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ABSTRACT

The mammalian cleavage factor I (CFIm) has been
implicated in alternative polyadenylation (APA) in a
broad range of contexts, from cancers to learning
deficits and parasite infections. To determine how
the CFIm expression levels are translated into these
diverse phenotypes, we carried out a multi-omics
analysis of cell lines in which the CFIm25 (NUDT21)
or CFIm68 (CPSF6) subunits were either repressed
by siRNA-mediated knockdown or over-expressed
from stably integrated constructs. We established
that >800 genes undergo coherent APA in response
to changes in CFIm levels, and they cluster in distinct
functional classes related to protein metabolism. The
activity of the ERK pathway traces the CFIm concen-
tration, and explains some of the fluctuations in cell
growth and metabolism that are observed upon CFIm
perturbations. Furthermore, multiple transcripts en-
coding proteins from the miRNA pathway are targets
of CFIm-dependent APA. This leads to an increased
biogenesis and repressive activity of miRNAs at the
same time as some 3′ UTRs become shorter and pre-
sumably less sensitive to miRNA-mediated repres-
sion. Our study provides a first systematic assess-
ment of a core set of APA targets that respond co-
herently to changes in CFIm protein subunit levels
(CFIm25/CFIm68). We describe the elicited signaling
pathways downstream of CFIm, which improve our
understanding of the key role of CFIm in integrating
RNA processing with other cellular activities.

INTRODUCTION

Most human genes have multiple sites where pre-mRNA 3′
end processing can occur to generate alternative transcript

isoforms in different cell types and conditions (1). Alterna-
tive polyadenylation is a main contributor to the observed
transcriptome diversity (2–5). Consistently, data from The
Cancer Genome Atlas (TCGA) indicate that APA holds the
highest prognostic value among all types of isoform varia-
tion in hepatocellular carcinoma (6).

A large class of APA isoforms are those that differ in the
length of their 3′ untranslated regions (3′ UTRs). Mam-
malian cleavage factor I, a 3′ end processing complex con-
served in multicellular organisms but absent from yeast
(7), is one of the main regulators of 3′ UTR length (8–
10). A CFIm tetramer composed of two 25 kDa subunits
(CFIm25/CPSF5/NUDT21) and two larger subunits of 59
and/or 68 kDa (CFIm59/CPSF7 and CFIm68/CPSF6) as-
sociates with the RNA polymerase II (RNAPII) in the ini-
tial stages of transcription (11). Crosslinking and immuno-
precipitation revealed that within individual genes, the most
prominent peaks of CFIm binding are located in the vicin-
ity of those poly(A) sites (PAS) that are ultimately used for
the maturation of the messenger RNA (mRNA), indicating
that the interaction of CFIm with high-affinity target sites
promotes the 3′ end cleavage (9). These interaction sites are
typically located distally in 3′ UTRs, in regions enriched
in UGUA motifs (9,12). The Fip1 3′ end processing fac-
tor stabilizes the interactions of CFIm with the RNA (12),
while the ubiquitination of the PCF11 component of the 3′
end processing complex by an ectopically activated MAGE-
A11 ubiquitin ligase in cancer leads to the dissociation of
CFIm25 from the complex (13).

The depletion of CFIm25 or CFIm68 subunits of CFIm
leads to systematically shortened 3′ UTRs (9,10), whereas
CFIm59 does not seem to impact the 3′ UTR length
(9,14). The number of reported targets varies between tens
to over a thousand among studies (9,10,15,16). The phe-
notypes observed upon perturbation of CFIm expression
have been attributed to growth regulators in glioblastoma
(15), chromatin-regulatory factors in somatic cell repro-
gramming (16), and metabolic enzymes in the activation
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of hematopoietic stem cells (17). While CFIm has emerged
as an important regulator of cell fate decisions in normal
and pathological contexts, its involvement in cancers is not
fully understood (13,18). Reduced CFIm expression was re-
ported to increase cell proliferation and promote glioblas-
toma and hepatocellular carcinoma formation (15,19,20),
while opposite effects, reduced proliferation and increased
apoptosis, have been reported in K562 leukemia cells (21).

To better understand how cells respond to the perva-
sive remodeling of the RNA pool that follows fluctua-
tions in CFIm levels, we carried out a multi-omics char-
acterization of HEK293 cells in which the CFIm25 and
CFIm68 components of the CFIm complex were either
stably overexpressed, or transiently repressed via siRNA-
mediated knockdown. We demonstrate that hundreds of
transcripts undergo reciprocal changes in 3′ UTR length
in the knockdown (KD) and overexpression (OE) condi-
tions, changes that are also very consistent between per-
turbations of CFIm25 and CFIm68. These targets clus-
ter in specific cellular pathways, including stress signaling,
cell cycle, RNA processing and miRNA-mediated repres-
sion. Many kinase-encoding transcripts undergo CFIm-
dependent APA, which led us to globally estimate the
changes in kinase activities upon CFIm perturbations
from phosphoproteome measurements. Among the kinases
whose activity changes we validate here, the stress-related
ERK directly traces the CFIm expression, leading to ex-
pected changes in cell metabolism and growth. Specif-
ically, real time growth estimates revealed that the ec-
topic expression of CFIm subunits promotes cellular pro-
liferation, while the siRNA-mediated knockdown reduces
growth in multiple cell lines. By regulating the processing
of transcripts encoding miRNA pathway proteins, CFIm
also modulates the miRNA activity. Interestingly, while the
CFIm knockdown results in transcripts with shortened 3′
UTRs that can escape miRNA-dependent regulation, it also
activates the biogenesis of miRNAs and their repressive ac-
tivity on reporter constructs. Our study thus identifies key
signaling pathways downstream of CFIm, explaining the
impact of this 3′ end processing factor on fundamental cel-
lular processes such as metabolism and growth.

MATERIALS AND METHODS

Cell culture, transfections, treatments and common reagents

For most experiments, wild type HEK293 cells were cul-
tured as described before (22). For the overexpression
of CFIm25 and CFIm68, the cDNAs were cloned into
pcDNA5/FRT from Invitrogen. These were then stably in-
tegrated in the Flp-in recombination site of HEK293 cells
(Flp-In™-293 Cell Line #R75007, Invitrogen). For RNAi,
HEK293 cells were seeded at a density of 20% in six-
well plates and all subsequent steps were done accord-
ing to the “forward method” from the RNAiMAX pro-
tocol (Invitrogen). Following a 48 hr incubation, double-
stranded siRNAs (starting from 30 pmol, from Dharma-
con and Microsynth) were incubated with Lipofectamine
RNAiMAX (Invitrogen) and added to the wells. Cells
were harvested after 72 hours for further analysis. West-
ern blotting was performed as described earlier (22). The
HRP-labelled secondary antibodies were developed with

SuperSignal™ West Pico PLUS Chemiluminescent Sub-
strate (ThermoFisher Scientific #34580) or with SuperSig-
nal™ West Femto Maximum Sensitivity Substrate (Ther-
moFisher Scientific #34095). LICOR IR680/800nm dye-
labelled secondary antibodies were used for multiplexing
several antibodies on the same membrane. All western
blot images were documented with Azure c600 Gel docu-
mentation system equipped with a 8.3 MP CCD camera.
Western blot quantifications were performed using the Im-
ageJ software by quantifying the pixels of each band and
normalizing against a housekeeping control. For compar-
ison between conditions, all samples were normalised to
the average levels of the corresponding control samples.
Note that the loading control proteins (GAPDH/ACTIN)
are shown multiple times in several figures, whenever a
single membrane was re-utilised for staining of multiple
candidates. Detailed information regarding antibodies and
primers/oligos used for the study are listed in Supplemen-
tary Data.

Transcriptome profiling with poly(A)-enriched mRNA-seq

Total RNA was quality-checked on a Bioanalyser instru-
ment (Agilent Technologies, Santa Clara, CA, USA) using
the RNA 6000 Nano Chip (Agilent, Cat# 5067–1511) and
quantified by spectrophotometry using a NanoDrop ND-
1000 Instrument (NanoDrop Technologies, Wilmington,
DE, USA). 1�g total RNA was used for library preparation
with the TruSeq Stranded mRNA Library Prep Kit High
Throughput (Cat# RS-122-2103, Illumina, San Diego, CA,
USA). Libraries were quality-checked on the Fragment
Analyser (Advanced Analytical, Ames, IA, USA) using the
Standard Sensitivity NGS Fragment Analysis Kit (Cat#
DNF-473, Advanced Analytical). The average concentra-
tion was 128 ± 12 nmol/l. Samples were pooled in equal
molarity. Each pool was quantified by PicoGreen fluoro-
metric measurement to be adjusted to 1.8 pM and used for
clustering on a NextSeq 500 instrument (Illumina). Samples
were sequenced using a NextSeq 500 High Output Kit 75-
cycles (Illumina, Cat# FC-404-1005). Primary data analysis
was performed with the Illumina RTA version 2.4.11 and
base calling software version bcl2fastq-2.20.0.422.

Quantification of gene expression by poly(A)-enriched
mRNA-seq

Human protein-coding and lincRNA genes from the En-
sembl (23) release 90 annotation were stringently filtered
for transcripts whose splice junctions ‘are supported by at
least one non-suspect mRNA’ (Ensembl transcript support
level 1). To minimize the chance of erroneous estimates of
gene expression due to large changes in transcript length by
3′ UTR shortening the 3′-terminal exons of each transcript
were discarded. Then, for every gene, we identified those re-
gions that are annotated as belonging to an exon in all of
the retained transcripts of that gene. Raw sequencing data
in FASTQ format were processed with standard tools: cu-
tadapt (version 1.16) (24) to remove adapters and poly(A)-
tails from the reads, and STAR aligner (version 2.7.1a) (25)
to map resulting fragments to the genome (assembly version
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GRCh38 with splice junction annotations derived from En-
sembl release 90). The alignments were sorted and indexed
with SAMtools (version 1.10) (26) and later used for plot-
ting coverage profiles of distinct gene loci in RNA-seq sam-
ples with the Gviz R package (version 1.28.0; R software
version 3.6.0) (27). For every gene, all reads with a single
best reported alignment (‘unique mappers’) whose align-
ment start positions overlapped with any of the exclusively
‘exonic’ regions of that gene, prepared as described above,
were summed up. The resulting gene count tables for each
sequencing library were used as input for differential gene
expression analyses with the edgeR (28) package (version
3.34.0; R version 4.1.0). First, genes with low counts were
discarded by applying edgeR’s filterByExpr() func-
tion with default parameters across samples of all condi-
tions to ensure that the same genes would be called for
each comparison. Then, differentially expressed genes were
identified in a pairwise manner between treated and con-
trol (‘wild type’) libraries, by applying the calcNormFac-
tors(), estimateDisp(), exactTest() and top-
Tags() functions with default parameters, yielding fold
changes (log2) and corresponding P values and Benjamini-
Hochberg-corrected (29) false discovery rates for every gene
and for each comparison. The scripts used for this analysis
are available from the github repository https://github.com/
zavolanlab/CFI2021.

Quantification of relative PAS expression and average rela-
tive terminal exon lengths from poly(A)-enriched RNA-seq
data

To quantify the relative usage of distinct poly(A) sites we
applied the PAQR tool (30). The values were aggregated
at the level of individual terminal exons to obtain the pro-
portion of transcripts ending at individual positions in in-
dividual terminal exons. From these values we calculated a
weighted average relative terminal exon length as the sum
over all 3′ ends in the terminal exon, relative usage of the
3′ end multiplied by the length of the terminal exon ending
at the respective site. We obtained quantification for 1′750
terminal exons with multiple poly(A) sites. The PAQR code
is available from https://github.com/zavolanlab/PAQR2 and
the source code for target identification and analysis from
https://github.com/zavolanlab/CFI2021.

Quantification of relative PAS expression and average rela-
tive terminal exon lengths from 3′ end sequencing data

To identify targets of CFIm-mediated 3′ end processing
based on 3′ end sequencing data, we used poly(A) site quan-
tifications in relevant cellular systems from the PolyASite
database (31). Briefly, this database contains 3′ end sequenc-
ing data from control and CFIm25/CFIm68-depleted
HEK293 cells as well as control and CFIm25/CFIm68-
depleted HeLa cells, both obtained with the A-seq method
for 3′ end sequencing (32). PolyASite also contains data
for HeLa control and CFIm68-depleted samples, gener-
ated with the PAPERCLIP method for 3′ end sequencing
(33). Based on the ENSEMBL90 gene annotation, we ex-
tracted all annotated terminal exons, intersected the quan-
tified poly(A) sites from the PolyASite database in the sam-

ples mentioned above, and then carried out the terminal
exon length calculation as described in the previous section.

Selection of CFIm targets

We applied Principal Component Analysis (PCA) to per-
sample average terminal exon lengths and calculated the
projection on, as well as correlation of each terminal exon
(treated as a vector in the space of samples) with princi-
pal component 1. We then selected those transcripts and
genes whose exons exhibited higher than 0.9 correlation and
higher than 10 projection scores (both in absolute values) as
CFI targets. Almost all (855 of 858) of the transcripts un-
derwent 3′ UTR shortening upon CFIm KD. These were
the focus of our study.

Selection of CFIm targets from 3′ end sequencing datasets

We applied a similar analysis to the terminal exon data from
the 3′ end sequencing experiments mentioned above. The
threshold on the correlation value was set such as to obtain
a number of targets similar to that obtained from RNA-
seq data. Specifically, the thresholds were 0.9 for HEK293
A-seq data, 0.8 for HeLa A-seq data and 0.95 for HeLa PA-
PERCLIP data. This yielded 867, 879, and 1071 target tran-
scripts, respectively, for the three datasets.

UGUA frequency analysis

Terminal exons with exactly two poly(A) sites quantified by
PAQR were used for the motif frequency analysis. First, we
extracted sequences of 401 nucleotides (200 on each side of
the PAS) from both proximal and distal PAS in each TE. We
traversed each sequence recording the presence/absence of
the UGUA motif at each position and then tabulated the
counts at each position across all sites. These were plotted
using a running average of 30 nucleotides, sliding by 1 nu-
cleotide at a time.

Frequency analysis of UGUA motifs in genes from specific
functional categories

From the genes whose terminal exon lengths we quantified
with PAQR, we extracted those that were annotated with
the Gene Ontology terms ‘Cellular Response to Stress’ and
‘Protein Transport’ (according to the STRING server (34)).
We then separated these sets into CFIm targets and non-
targets, and then carried out the UGUA motif analysis as
described in the previous section.

Global proteome and phosphoproteome analysis by shotgun
LC-MS

For each sample, 5 × 106 cells were washed twice with ice-
cold 1x phosphate-buffered saline (PBS) and lysed in 100
�l urea lysis buffer (8 M urea (AppliChem), 0.1 M Ammo-
nium Bicarbonate (Sigma), 1x PhosSTOP (Roche)). Sam-
ples were vortexed, sonicated at 4◦C (Hielscher), shaken
for 5 min on a thermomixer (Eppendorf) at room temper-
ature and centrifuged for 20 min at 4◦C full speed. Super-
natants were collected and protein concentration was mea-
sured with BCA Protein Assay kit (Invitrogen). Per sample,
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a total of 300 �g of protein mass was reduced with tris(2-
carboxyethyl)phosphine (TCEP) at a final concentration of
10 mM at 37◦C for 1 hour, alkylated with 20 mM chloroac-
etamide (CAM, Sigma) at 37◦C for 30 min and incubated
for 4 h with Lys-C endopeptidase (1:200 w/w). After di-
luting samples with 0.1 M ammonium bicarbonate to a fi-
nal urea concentration of 1.6 M, proteins were further di-
gested overnight at 37◦C with sequencing-grade modified
trypsin (Promega) at a protein-to-enzyme ratio of 50:1. Sub-
sequently, peptides were desalted on a C18 Sep-Pak car-
tridge (VAC 3cc, 500 mg, Waters) according to the manu-
facturer’s instructions, split in peptide aliquots of 200 and
25 �g, dried under vacuum and stored at −80◦C until fur-
ther use.

For proteome profiling, sample aliquots containing 25
�g of dried peptides were subsequently labeled with an iso-
baric tag (TMT 10-plex, Thermo Fisher Scientific) follow-
ing a recently established protocol (35). To control for ra-
tio distortion during quantification, a peptide calibration
mixture consisting of six digested standard proteins mixed
in different amounts were added to each sample before
TMT labeling. After pooling the TMT labeled peptide sam-
ples, peptides were again desalted on C18 reversed-phase
spin columns according to the manufacturer’s instructions
(Macrospin, Harvard Apparatus) and dried under vacuum.
TMT-labeled peptides were fractionated by high-pH re-
versed phase separation using a XBridge Peptide BEH C18
column (3,5 �m, 130 Å, 1 mm × 150 mm, Waters) on an
Agilent 1260 Infinity HPLC system. Peptides were loaded
on column in buffer A (ammonium formate (20 mM, pH
10) in water) and eluted using a two-step linear gradient
starting from 2% to 10% in 5 min and then to 50% (v/v)
buffer B (90% acetonitrile / 10% ammonium formate (20
mM, pH 10) over 55 min at a flow rate of 42 �l/min. Elu-
tion of peptides was monitored with a UV detector (215 nm,
254 nm). A total of 36 fractions were collected, pooled into
12 fractions using a post-concatenation strategy as previ-
ously described (36), dried under vacuum and subjected to
LC–MS/MS analysis.

For phosphoproteome profiling, sample aliquots con-
taining 200 �g of dried peptides were subjected to phospho-
peptide enrichment using IMAC cartridges and a BRAVO
AssayMAP liquid handling platform (Agilent) as recently
described (37).

The setup of the �RPLC-MS system was described pre-
viously (35). Chromatographic separation of peptides was
carried out using an EASY nano-LC 1000 system (Thermo
Fisher Scientific), equipped with a heated RP-HPLC col-
umn (75 �m × 30 cm) packed in-house with 1.9 �m C18
resin (Reprosil-AQ Pur, Dr. Maisch). Aliquots of 1 �g total
peptides were analysed per LC×MS/MS run using a linear
gradient ranging from 95% solvent A (0.15% formic acid,
2% acetonitrile) and 5% solvent B (98% acetonitrile, 2%
water, 0.15% formic acid) to 30% solvent B over 90 min-
utes at a flow rate of 200 nl/min. Mass spectrometry anal-
ysis was performed on a Q-Exactive HF mass spectrometer
equipped with a nanoelectrospray ion source (both Thermo
Fisher Scientific) and a custom made column heater set to
60◦C. 3E6 ions were collected for MS1 scans for no >100
ms and analysed at a resolution of 120 000 FWHM (at 200
m/z). MS2 scans were acquired of the 10 most intense pre-

cursor ions at a target setting of 100 000 ions, accumulation
time of 50 ms, isolation window of 1.1 Th and at resolution
of 30 000 FWHM (at 200 m/z) using a normalized colli-
sion energy of 35%. For phosphopeptide enriched samples,
the isolation window was set to 1.4 Th and a normalized
collision energy of 28% was applied. Total cycle time was
∼1–2 s.

For proteome profiling, the raw data files were processed
using the Mascot and Scaffold software and TMT reporter
ion intensities were extracted. Phosphopeptide enriched
samples were analysed by label-free quantification. There-
fore, the acquired raw-files were imported into the Progene-
sis QI software (v2.0, Nonlinear Dynamics Limited), which
was used to extract peptide precursor ion intensities across
all samples applying the default parameters.

Quantitative analysis results from label-free and TMT
quantification were further processed using the SafeQuant
R package v.2.3.2. (https://github.com/eahrne/SafeQuant/)
to obtain protein relative abundances. This analysis in-
cluded global data normalization by equalizing the to-
tal peak/reporter areas across all LC–MS runs, summa-
tion of peak areas per protein and LC–MS/MS run, fol-
lowed by calculation of protein abundance ratios. Only
isoform specific peptide ion signals were considered for
quantification. The summarized protein expression values
were used for statistical testing of differences in expression
of abundant proteins between conditions. Here, empirical
Bayes moderated t-tests were applied, as implemented in the
limma package (http://bioconductor.org/packages/release/
bioc/html/limma.html) of R/Bioconductor. The resulting
per protein and condition comparison P-values were ad-
justed for multiple testing using the Benjamini–Hochberg
method.

Inference of kinase activity from phosphoproteome data

We used the Kinase Set Enrichment Analysis (KSEA) as de-
scribed by Hernandez-Armenta et al. (38) and implemented
in the R-package KSEA (https://github.com/evocellnet/
ksea) to predict the kinase activity changes across condi-
tions. The software takes as input the log2 fold-change in
intensity of each phosphopeptide between two conditions,
as well as kinase-substrate associations. It then determines
whether the substrates of any of the kinases are enriched
among the phosphopeptides with the largest change be-
tween conditions, and reports the −log10 of the P-value as
a proxy of kinase regulatory activity (38). As only ∼6% of
the quantified phosphopeptides in our data set have associ-
ated kinases in the PhosphoSitePlus database (39), we used
weight matrix models of kinase substrate specificity to pre-
dict further associations as follows. Considering all of the
peptide sequences Si obtained in an experiment, the likeli-
hood of a sequence Si to have a binding site for a kinase k
can be written as:

P(Si |k) =
li −lk∑

j = 0

P(Si [0.. j − 1]|B)P(Si [ j.. j + lk − 1]|Wk)

×P(Si [ j + lk..li − 1]|B),

where li is the length of the peptide, lk is the length of
the weight matrix Wk corresponding to kinase k, and B

https://github.com/eahrne/SafeQuant/
http://bioconductor.org/packages/release/bioc/html/limma.html
https://github.com/evocellnet/ksea
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is the background model for the relative occurrence of
amino acids (AA) in peptides (here we used the overall fre-
quency of each AA in all peptides in the dataset). We con-
structed the weight matrices Wk from all known kinase-
substrate associations, taking a window of length lk = 15
AA (±7 AA around the phospho site) for each kinase
k from the PhosphoSitePlus database (39). For complete-
ness, we also included the possibility that the peptide does
not correspond to any of the known WMs, i.e. explaining
the peptide sequence entirely by the background model,
P(Si |B) = P(Si [0..li − 1|B]). From Bayes’ theorem, we
have that the probability of a phosphorylated peptide Si be-
ing explained by kinase k is given by P(k|Si ) = P(Si |k)P(k)

P(Si )
=

P(Si |k)P(k)∑N
k′=1 P(Si |k′)P(k′)

, where P(k) is the prior probability that

a randomly selected phosphopeptide from the data is ex-
plained by kinase k, and N is the number of kinases for
which we have sequence specificity information (including
the “background”). As we do not have prior information
on P(k), we assumed a uniform distribution, i.e. P(k) =
1/N. Finally, we have assigned to each phosphopeptide the
kinase that had the highest posterior probability of explain-
ing the peptide.

Real time proliferation assay

Cell growth was assayed using the xCELLigence system
(RTCA, ACEA Biosciences, San Diego, CA). The back-
ground impedance of the xCELLigence system was mea-
sured for 12 s using 50 �l of cell culture media at room tem-
perature in each well of an E-plate 16. After reaching 75%
confluence, the cells were washed with PBS and detached
from the flasks using a short treatment with trypsin/EDTA.
Ten thousand cells were dispensed into each well of an
E-plate 16. Growth and proliferation were monitored ev-
ery 15 min up to 48 hrs via the incorporated sensor elec-
trode arrays of the xCELLigence system, using the RTCA-
integrated software according to the manufacturer’s param-
eters. For the siRNA treatments, a lower number (3000) of
cells were seeded and allowed to grow without interruption
for a minimum of 42–48 h before the assay was briefly inter-
rupted for the addition of the siRNA mixes or lipofectamine
(for the mock treatment) to the corresponding wells. For the
ERK inhibition assays, we used Ravoxertinib hydrochlo-
ride (GDC-0994 hydrochloride). This compound was val-
idated as an orally bioavailable, selective inhibitor of ERK
kinase activity, with a half-maximal inhibitory concentra-
tion (IC50) of 6.1 nM. We used a 10 mM solution in 1 ml
of DMSO obtained from Medchem Express (Cat. No.: HY-
15947A). The final concentration of the inhibitor used for
seeding of cells was 6.1 nM in complete growth media. As
control, an equivalent amount of DMSO was added to the
cell culture medium. Ten thousand cells were counted from
their culture flasks and mixed with Ravoxertinib hydrochlo-
ride or DMSO and seeded into the xCelligence plates as per
standard protocol. All measurements were done with a min-
imum of five biological replicates.

qRT-PCR to estimate the abundance of RNAs and miRNAs

For mRNA quantifications, 50 ng of total RNA was used
for reverse transcription following the manufacturer’s pro-

tocol and cycling conditions (High-Capacity cDNA Re-
verse Transcription Kit, Thermo Fisher Scientific). Subse-
quently, the RT reaction was diluted 4-fold with water and
subjected to q-PCR in a 96-well format, using primers spe-
cific to individual genes and GoTaq® qPCR Master Mix
(Promega). The incubation and cycling conditions were set
as described in the kit and the plates were analysed in a
StepOnePlus Real-Time PCR System (Thermo Scientific).
GAPDH was used as housekeeping control for relative esti-
mation. Real-time analyses by two-step RT–PCR were car-
ried out to quantify miRNA expression using the Thermo
Scientific TaqMan chemistry-based miRNA assay system
as performed earlier (40). Briefly, 25 ng of cellular RNA
were used along with specific primers for human let7-a (as-
say ID 000377), miR-92a (assay ID 000431), miR-16 (assay
ID 000391) and miR-19b (assay ID 000396). U6 snRNA
(assay ID 001973) was used as an endogenous control.
One third of the reverse transcription mix was subjected to
PCR amplification with TaqMan® Universal PCR Master
Mix No AmpErase (Thermo Scientific) and the respective
TaqMan® reagents for target miRNA. Samples were anal-
ysed in PCR triplicates from at least two biological repli-
cates of each condition, processed independently. The com-
parative Ct method which included normalization by the
U6 snRNA, was used for each cell type for plotting of mean
values with S.D.

Microscopy analysis

Stellaris® FISH Probes, Custom Assay with CAL Fluor®
Red 590 Dye targeting the Dicer Long Isoform and
Stellaris® FISH Probes, Custom Assay with Quasar®670
Dye, targeting the common region of the transcript were
obtained by utilizing the Stellaris RNA FISH Probe De-
signer (Biosearch Technologies, IncPetaluma, CA) avail-
able online at www.biosearchtech.com/stellarisdesigner).
Cells were grown on coverslips coated with gelatin
and subsequently fixed as done previously (22). FISH
was performed as described on the website of the
manufacturer derived from protocols established previ-
ously (https://biosearchassets.blob.core.windows.net/assets/
bti stellaris protocol adherent cell.pdf) (41,42). Samples
were imaged on a fast and stable inverted wide field micro-
scope equipped with a MORE frame and enclosure, mo-
torized XY-stage. Images were captured using a Hama-
matsu ORCA flash 4.0 cooled sCMOS with the follow-
ing parameters: Effective number of pixels: 2048 × 2048,
Dynamic range: 16-bit, Quantum efficiency (peak): >70%,
Read out noise: 1.9 electrons rms. The Objective used was
a 60× TIRF APON with numerical aperture (NA) equal to
1.49. Illumination of the dyes was performed with 395/25,
550/15, 631/28 (nm) solid state light sources. The software
used for the purpose of documentation was Live Acquisi-
tion 2.5. Images were exported to OMERO for documen-
tation. Detection and analysis of spots were performed us-
ing automated pipelines developed in image analysis soft-
ware IMARIS (BITPLANE). Prior to counting, the signal
was deconvoluted using Huygens deconvolution software
as per protocol recommended by the in-house imaging fa-
cility. Subsequently, images were transformed in IMARIS
using SPOT and SURFACE detection modules according

https://biosearchassets.blob.core.windows.net/assets/bti_stellaris_protocol_adherent_cell.pdf
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to the software-recommended steps. Following creation of
spots and surfaces on a control image, the parameters were
extrapolated for all other analysed images. Nuclear surface-
overlapping spots were counted as nuclear signals, while all
the others were counted towards cytosolic numbers. Each
field of view was counted in aggregate and then normalised
to the number of DAPI stained surfaces (after segmenta-
tion). For simplicity, we rounded the number of spots per
nucleus to the closest integer before using these numbers for
further calculations. A total of nine different fields of view
from two independent biological replicates were utilised for
statistics. Imaging of paraspeckles were performed using
standard IF protocols as performed earlier (22) on an in-
verted Axio Observer Zeiss microscope (Zeiss) using a Plan
Apochromat N 63×/1.40 oil DIC M27 objective with a
Photometrics Prime 95B camera. Z-stack images were de-
convoluted using ZEN software and further processed us-
ing the OMERO client server web tool for generating fig-
ures.

Luciferase assays

psiCHECK-2 Vector (Promega; C8021) was digested at
XhoI–NotI restriction sites for insertion of the bind-
ing regions for the miRNA targets used in our analysis.
Specifically, oligonucleotide constructs harboring a per-
fect match to the candidate miRNAs (hsa-miR-16–5p and
hsa-miR-92a-3p) were inserted into the psiCHECK-2 vec-
tor MCS between XhoI and NotI for use as reporters.
The sequence of the oligos used for the reporter con-
structs were TTGTAGTATTTTGCGCCAATATTTAC
GTGCTGCTAGTCGACCATTGTTAATC for the miR-
16 Reporter and TGTAGTATTTTGACAGGCCGGG
ACAAGTGCAATAGTCGACCATTGTTAATC for the
miR-92a Reporter. For the luciferase assay, 50 ng of the
miRNA reporter construct or the undigested parent vec-
tor were transfected into HEK293 cells. siRNA treatment
with oligos against CFIm25 or CFIm68 was performed 24
hours prior to transfection of the reporter plasmids. Cells
were lysed at the 48 h mark post transfection using Passive
Lysis Buffer (Promega) and 5 �l of each lysate was used for
quantification of Renilla and Firefly luciferase expression.
Firefly-normalised Renilla luciferase expression levels were
used to compute fold-repression as described earlier (22).

Seahorse XF Real-Time ATP rate assay

For the seeding of cells, cell counting was performed and
around 2650 cells were seeded in each well of a Agilent Sea-
horse XF96 Cell Culture Microplates. The plate was incu-
bated for 72 h before the siRNA treatment was done. Mea-
surement of ATP production rate in cells was performed
using the Seahorse XF Real-Time ATP Rate Assay Kit ac-
cording to the manufacturer’s instructions. Briefly, Seahorse
XF96 fluxpak cartridges were hydrated using Seahorse XF
Calibrant Solution, 24 h pre-measurement. On the day of
measurement, the culture medium was replaced with Sea-
horse XF DMEM medium (2 mM glutamine, 1 mM pyru-
vate, 10 mM glucose) and cells were incubated for 1 h at
37◦C without additional CO2. Measurement was performed
using the standard program for the ATP rate assay kit

(Oligomycin injection after 18min, Rotenone/Antimycin
A injection after 36 min). Acquired data were normal-
ized to cell numbers via Hoechst33342 staining. Measure-
ment of fluorescence intensity was performed using a Tecan
Infinite® M1000 PRO.

Statistics

Samples were compared using the GRAPHPAD PRISM
software t-test unless otherwise mentioned in the text. A P-
value of less than or equal to 0.05 was considered significant
and indicated on plots wherever applicable.

RESULTS

Wide-spread reciprocal changes in 3′ UTR length in CFIm
KD and OE

As the overlap of CFIm targets reported in different stud-
ies is limited, we took advantage of prior observations that
CFIm25 and CFIm68 have largely similar effects on 3′ UTR
length (8–10) to establish a reference set of CFIm targets,
specifically by identifying mRNAs whose 3′ UTRs undergo
(1) similar changes in length upon perturbation of either
CFIm25 or CFIm68, as well as (2) reciprocal length changes
when the expression of these factors is reduced or increased.
We therefore analysed HEK293 cell lines in which CFIm25
or CFIm68 were depleted by siRNA-mediated knockdown
(Figure 1A and Supplementary Figure S1A) as well as
HEK293 cell lines expressing FLAG-fusion constructs of
either of the two CFIm subunits stably integrated into their
genomes (9) (Figure 1B). After sequencing polyadenylated
RNAs from these cell lines in 2–3 biological replicates per
condition, we quantified the usage of tandem poly(A) sites
in terminal exons (TE) with the PAQR tool (30) (Supple-
mentary Figure S1B). The cumulative density functions
(CDF) of average terminal exon length revealed the ex-
pected trend toward proximal PAS usage and short 3′ UTRs
in CFIm KD cell lines (9,10,12,43), and a milder trend in the
opposite direction in the OE conditions (Figure 1C). Prin-
cipal component analysis of terminal exon length showed
the expected condition-dependent clustering of the sam-
ples, and also that CFIm25 and CFIm68 affect the terminal
exon (TE) length in similar ways. The first principal com-
ponent (PC1), which explains over 90% of the variance in
TE length data, reflects the level of CFIm expression (Fig-
ure 1D), as samples from CFIm25/68 KD and OE condi-
tions are located at negative and positive coordinates on
PC1, respectively. Therefore, we extracted our reference set
of CFIm-dependent APA targets as those whose TE length
aligned very well with PC1 (correlation > 0.9 in absolute
value and projection > 10 in absolute value). We obtained
858 transcripts that satisfied these criteria, 855 of which had
shorter 3′ UTRs upon CFIm25/68 KD (Supplementary Ta-
ble S1, Figure 1E). The consistency of these results with pre-
viously reported effects of CFIm25/68 (9,10) supports the
validity of our approach to CFIm target selection. Analy-
sis of 3′ UTRs with exactly two PAS used across conditions
showed that the CFIm-binding UGUA motif is more preva-
lent upstream of the distal PAS of transcripts that respond
to CFIm perturbations (APA targets) compared to both the
proximal PAS of these targets, as well as the proximal and
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Figure 1. Inference of a reference set of CFIm APA targets. (A, B) Western blots demonstrating the reduced expression of CFIm25 and CFIm68 in
the KD (A) and increased expression in OE (B) HEK293 cell lines. Three biological replicates were generated for each condition. GAPDH was used as
loading control. The expression of the 59 kDa component of CFIm, which does not influence the length of 3′ UTRs, was also measured. Shown are also
quantifications of protein levels normalized to the mean expression in Control samples (±S.D.). Significant (<0.05) P-values computed from a two tailed
t-test comparing each condition to Control are marked above individual columns. (C) Cumulative distributions of average terminal exon length, relative
to the maximum given by the annotation (see Materials and Methods), in the different cell lines. P-values from two-sample KS-tests for the difference
between the CDFs of the average TE length in CFIm25 OE and WT: 0.16, in CFIm68 OE and WT: 0.008, in CFIm25 KD and WT: 1.65e−28, and in
CFIm68 KD and WT: 5.42e−64). (D) Principal component analysis of TE length. Each dot corresponds to a sample in the space defined by the first two
principal components. (E) Selection of APA targets of CFIm: the vectors representing average length of individual TEs in all samples were projected onto
the first principal component (from panel D) and the length of the projection (x-axis), as well as the correlation of these vectors (y-axis) were calculated.
TEs for which both of these values were large in absolute value (marked by the red lines) were considered APA targets of CFIm. (F) Position-dependent
frequency of occurrence of the CFIm-binding UGUA motif in the vicinity of proximal (dashed lines) and distal (full lines) sites of CFIm targets (blue) and
non-targets (red). The curves represent running averages computed over 30 consecutive positions. (G) Genome browser tracks showing the coverage of the
TE of TIMP2 (shown in the bottom track) by RNA-seq reads from two replicate experiments for each condition, with the two PAS that were quantified
for this gene marked by black lines. The conditions are color-coded (color scheme as in panels C and D) and indicated on the y-axis.The y-axis shows the
smoothened number of reads mapping along the TE, calculated by the GViz R package.
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distal PAS of transcripts that do not respond (non-targets,
Figure 1F). Similar observations were made based on CFIm
binding sites determined by crosslinking and immunopre-
cipitation (9). TIMP2, a previously documented target of
CFIm (9,14,15), showed the preferential usage of a prox-
imal poly(A) site in CFIm25/68 KD samples (Figure 1G).
These results demonstrate that a large number of transcripts
undergo coherent changes in PAS usage upon perturbation
in CFIm25 and CFIm68 expression, forming a reference set
of CFIm targets.

The CFIm knockdown increases the biogenesis and activity
of miRNAs

As 3′ UTR shortening enables mRNAs to escape the re-
pressive effect of miRNAs (44,45), we were intrigued by the
conspicuous presence of key components of the miRNA
pathway (DICER1, AGO2) among CFIm targets (Supple-
mentary Table S1, Figure 2A, Supplementary Figure S2A
and B). To verify changes in DICER1 isoform expression
and further determine whether they occur in the nucleus as
a result of APA, as opposed to the cytoplasm as a result of
other mechanisms, we visualized the abundance and distri-
bution of DICER1 3′ UTR isoforms within cells by single
molecule RNA FISH (Figure 2B) in control and CFIm KD
(25-KD and 68-KD) conditions. We used probes that se-
lectively bind either to the distal end of the long 3′ UTR
isoform (green), or to a region that is shared by the long
and short 3′ UTR isoforms (red). The probes are expected
to co-localize on the long isoform, which will appear yel-
low, whereas the short isoform, which lacks the sequence
that can hybridize to the green probe, will only fluoresce
in the red channel. The quantitative analysis of the rela-
tive number of RNA molecules hybridizing to the different
probes in CFIm 25-KD/68-KD cells revealed a marked de-
pletion of the long isoform already in the nuclear region,
indicating the increased usage of the proximal poly(A) site
of the DICER1 transcript upon CFIm knockdown. The
longer isoform was also depleted in the cytosol in these con-
ditions, where the overall number of DICER1 molecules
was markedly higher than in the nucleus (Figure 2C and
Supplementary Figure S2D). Western blotting showed that
DICER1 protein expression also increases upon CFIm KD
(Figure 2D), matching closely both the increased counts of
DICER1 transcripts estimated from RNA-seq analysis and
the imaging data (Figure 2C).

As DICER1 upregulation is predicted to increase the
production of miRNAs, we measured the levels of three
randomly-selected, ubiquitously-expressed miRNA by real
time PCR, finding that they were indeed higher in CFIm
KD cells relative to Control (Figure 2E). In contrast, de-
spite the shortening of AGO2 3′ UTR as a result of CFIm
KD, the AGO2 mRNA level only increased by 42/72% in
CFIm25/68 KD relative to control (Supplementary Table
S3), and the protein level changes measured by TMT pro-
teomics were even smaller (27/24% in the same conditions).
These differences were not detectable when AGO2 protein
levels were compared by western blotting (Supplementary
Figure S2A). To determine whether the increased miRNA
biogenesis translates into increased miRNA-mediated re-
pression, we measured the activity of dual luciferase re-

porters for two ubiquitously-expressed miRNAs, miR-
16 and miR-92a. The reporter expression showed an in-
creased miRNA activity in CFIm25/68 KD cells com-
pared to mock-transfected Control samples, indicating that
AGO2 levels were not limiting upon CFIm knockdown
(Figure 2F). These results demonstrated the coherent ef-
fects of CFIm on the biogenesis and activity of miRNAs
whereby the reduction in CFIm expression leads to in-
creased miRNA-mediated repression of target reporters.

CFIm modulates signaling via CMGC kinases

To identify the molecular pathways whose components are
APA targets of CFIm, we performed Gene Ontology en-
richment analysis (Supplementary Table S1) with the clus-
terProfiler R package (46). Most enriched in CFIm tar-
gets were processes such as cellular response to stress and
protein transport and modification (Figure 3A). Genes
from these functional categories that we identified as tar-
gets exhibited the expected enrichment of the UGUA mo-
tif relative to those that are not CFIm targets according
to our analysis (Supplementary Figure S3), indicating a
sequence-specific effect of CFIm (Supplementary Figure
S3). To further map the signaling events in which these
targets participate, we measured the abundance of phos-
phopeptides by phosphoproteomics with IMAC enrich-
ment (see Materials and Methods) in all of the HEK293
cell lines used in this study (Supplementary Table S2).
Principal component analysis of the normalized phospho-
peptide intensities showed that the OE samples separate
well from Control as well as between CFIm components,
while the KD samples separate well from Control, but
less well between CFIm components (Figure 3B). Of the
22’707 phosphopeptides that were measured, 4′536 showed
condition-dependent changes. We then sought to apply
a recently developed method, kinase activity enrichment
analysis (KSEA) (38) to identify kinases whose activity
changes in a CFIm-dependent manner. KSEA is similar to
the broadly-used Gene Set Enrichment Analysis (GSEA)
(47), quantifying whether phophopeptides associated with
a specific kinase are enriched among the phosphopeptides
that undergo the largest change in abundance between
two conditions. As described by Hernandez-Armenta et al.
(38), we used the −log10 of the P-value, calculated from
KSEA, as a proxy of the change in kinase activity with
the sign indicating the direction of change of its associated
phophopeptides between conditions. Along with changes
in phosphopeptide levels, KSEA uses kinase-substrate in-
teractions as input. Finding that only 6.7% of the phos-
phopeptides that we identified in our experiments are rep-
resented among known kinase-substrate interactions in the
reference PhosphoSitePlus database (39), we first predicted
additional kinase-substrate relationships using position-
dependent weight matrix models of kinase substrate speci-
ficity (see Materials and Methods). KSEA then revealed
pronounced changes in kinase activity in CFIm25/68 KD
conditions and milder changes upon OE (Figure 3C). The
more pronounced effects of the KD relative to OE on ki-
nase activities mirror the response of 3′ UTR length to
these perturbations (Figure 1C). Interestingly, 14 of 35 ki-
nases with a significant activity change (KS-test P < 0.01)
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in at least one condition belonged to the CMGC family,
which includes cyclin-dependent kinases (CDKs), mitogen-
activated protein kinases (MAP kinases), glycogen synthase
kinases (GSK) and CDK-like kinases (48). Only 21 of 173
kinases without a significant change were part of this family.

KSEA predicted an increase in the activity of
CK2A1/CK2A2, SYK, MAPKAPK2, CAMK2 and
CK1D kinases upon CFIm25/68 KD (Figure 3C), but only
CK2A2, MAPKAPK2, and CK1D exhibited a reciprocal
change in activity upon CFIm25/68 OE. Focusing on
the kinases whose activity changes reflected the change
in CFIm expression, we evaluated the KSEA predictions
by checking the patterns of phosphorylation of specific
substrates. While we did not have any site that could be un-
ambiguously attributed to CK1D in our data, we did find
one of the best characterized substrates of MAPKAPK2,
the Ser82 residue of the heat shock protein 27 (HSP27)
(49). The phosphorylation level of this site was higher in
CFIm25/68 KD (1.4-fold, Supplementary Table S2) and
lower in CFIm25/68 OE (0.85/0.75, Supplementary Table
S2) conditions compared to Control cells, consistent with
the overall MAPKAPK2 activities predicted by KSEA.
Taking advantage of an antibody that selectively labels
all instances of the CK2 substrate consensus sequence,
pS/pTD/EXD/E (the most crucial residues being those at
positions +3 and +1 with respect to the phosphorylation
site (50)), we also sought to independently validate the
changes in this kinase’s activity in our experimental con-
ditions. Quantitative western blot analysis of the lysates
obtained from KD and OE cells revealed an upregulation
of total phosphorylation levels in the KD samples rela-
tive to the Control cell lysate, and no significant change
upon OE, in agreement with the results obtained from the
KSEA analysis (Figure 3D).

KSEA also predicted reciprocal changes in the ac-
tivity of CMGC family kinases such as the mitogen-
activated protein kinases JNK1/2 (MAPK8/9), P38D
(MAPK13), ERK1/2 (MAPK3/1), and cyclin dependent-
kinases CDK1/2/5 upon CFIm KD/OE, the activity de-
creasing in the KD and increasing in OE conditions (Fig-
ure 2C). Of these, transcripts corresponding to MAPK1,
MAPK9 and MAPK13 are also in our reference set of CFIm
targets (Supplementary Table S1). To independently vali-
date the changes in MAPK13 activity we focused on its
known target, Sequestosome-1, also known as ubiquitin-
binding protein p62, which undergoes MAPK13-dependent
phosphorylation at Thr269 and/or Ser272 in response to
proteasomal stress (51). Both of these sites responded as ex-
pected in our phosphoproteome data, with decreased phos-
phorylation in the CFIm25/68 KD samples (fold-changes
relative to Control 0.42/0.55 at Thr269, and 0.47/0.64 at
Ser272, Supplementary Table S2) and increased phospho-
rylation in the CFIm25/68 OE conditions (fold-changes
relative to Control 1.56/2.64 at Thr269, and 1.37/1.96
at Ser272, Supplementary Table S2). We observed similar
changes in western blots, using an antibody that recognizes
SQSTM1 only when phosphorylated at Thr269 and/or
Ser272 (Figure 3E). Altogether, these results demonstrate
that the level of CFIm is linked to the activity of CMGC
kinases, some of which are encoded by transcripts that un-
dergo CFIm-dependent APA.

CFIm-induced changes in cell proliferation reflect the activity
of ERK1/2 kinases

The ERK/MAPK signaling pathway plays a key role in
cell proliferation, differentiation and apoptosis (52). Acti-
vated by endoplasmic reticulum stress and unfolded pro-
tein response (53), this pathway can have both tumorigenic
(54) and anti-tumorigenic (55) effects. These contrasting
roles are reminiscent of the divergent changes in CFIm
expression reported in various cancers (18). To validate
the predicted change in ERK1/2 activity in our system,
we estimated the levels of phosphorylated (Tyr202/Tyr204)
ERK1/2 by western blotting. We found them to indeed be
positively correlated with the CFIm25/68 expression level
(Figure 4A). We then used a real time assay to determine
the effect of CFIm on cell proliferation, which was also re-
ported to differ between cell types (15,21). We found that
the KD of CFIm25/68 reduced and the OE increased the
growth of HEK293 cells (Figure 4B). To ascertain a com-
pelling role of ERK signaling in the increased proliferative
state of the CFIm25/68 OE cells, we used an inhibitor of
ERK signaling, Ravoxertinib hydrochloride, at reported IC-
50 concentrations (56). Cells seeded in the presence of the
inhibitor had a conspicuous growth arrest and the growth
patterns of the OE cells traced that of Control cells. In con-
trast, the DMSO treatment had no effect on the growth pat-
terns (Figure 4C). We also verified the reduced growth phe-
notype of CFIm KD in other cell types, HeLa and LN-18
glioblastoma (Figure 4B), although for these cell lines the
effects were milder than those observed in HEK293 cells.

Both the upregulation (57) and downregulation (58) of
ERK1/2 activity have been linked to the Warburg-like ef-
fect, the switch from oxidative phosphorylation to glycoly-
sis in cellular energy production that is a hallmark of cancer
(59). To determine whether the metabolic activity in our cell
systems is consistent with changes in ERK1/2 activity, we
compared the ATP production by glycolysis and oxidative
phosphorylation in all conditions (WT, CFIm KD and OE)
in a Seahorse ATP real-time rate assay (60). Indeed, we
found the switch from oxidative phosphorylation to glycol-
ysis in ATP production in both CFIm KD and OE cells
compared to Control (Figure 4D), as reported for changes
in ERK1/2 activity. The main enzyme that drives the car-
bon flux into mitochondria for the TCA cycle and oxidative
phosphorylation is pyruvate dehydrogenase (PDH), whose
inhibition leads to the Warburg effect (61). By western blot-
ting, we found that the level of the inhibitory phosphoryla-
tion on Ser293 of PDH, known to be catalyzed by pyruvate
dehydrogenase kinase 1 and 2 (PDHK1-2), was increased
(Figure 4E) in both CFIm KD and OE conditions. Thus,
perturbation in CFIm expression leads to metabolic shifts
that are consistent with ERK1/2 activity changes converg-
ing on PDHK1-2 and PDH.

To better understand how CFIm KD and OE induce di-
vergent changes in cell numbers but convergent changes
in the metabolism of cells, we performed endpoint west-
ern blot analysis of cleaved PARP (Figure 4F). The cleav-
age of PARP-1 by caspases is a hallmark of apoptosis (62).
The anti-correlation of cleaved PARP with CFIm expres-
sion levels indicates that the reduced cell culture growth
in CFIm25/68 KD conditions is due to increased levels
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of apoptosis. In summary, these results demonstrate that
CFIm promotes the growth of multiple cell types, primar-
ily by suppressing apoptosis. Furthermore, both the cell
proliferation and metabolic phenotype are consistent with
changes in the ERK1/2 kinase activity.

3′ end sequencing reveals similar CFIm targets

We finally assessed the reproducibility of the CFIm tar-
get set with respect to the cellular system and the method
for quantifying the 3′ end usage. Perturbations of CFIm25
and/or CFIm68 expression have been carried out not only
in HEK293, but also in HeLa cells, where distinct methods
for quantifying 3′ end usage were applied. We extracted 3′
end usage data upon CFIm KD in these systems from the
PolyASite database (31), and, by applying the same target
selection method (Supplementary Figure S4, also see Ma-
terials and Methods), we obtained ∼850–1000 genes whose
TEs became shorter upon CFIm25/68 KD (Figure 5A–
C) from each of these datasets. We then visualized their rela-
tionship in a Venn diagram (Figure 5D). The overlap of tar-
gets obtained by two distinct methods for PAS usage quan-
tification or in two different cell systems was ∼20–40%. The
majority (476 of 853) of genes in our core set are also identi-
fied as CFIm targets in another data set, while 51 are com-
mon to all data sets (significance of overlap from the Su-
perExactTest (63) P-value: 3.66e−101). Notably, this latter
set includes kinases and kinase regulators such as MAPK1
(ERK2), Serine/threonine-protein kinase Chk1 (CHEK1),
AMP-activated protein kinase 1 and 2 (AMPKA1-2), C-
Jun-amino-terminal kinase-interacting protein 4 (SPAG9)
and Receptor-interacting serine/threonine-protein kinase 2
(RIPK2) (Supplementary Table S4). These results indicate
that the inferences we made based on the RNA-seq data in
HEK293 data were robust, and in line with the growth phe-
notypes that we assessed above (Figure 4B).

DISCUSSION

Our study makes two main contributions to the expanding
field of alternative polyadenylation. First, we provide a ref-
erence set of APA targets of the CFIm 3′ end processing
factor, the main regulator of 3′ UTR length known to date.
These targets were stringently selected based on their con-
sistent and coherent 3′ UTR length changes upon KD/OE
of both CFIm25 and CFIm68 components of CFIm. They
provide a basis for future analyses in other cell systems,
and especially in cancers, where CFIm has been already
implicated, with somewhat divergent roles (18). Second,
our study uncovered a so-far uncharted layer of regulation
downstream of the CFIm 3′ end processing complex, reveal-
ing that signaling pathways are extensively remodeled upon
perturbations in CFIm expression. The activity of the ERK
pathway essentially traces the CFIm expression level and
can explain the proliferation, apoptosis and metabolic re-
sponses of cells to CFIm perturbations. Beyond these main
findings, our results expand the knowledge of the interplay
between RNA 3′ end processing and other cellular processes
such as miRNA-mediated repression, as detailed below.

In spite of CFIm68 having similar 3′ UTR length regula-
tory functions, most prior studies focused on CFIm25, re-

porting a range of CFIm-dependent APA targets that var-
ied ∼100-fold (15,64). To identify conserved functions of
CFIm-dependent RNA processing in cell biology, here we
constructed a reference set of CFIm targets by carrying out
both the KD and the OE of not only CFIm25 but also the
CFIm68 subunits of CFIm. We identified 858 transcripts
with a highly consistent response across all of these condi-
tions (Figure 1), 855 of which (from 853 genes) exhibited
3′ UTR shortening upon the KD of CFIm factors. The ma-
jority of these transcripts are also identified in other cellular
systems or with other methods for poly(A) site usage quan-
tification (Figure 5). The set includes well known CFIm
targets like TIMP2 (9,14,65), DICER1 (15) and MECP2
(15,16) and, interestingly, paralogs of some reported tar-
gets, e.g. CCND2 and CHD6 in place of CCND1 and CHD9
(15,16). Along with the intersection of targets obtained by
3′ end sequencing data from HEK293 and HeLa cells be-
ing only partial (Figure 5), this latter finding may indicate
that a subset of CFIm targets is cell type-specific. How-
ever, the targets identified in the same cellular system by dis-
tinct 3′ end sequencing methods are also not identical (Fig-
ure 5D), suggesting that differences in target sets could
also be due to differences in the experimental design (e.g.
PAPERCLIP-based 3′ end processing data was only avail-
able for the CFIm68 KD, and not for the CFIm25 KD). The
changes in TE length estimated from the RNA-seq or the
3′ end sequencing data were well correlated, with Pearson
correlation coefficients in the 0.5–0.6 range (Figure 5E-F),
as observed before (30), underscoring the robustness of the
target set.

The frequency of CFIm-binding UGUA motifs is ∼1.5–
2-fold higher at the distal PAS of CFIm targets compared
to the proximal PAS, in contrast to non-targets, where the
two sites are not clearly distinguishable by the UGUA mo-
tif frequency (Figure 1). These results are in line with prior
observations (9,12,64). The UGUA motif is strongly de-
pleted downstream of the distal PAS, while at the proxi-
mal sites UGUA motifs occur with comparable frequency
both upstream and downstream of the PAS. This supports
a recently proposed model, whereby binding of CFIm to
UGUA motifs flanking the proximal PAS leads to the loop-
ing of the RNA around the proximal PAS (66) and to an
unproductive interaction with FIP1, which masks the site
from cleavage. In contrast, the UGUA motif is only present
upstream of the distal site of CFIm targets, leading to pro-
ductive interaction with the other components of the 3′ end
processing complex and 3′ end cleavage (64).

It was noted in a previous study that cell cycle-related
genes such as cyclin D1 are targets of CFIm (15), linking
APA to cellular signaling. Here, we found a strong enrich-
ment of signaling-related proteins among the reference set
of CFIm targets (Figure 3). We further predicted changes
in the activity of many kinases upon perturbations in CFIm
expression, particularly those from the CMGC family. We
focused primarily on ERK1/2, because it can link the per-
turbation in CFIm level to multiple phenotypes reported in
the context of cancer, including proliferation, apoptosis and
glucose metabolism. ERK activity was positively correlated
with the expression level of CFIm, consistent with the ef-
fects described in CFIm25-depleted K562 cells (21). Down-
regulation of ERK/MAPK has a negative effect on cellular
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growth and leads to a metabolic switch that favors glycol-
ysis over oxidative phosphorylation (58), both of which we
were able to demonstrate in CFIm KD conditions (Figure
4). Conversely, with real-time assays and cell-cycle analysis
we showed that OE of CFIm promotes growth, as expected
given the phosphorylation-dependent ERK/MAPK activa-
tion (67). Surprisingly, the ERK activity was anti-correlated
with the activity of CK2A1, a kinase reported to contribute
positively to ERK signaling, as part of the Kinase Suppres-
sor of Ras 1 scaffolding complex (68) and as mediator of
ERK nuclear translocation (69). Increased CK2A1 activity
was observed in cancer cells (70), associated with drug re-
sistance (71) and resistance to apoptosis (72). Although the
mechanism behind seemingly discordant CK2A1 and ERK
activities in our system remains to be determined, the up-
regulation of CK2A1 activity could contribute to the gly-
colytic switch that we paradoxically observed in CFIm KD
conditions (73).

The activity of another MAP kinase, MAPK13 (P38D),
was also correlated with the CFIm25/68 levels (Figure
3). MAPK13 participates in key processes such as cell
proliferation, differentiation, transcription regulation and
development, and is overexpressed in a large set of hu-
man breast cancers (74,75). A main target of MAPK13 is
SQSTM1 (p62), which MAPK13 phosphorylates on Ser269
and Thr272 (51), as we also found here (Figure 3E). Inter-
estingly, our data includes 5 additional sites on SQSTM1,
all 5 with increased phosphorylation in CFIm25/68 OE
(Supplementary Table S2). As hyperphosphorylation of p62
is a marker for chemotherapy resistance in ovarian cancer
cells (76), the increased phosphorylation of these sites is
consistent with the increased growth of CFIm OE cells.

How do changes in 3′ UTR length lead to a remodeling of
cellular signaling? Consistent with prior expectations (44),
our data shows a small but significant increase in gene ex-
pression levels of CFIm targets compared to non-targets in
the CFIm KD cells, indicating a small tendency toward in-
creased stability of short 3′ UTR isoforms (77,78) (Supple-
mentary Figure S5 and S6). We further calculated the Pear-
son correlation coefficient of gene expression changes with
both changes in terminal exon length and changes in the
proximal/distal PAS usage ratio. While small (<0.23), these
correlation coefficients were significant (P-values < 0.01)
and had the expected trend (negative correlation of terminal
exon length and positive of proximal/distal ratio with gene
expression, Supplementary Figure S6). The changes at the
protein level were smaller (Supplementary Figure S5), for
reasons that remain unclear. The OE of CFIm components
did not lead to an opposite effect, namely reduction in tar-
get levels, which likely reflects the milder effect of OE on
3′ UTR length compared to the KD of CFIm. This is not
surprising because the distal PAS are already preferentially
used in HEK293 cells under control culture conditions (9),
leading to limited lengthening of 3′ UTRs upon CFIm over-
expression. Focusing on signaling-related targets, some of
the key regulators that we analysed here, such as MAPK1
(ERK2), and MAPK13 did not show significant gene ex-
pression changes, while many others were upregulated upon
CFIm25/68 KD. These include, for e.g. CK2A1, MAPK9
(JNK2), the TOR signaling pathway regulator (TIPRL)
that negatively impacts JNK signaling by binding to MKK7

(79), the TAK1-interacting protein 27 (JAZF1), which in-
hibits cell proliferation and enhances apoptosis through its
negative control of the TAK1/NF-KB signaling pathway
(80), the MAP2K4/MKK4, an upstream activator of JNK
signaling (81), and the NDFIP1 ubiquitin ligase activator
involved in the ubiquitination of upstream activators of
the JNK signaling pathway (82). In contrast to the RNAs,
the abundance of the corresponding proteins was less af-
fected by CFIm perturbations. This may be due to a lower
sensitivity of the measurement technology, as the ∼2-fold
change in abundance of DICER1 that we measured by WB
was not apparent in the proteomics data. However, protein
level changes were also not uniformly detectable for targets
that we measured by WB (Figure 2D, Supplementary Fig-
ure S2C), suggesting additional post-transcriptional con-
trol of CFIm targets. The overall small protein-level changes
could indicate that the phenotypic changes observed upon
CFIm perturbations are due to a cumulative effect of small
changes in many targets rather than to a small number of
targets whose expression is strongly altered.

The similar 3′ UTR shortening in cancer and in CFIm
KD conditions make CFIm a very appealing candidate
for explaining the cancer-related remodeling of 3′ UTRs.
Indeed, in glioblastoma and hepatocellular carcinoma
(15,19,20), reduced CFIm expression has been implicated
in 3′ UTR shortening and tumorigenesis. However, this
relationship does not appear to be universal (18) and, in
fact, the expression of 3′ end processing factors is typically
higher in tumors compared to matched control tissues (Sup-
plementary Figure S7A, (83)). Kaplan–Meier analysis (84)
shows that the levels of CFIm25/68 are also not good pre-
dictors of cancer-free survival and that in the majority of
cancer cohorts where a significant (P-value < 0.05) associ-
ation between CFIm25/68 expression and survival can be
detected, it is the high, not the low expression of CFIm
that represents a risk factor (Supplementary Figure S7B,
C). What could account for seemingly contrasting results
regarding the CFIm expression and function in cancers?
A hypothesis that can reconcile these observations is that
the level of CFIm per se is not sufficient to predict the pat-
tern of RNA processing in cancers, and that the RNA pro-
cessing load of cells plays an equally important role; an in-
creased processing load in proliferating cells may lead to
transient CFIm deficiency in spite of its increased overall
expression and this relationship may further be cell type-
specific. This scenario has been reported for the U1 snRNA
during neuronal activation, also leading to APA at proximal
PAS (85). Of course, technical artifacts such as the variable
degree of RNA degradation among samples may also lead
to divergent results, due to erroneous estimates of CFIm ex-
pression levels (30). Nevertheless, the relationship between
RNA processing demand and availability of 3′ end process-
ing factors, especially in the context of cancer, warrants fur-
ther studies.

Finally, our data show a complex effect of CFIm-
dependent APA on the miRNA-mediated gene regulation.
Much of the work on APA in the past decade has been mo-
tivated by the observation that 3′ UTRs become shorter
in proliferating cells (44), presumably leading to the es-
cape of the corresponding transcripts from miRNA regu-
lation (44,45). That DICER1, the key enzyme in miRNA



Nucleic Acids Research, 2022, Vol. 50, No. 6 3111

biogenesis, would be regulated in this manner to increase
the production of miRNAs in these conditions is counter-
intuitive, even though it has been observed before (15,45).
Here, we found that CFIm KD leads to reduced expres-
sion of the long DICER1 3′ UTR isoform already in the
nucleus, presumably via APA. The DICER1 protein ex-
pression increases in parallel to the transcript level. A fur-
ther contribution to the increased miRNA biogenesis in
CFIm KD condition may come from the reorganization of
paraspeckles (PS), nuclear condensates that form around
the long non-coding RNA (lncRNA) NEAT1 (86). Re-
duced CFIm levels lead to the production of a long iso-
form of NEAT1, called NEAT1 2, which nucleates the PS
(87). NEAT1 2 also recruits the Drosha/DGCR8 Micro-
processor complex to PS, where primary miRNAs interact
closely with the NONO-PSF protein dimer (88), leading to
increased miRNA biogenesis. Indeed, immunofluorescence
analysis with an antibody targeting the PS-essential NONO
protein (89) confirms the relationship between the CFIm
level and the NEAT1 2-dependent size and organization of
the PS (90) (Supplementary Figure S7D, E). The effector
component of the miRNA pathway, AGO2, also undergoes
CFIm-dependent APA, but without detectable protein-level
changes (Supplementary Figure S2C, Supplementary Table
S3). AGO2 does not seem to be limiting for miRNA re-
pression in our systems, as the increased miRNA biogen-
esis upon CFIm KD is accompanied by a corresponding
increase in their repressive activity, as demonstrated with
reporter genes (Figure 2). These results demonstrate that
CFIm organizes the miRNA-dependent regulatory layer
by modulating both miRNA biogenesis and the subset of
transcripts that are susceptible to miRNA-dependent reg-
ulation. It has been reported, for instance, that uncapped
RNAs that are downstream products of cleavage at proxi-
mal PAS stably persist in the cell (91). These may alter the
cellular milieu to trigger some of the signaling events that
we observed, while the increased miRNA activity may serve
to clear out some of these RNA species and counteract the
cellular stress that they induce. How cells deal with globally
increasing or decreasing RNA processing load is an impor-
tant question to address in future studies.

In conclusion, our study has revealed a novel layer
of CFIm-dependent gene regulation, mediated by nu-
merous kinases, especially from the CMGC family. The
ERK/JNK/MAPK pathways can explain many of the ob-
served phenotypic changes caused by CFIm expression per-
turbations, including in cell proliferation, apoptosis and
metabolism. We provide a reference set of transcripts that
respond in a consistent manner to both KD and OE of
CFIm25 and CFIm68 proteins and likely underlie the roles
of CFIm in various cellular systems. Finally, we found that
CFIm largely promotes cell growth, consistent with some,
but not all of the previous studies of cancer systems. Given
that the expression of 3′ end processing factors, and espe-
cially of CFIm is positively correlated with proliferation,
our study integrates a variety of prior observations into a
consistent framework. The exact mechanism that bridges
the CFIm-mediated APA of several transcripts to the alter-
ation in kinase activities is an interesting topic for future
studies (Figure 5F), especially when considering the simul-
taneous changes in the miRNA biogenesis and, as suggested

by our reporter assays, in the activity of the miRNA path-
way.
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and Beltrao,P. (2017) Benchmarking substrate-based kinase activity
inference using phosphoproteomic data. Bioinformatics, 33,
1845–1851.

39. Hornbeck,P.V., Zhang,B., Murray,B., Kornhauser,J.M., Latham,V.
and Skrzypek,E. (2015) PhosphoSitePlus, 2014: mutations, PTMs
and recalibrations. Nucleic Acids Res., 43, D512–D20.

40. Ghosh,S., Guimaraes,J.C., Lanzafame,M., Schmidt,A., Syed,A.P.,
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