data Fig. 5 | Estimated variation in lift over the observed flight 
trajectories. Two-dimensional histogram of the variation in the load factor 
L mg/( ) estimated for the observed flight trajectories given their observed 

variation in flight velocity. Note how the lift ramps up quickly after take-off, 
and drops sharply before landing; between these points, the lift increases 
gradually.
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Extended Data Fig. 6 | Estimated variation in lift coefficient over the 
observed flight trajectories. Two-dimensional histogram of the variation in the 
lift coefficient CL estimated for the observed flight trajectories given their 
observed variation in flight velocity. Note how the lift coefficient increases 

quickly from around zero at take-off to reach a local maximum close to the 
starting perch. A second local maximum (3 < CL < 5) occurs shortly before contact 
with the landing perch. The further increases in estimated lift coefficient seen at 
the end of the recording window are presumably an artefact of contact forces.
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