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Abstract

Background

It has been reported that genetic factors are associated with risk factors and onset of life-

style-related diseases, but this finding is still the subject of much debate.

Objective

The aim of the present study was to investigate the correlation of genetic factors, including

salivary telomere length and three single nucleotide polymorphisms (SNPs) that may influ-

ence lifestyle-related diseases, with lifestyle-related diseases themselves.

Methods

In one year at a single facility, relative telomere length and SNPs were determined by using

monochrome multiplex quantitative polymerase chain reaction and TaqMan SNP Genotyp-

ing Assays, respectively, and were compared with lifestyle-related diseases in 120 Japa-

nese individuals near our university.

Results

In men and all participants, age was inversely correlated with relative telomere length with

respective p values of 0.049 and 0.034. In men, the frequency of hypertension was signifi-

cantly higher in the short relative telomere length group than in the long group with unad-

justed p value of 0.039, and the difference in the frequency of hypertension between the two

groups was of borderline statistical significance after adjustment for age (p = 0.057). Fur-

thermore, in men and all participants, the sum of the number of affected lifestyle-related
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diseases, including hypertension, was significantly higher in the short relative telomere

length group than in the long group, with p values of 0.004 and 0.029, respectively. For ADI-

POQ rs1501299, men’s ankle brachial index was higher in the T/T genotype than in the G/G

and G/T genotypes, with p values of 0.001 and 0.000, respectively. For SIRT1 rs7895833,

men’s body mass index and waist circumference and all participants’ brachial-ankle pulse

wave velocity were higher in the A/G genotype than in the G/G genotype, with respective p

values of 0.048, 0.032 and 0.035. For FOXO3A rs2802292, women’s body temperature and

all participants’ saturation of peripheral oxygen were lower in the G/T genotype than in the

T/T genotype, with respective p values of 0.039 and 0.032. However, relative telomere

length was not associated with physiological or anthropometric measurements except for

height in men (p = 0.016). ADIPOQ rs1501299 in men, but not the other two SNPs, was sig-

nificantly associated with the sum of the number of affected lifestyle-related diseases (p =

0.013), by genotype. For each SNPs, there was no significant difference in the frequency of

hypertension or relative telomere length by genotype.

Conclusion

Relative telomere length and the three types of SNPs determined using saliva have been

shown to be differentially associated with onset of and measured risk factors for lifestyle-

related diseases consisting mainly of cardiovascular diseases and cancer.

Introduction

Telomeres are a repetitive nucleotide sequences of TTAGGG at the end of a chromatid, main-

taining the stability of chromosomes to avoid deterioration and fusion with other chromo-

somes [1]. Telomere length (TL) is influenced by genetic factors, with previous studies

reporting heritability estimates ranging from 34 to 82% [2, 3]. This parameter is also cumula-

tively shaped by nongenetic influences throughout human life. In contrast, single nucleotide

polymorphisms (SNPs) are inherited from parents and transmit heritable events [4].

Quantitative trait locus studies have mapped putative loci that may be involved in regulat-

ing TL to human chromosomes 3q26.1, 10q26.13 and 12q12.22 [5]. Indeed, a number of recent

genome-wide association studies (GWAS) identified common SNPs near the telomerase RNA
component (TERC) associated with TL in European and Chinese populations [5, 6]. The stron-

gest associations with TL were reported for the SNPs rs12696304 and rs16847897 near TERC
on 3q26. Although their functions are unclear, these genes appear to be involved in the mainte-

nance of chromosome structures [7].

Research on the genetics of human longevity has identified hundreds of genes associated

with longevity, but polymorphisms in only two genes (APOE and FOXO3) have demonstrated

strong and consistent replications across multiple, diverse human populations [8]. The correla-

tion between genetic factors such as TL and SNPs and lifestyle-related diseases (LRDs) is also

still controversial [8–15]. Furthermore, these studies [5, 6, 8–15] were conducted in different

population cohorts, including Chinese, American and European cohorts, and in different

types of studies, including original papers, literature reviews and meta-analyses.

To better understand the link between genetic factors and human disorders and diseases,

we studied the correlation among TL, three SNPs that may influence the risk factors for LRDs

[9, 16–18] or the onset of LRDs [19], LRD-related physiological and anthropometric
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measurements, and the onset of LRDs themselves in a Japanese population from limited areas

near our university in one year at a single facility.

Materials and methods

Subjects

Since March 2011, an annual university-sponsored health course for community members has

been conducted [20]. In each course, which was held ten times per year, health seminars and

point-of-care testing were performed. In 2015, a total of 223 attendants were enrolled, and 122

out of 143 attendants in the year (85.3%) agreed to participate in an analysis of salivary TL and

SNPs of the ADIPOQ, SIRT1 and FOXO3A genes. The inclusion criteria were Japanese

descent, clinical stability and sufficient salivary DNA extraction for genetic factor analysis. The

exclusion criterion was any acute illness. In two participants, the DNA amount was not

enough for analysis, and the remaining 120 subjects were included in the present study (S1

Table). They ranged in age from 41 to 84 years and consisted of 34 men and 86 women with a

mean age of 73.3 and 67.8 years, respectively. In three other healthy volunteers, TL was deter-

mined by using DNA from saliva and peripheral blood-derived leukocytes.

DNA extraction from saliva and blood

Participants expectorated at least two ml of passive drool saliva into a sterile, 50 ml polyethyl-

ene conical tube (Corning Science, Corning, NY, USA) for five min. These collection tubes

were maintained on ice until use. Immediately, one ml of saliva was mixed with an equal vol-

ume of nuclei lysis buffer (50 mM Tris-HCl, 50 mM EDTA, 50 mM sucrose, 100 mM NaCl,

2.4% SDS, 550 μg/ml proteinase K, pH 8.0) [21]. After digestion of the cell lysate overnight at

53˚C, 400 μl of 5 M NaCl was added to the mixture, shaken vigorously for 15 s and placed on

ice for 30 min. The DNA in the supernatant was extracted by using the GenElute Mammalian

Genomic DNA Miniprep Kit (Sigma-Aldrich Co., LLC., Tokyo, Japan). The concentration of

the isolated DNA was determined using a NanoDrop Spectrophotometer (Thermo Scientific,

Waltham, MA, USA).

Heparinized venous blood was collected from three healthy adult volunteers. Every 4 ml of

blood was mixed with 1 ml of 5% (w/v) dextran (MW 266,000, Sigma-Aldrich) in phosphate-

buffered saline (PBS) (Gibco, Grand Island, NY, USA), incubated for 30 min at room tempera-

ture, and the upper layer containing whole leukocytes was harvested [22]. In one volunteer,

the whole leukocyte fraction in PBS was further layered onto Ficoll-Hypaque (Ficoll-Paque

Plus, 1.077 g/ml, GE Healthcare Life Sciences, Buckinghamshire, England) and centrifuged at

400×g for 30 min. The whole leukocytes resolved into two distinct bands, the upper containing

mononuclear cells (MNCs) and the lower containing neutrophils, and either fraction was har-

vested. MNCs in PBS with 10% fetal calf serum (Gibco) were further placed in Falcon culture

dishes (Becton Dickinson Labware, Oxnard, CA, USA) and incubated for 2 h at 37˚C in 5%

CO2. After incubation, the supernatant with the lymphocyte fraction was collected and the

nonadherent cells were further removed by vigorous washing with PBS. After the addition of 3

ml fresh warm 0.05% Trypsin-EDTA (Gibco) to the flask, the cells were further incubated for

five min at 37˚C in 5% CO2 and the adherent cells (monocyte fraction) were collected by tap-

ping the side of the flask. As in the case of saliva, cellular DNA was extracted, and the concen-

tration of the isolated DNA was determined. After blood and saliva cells bound on a glass slide

by CytospinTM 4 Cytocentrifuge (Thermo Fisher Scientific K.K., Tokyo, Japan), Wright-

Giemsa staining (Muto Pure Chemicals Co., Ltd., Tokyo, Japan) was performed, and 100

nucleated cells were counted and classified for each of the three slide glass specimens by using

an inverted microscope (Eclipse E600, Nikon, Tokyo, Japan) at 1,000× magnification.
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Telomere length determination by the monochrome multiplex quantitative

polymerase chain reaction method

TL quantitative polymerase chain reaction (QPCR) was performed with a Chromo4TM Real-

Time PCR Detection System (Bio-Rad, Tokyo, Japan) [23]. The telomere primers (telg and telc,
final concentrations 900 nM each) were used for the telomere signal and a set of single-copy gene

(scg) primers within β–globin genes (final concentrations 200 nM each) were used as a reference

with Power SYBRTM Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA).

The PCR cycle for monochrome multiplex QPCR (MMQPCR) was as follows: Stage 1: 1 cycle

of 2 min at 95˚C; Stage 2: 2 cycles of 5 s at 94˚C and 15 s at 49˚C; and Stage 3: 40 cycles of 5 s at

94˚C, 10 s at 62˚C, 15 s at 74˚C with signal acquisition (for the amplification of telomere tem-

plate), 10 s at 84˚C, and 15 s at 88˚C with signal acquisition (for the amplification of the scg tem-

plate). The same standard genomic DNA was used to establish two standard curve reactions in

every plate in the study, one for the telomere signal and one for the scg signal, which were used

for calculation of the T/S ratios (ratios of “telomere signals per scg signals”). As each experimental

sample was assayed in triplicate, three T/S results were obtained for each sample; the final

reported result for a sample in a given run is the average of the three T/S values and was named

relative telomere length (RTL). The average T/S is expected to be proportional to the average TL

per cell. Samples with an RTL> 1.0 have an average TL greater than that of the standard DNA;

samples with an RTL< 1.0 have an average TL shorter than that of the standard DNA.

TaqMan1 PCR assay

Genotyping for ADIPOQ rs1501299, Sirt-1 rs7895833 and FOXO3A rs2802292 was performed

using Custom TaqMan1 SNP Genotyping Assays (Applied Biosystems) in which a fluorogenic

probe consisting of an oligonucleotide labeled with both a fluorescent reporter dye (FAM or

VIC) and a quencher dye is included in a typical PCR [24]. Amplification of the probe-specific

product causes cleavage of the probe, generating an increase in reporter fluorescence [25].

Each primer and probe set was used in the TaqMan1 SNP Genotyping Assays (ID:

C___7497299_10, C__29163689_10 and C__16097219_10; Applied Biosystems) in accordance

with the information on the Applied Biosystems website (http://www.appliedbiosystems.com).

PCR was performed according to the manufacturer’s instructions provided by Applied Bio-

systems. In brief, one to 20 ng of template DNA dissolved in 2.25 μl in each well was loaded

into 96-well plates for PCR. The total reaction volume was 5 μl after adding 2.5 μl of TaqMan

Universal PCR Master Mix (2×) and 0.25 μl of 10× working stock of SNP genotyping assay

buffer (Applied Biosystems).

The PCR thermal cycling was as follows: Stage 1: 1 cycle of 2 min at 50˚C; Stage 2: 1cycle of

10 min at 95˚C for initial denaturing; Stage 3: 40 cycles of 15 s at 92˚C and 1 min at 60˚C. Ther-

mal cycling was performed using a Chromo4TM Real-Time PCR Detection System (Bio-Rad).

Each 96-well plate contained unknown genotype samples and three reaction mixtures contain-

ing the reagents but no DNA (no-template control). The no-DNA control samples were neces-

sary for Sequence Detection System (SDS) 7700 signal processing, as outlined in the TaqMan

Allelic Discrimination Guide. The genotypes were determined visually based on the dye compo-

nent fluorescence emission data depicted in the X-Y scatter plot of the SDS software.

Physiological and anthropometric measurements

Body height (cm) was measured using a metal height meter (YS-OS, AS ONE Co., Ltd., Osaka,

Japan). Weight (kg), body mass index [BMI (kg/m2)] and percentage of body fat (BF) (%) were

measured by a dual-frequency body composition analyzer (DC 430A, Tanita Co., Ltd., Tokyo,
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Japan) using bioelectrical impedance analysis. Waist circumference (WC) was measured at the

umbilicus to the nearest cm with the participant standing and breathing normally. Body tem-

perature (BT) (˚C) was measured using an electronic thermometer inserted into the armpit for

30 sec (ET-C205S, Terumo Co., Ltd., Tokyo, Japan).

Hypertension (HT) was defined as systolic blood pressure (SBP)�140 mm Hg, diastolic

blood pressure (DBP)�90 mm Hg, or the use of antihypertensive medications [26]. After a

more than 5 min rest, the SBP and DBP were measured by a trained physician or nurse using a

standard mercury sphygmomanometer (SeaStar, 070108041, Tokyo, Japan) with the partici-

pant in the sitting position. Two consecutive blood pressure measurements were taken at

2-min intervals, and the lower one was recorded as the blood pressure.

Measurement of carotid maximum intima-medial thickness (max IMT) (mm) through B-

mode ultrasonographic imaging was performed using C3cv (Aloka Medical, Ltd., Tokyo,

Japan) with a 6-MHz transducer in the right common carotid artery 1.5 to 3.0 cm proximal to

the bifurcation [27].

Measurements of the ankle brachial index (ABI) and brachial-ankle pulse wave velocity

(PWV) (cm/sec) were performed as follows. Brachial-ankle arterial blood pressures were

simultaneously measured using a noninvasive automatic device (model BP-203RPE-III; Nihon

Colin, Tokyo, Japan) after a 5-min rest in the supine position [27]. ABI was defined as the

ratio of systolic blood pressure in the ankle and the higher side of the two brachial arteries.

The PWV on each side was calculated as the transmission distance divided by the transmission

time. The transmission time between the right arm and both ankles was calculated using the

waveform. The transmission distance between the right brachium and ankle was automatically

calculated according to the height of the patient. PWV was evaluated on the higher side.

Saturation of peripheral oxygen (SpO2) was measured using a pulse oximeter device (ko-

001, Kohken Medical Co., Ltd., Tokyo, Japan).

Questionnaire survey

With the help of our trained staff, self-reported questionnaires were completed during atten-

dance, assessing attendants’ personal medical history (PMH) and antihypertension medication

use. PMH consisted of HT, stroke, acute myocardial infarction (AMI), chronic kidney disease

(CKD) with therapy for edema, hyperkalemia or anemia [28] and cancer (S2 Table). The score

for PMH was defined as the sum of the number of affected LRDs in PMH.

Ethical considerations

This study was approved by the Ethics Committee of Saitama Prefectural University (No.

27503). Before study enrollment, participants and normal volunteers who provided both saliva

and peripheral blood samples were asked to sign a consent and assent form that described the

background and procedures of the study.

Statistical analyses

Nonparametric statistics were used. Continuous variables are described as the

mean ± standard deviation (SD), and categorical variables are described as proportions. Unad-

justed differences between groups were performed by one-way analysis of variance (ANOVA)

for continuous variables and chi-square tests for categorical variables. Multivariable linear

regression analyses were used to test for adjusted differences with adjustments for the con-

founding effects of age and sex. Student’s t-test was performed to compare the differences in

means between the two groups. A two-tailed p value less than 0.05 was used to determine sig-

nificance. Statistical analyses were performed by IBM SPSS Statistics version 23.
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Results

Salivary and blood relative telomere length

In any of the three volunteers studied, there was no significant difference in RTL between the

DNA extracted from saliva and blood-derived whole leukocytes (S1A Fig). Similarly, in one

volunteer, there was no significant difference in RTL between the DNA extracted from blood-

derived neutrophils, lymphocytes and monocytes (S1B Fig).

Relative telomere length and LRD-related physiological and

anthropometric measurements

First, we examined the correlation between RTL and age. Age and RTL were inversely corre-

lated in men (p = 0.049, r = − 0.340, y = −9.258x + 82.429) and all participants (p = 0.034, r =

− 0.192, y = −7.711x + 76.857) but not in women (p = 0.073, r = − 0.194, y = −8.235x + 75.766)

(Fig 1 and S1 Table).

Next, we examined the association between RTL and LRD-related physiological and

anthropometric measurements. In men, the long RTL group (n = 17) had a significantly

greater height (167.5 ± 6.6 vs 162.1 ± 5.3 cm) and had a significantly lower pulse rate

(65.3 ± 12.6 vs 73.7 ± 15.5/min) than the short RTL group (n = 17) before (p = 0.011) and after

(p = 0.016) and before (p = 0.041) but not after (p = 0.092) age adjustment (S3 Table). RTL was

not associated with other LRD-related physiological or anthropometric measurements.

Relative telomere length and score for personal medical history

Frequencies of HT for men, women and all participants according to RTL quartiles are shown

in Fig 2A. The frequency of HT decreased in the order of 1st, 2nd, 3rd and 4th RTL quartiles

except for 4th RTL quartiles for women and all participants. Longer RTL quartiles had an

increasingly lower frequency of HT, especially for men. The p values for men, women and all

participants after adjustments for both sex and age were 0.130, 0.723 and 0.270, respectively.

In men, the frequency of HT was significantly lower in the long RTL group (3rd and 4th RTL

quartiles) than in the short group (1st and 2nd RTL quartiles) with unadjusted p value of 0.039,

and the difference in the frequency of HT between the two groups was of borderline statistical

significance after adjustment for age (p = 0.057) (Fig 2B). The p values for women and all par-

ticipants after adjustments for both sex and age were 0.597 and 0.146, respectively.

In both men and all participants, the PMH score was also significantly higher in the short

RTL group than in the long RTL group after adjustments for both age and sex with respective

p values of 0.004 and 0.029 (Table 1).

For men, women and all participants, the score for personal medical history (PMH) was

shown by relative telomere length (RTL) as shown in the materials and methods. The score for

PMH was determined and is expressed as the mean ± standard deviation of the sum of the

number of affected lifestyle-related diseases in PMH as shown in the materials and methods.

The number of participants whose PMH score was completed was shown in parentheses. The

p value was computed using multivariable linear regression analysis to investigate the associa-

tion between PMH score and RTL, and was expressed after adjustments for both sex and age.

SNPs, LRD-related physiological and anthropometric measurements and

scores for personal medical history

For ADIPOQ rs1501299, the ABI of men was significantly higher in carriers of the T/T geno-

type than in those with the G/G and G/T genotypes, with p values of 0.001 and 0.000, respec-

tively (Table 2). For SIRT1 rs7895833, the BMI and WC of men were significantly higher in
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carriers of the A/G genotype than in those with the G/G genotype, with respective p values of

0.048 and 0.032. The PWV of all participants was also significantly higher in carriers of the A/

G genotype than in those with the G/G genotype, with a p value of 0.035. For FOXO3A
rs2802292, the BT of women and SpO2 of all participants were significantly lower in carriers of

the G/T genotype than in those with the T/T genotype, with respective p values of 0.039 and

0.032. ADIPOQ rs1501299 in men, but not the other two SNPs, was significantly associated

with the PMH score by genotype (p = 0.013).

Fig 1. Cross-sectional analysis of age-dependent shortening of salivary relative telomere length. For each point, the

age (yr) of the participant (x-axis) is plotted against salivary relative telomere length (RTL) (y-axis) for men (upper

column), women (middle column), and all participants (lower column). The linear regression equation and correlation

coefficient were determined using Microsoft Excel.

https://doi.org/10.1371/journal.pone.0243745.g001
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In men, women and all participants, the results for LRD-related physiological and anthro-

pometric measurements, RTL and frequency of HT not associated with any of the three SNPs

by genotype are shown in S4 Table.

Reproducibility of salivary relative telomere length measurements

Finally, to examine inter-assay reproducibility, we repeated the measurements of salivary RTL

in the same 120 DNA samples as in Fig 1, again in triplicate, on another day. Fig 3 shows the

strong correlation between the salivary RTL determined by the first and second runs (R2 =

0.9061).

Discussion

We successfully determined RTL and genotypes of the three SNPs by using DNA from passive

drool saliva in any of the 120 participants. However, caution is warranted when comparing TL

measured from saliva obtained through passive drool and saliva obtained using swabs or

sponges as the percentage of buccal cells in the latter is significantly higher than that of the for-

mer [29]. We confirmed in three volunteers that there was no significant difference in RTL

Fig 2. Frequencies of hypertension by quartiles of salivary relative telomere length. (A) Frequencies of hypertension (HT) for men, women and all participants in the

1st [66.7% (6/9), 52.4% (11/21) and 56.7% (17/30), respectively], 2nd [62.6% (5/8), 45.5% (10/22) and 50.0% (15/30), respectively], 3rd [30.0% (3/10), 40.0% (8/20) and

36.7% (11/30), respectively] and 4th [28.6% (2/7), 43.5% (10/23) and 40.0% (12/30), respectively] quartiles of relative telomere length (RTL) are shown. The frequency of

HT was determined by using data in S1 Table. The RTL levels increase in the order of 1st, 2nd, 3rd and 4th RTL quartiles. For men, women and all participants, the p value

was computed using multivariable linear regression analyses to investigate the association between frequency of HT and RTL, and was expressed after adjustments for

both sex and age. (B) Frequencies of HT for men, women and all participants are also shown in two groups, one with a combination of 1st and 2nd RTL quartiles [64.7%

(11/17), 48.8% (21/43) and 53.3% (32/60), respectively], and the other with a combination of 3rd and 4th RTL quartiles [29.4% (5/17), 41.9% (18/43) and 38.3% (23/60),

respectively]. The p value was determined and expressed as shown in (A).

https://doi.org/10.1371/journal.pone.0243745.g002

Table 1. The association of score for personal medical history with relative telomere length.

Sex Relative telomere length p value

short long

Men 0.941±0.556 (17) 0.353±0.493 (17) 0.004

Women 0.692±0.694 (39) 0.524±0.632 (41) 0.33

All 0.768±0.660 (56) 0.483±0.599 (58) 0.029

https://doi.org/10.1371/journal.pone.0243745.t001
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measured using passive drool saliva and blood-derived whole leukocytes. In one volunteer, the

proportion of neutrophils in passive drool saliva was as high as 78.27 ± 6.03% (mean ± SD of

triplicate measurements). To date, a growing body of evidence has shown that TL measure-

ment using passive drool saliva instead of blood-derived whole leukocytes is quite useful [30–

32].

Table 2. The association of SNPs with LRD-related physiological and anthropometric measurements and scores for personal medical history.

SNPs Sex Genotype Age BMI WC BT ABI PWV SpO2 PMH

no. (%) y.o. score

n = 120 n = 120 n = 110 n = 120 n = 106 n = 120 n = 120 n = 119 n = 114

ADIPOQ Men GG 18 (53) 75±4 23.3±1.5 88±5 36.1±0.8 1.15±0.06a 1656±288 96.3±1.4 0.89±0.58c

GT 14 (41) 72±7 22.2±2.6 83±8 36.1±0.6 1.14±0.06b 1545±224 96.5±1.4 0.356±0.50c

TT 2 (6) 73±3 20.6±6.4 79±16 36.1±0.1 1.38±0.20a, b 1472±33 96.5±0.7 0.50±0.71c

Women GG 56 (65) 68±7 21.8±3.0 83±9 36.0±0.5 1.12±0.07 1574±338 96.2±1.3 0.61±0.64

GT 21 (24) 65±9 22.1±3.1 85±10 36.1±0.5 1.11±0.06 1471±300 96.8±1.0 0.45±0.61

TT 9 (11) 70±5 21.8±2.2 80±8 35.7±0.7 1.09±0.09 1813±357 96.4±1.6 1.00±0.87

All GG 74 (62) 70±7 22.2±2.7 84±9 36.0±0.6 1.13±0.07 1594±326 96.3±1.3 0.68±0.63

GT 35 (29) 68±7 22.1±2.9 84±10 36.1±0.6 1.12±0.06 1500±271 96.7±1.2 0.41±0.56

TT 11 (9) 70±5 21.5±3.0 80±9 35.6±0.6 1.14±0.15 1751±348 96.4±1.4 0.91±0.83

SIRT1 Men AA 3 (9) 71±4 21.0±2.0 82±6 35.5±2.0 1.16±0.08 1619±156 96.0±1.0 0.67±0.58

AG 12 (35) 75±4 24.1±2.1d 90±5e 36.2±0.7 1.18±0.12 1703±201 96.1±1.6 0.75±0.45

GG 19 (56) 72±6 22.0±2.3d 82±8e 36.1±0.4 1.15±0.06 1531±286 96.7±1.3 0.58±0.69

Women AA 7 (8) 73±2 23.4±1.5 85±5 35.8±0.8 1.11±0.07 1590±284 96.0±2.2 0.86±0.90

AG 39 (45) 68±6 21.5±2.7 83±9 36.1±0.5 1.12±0.06 1651±355 96.4±1.3 0.66±0.68

GG 40 (47) 66±8 22.0±3.2 83±10 36.0±0.5 1.11±0.07 1496±323 96.4±1.1 0.53±0.60

All AA 10 (8) 73±3 22.6±2.0 84±5 35.7±1.2 1.12±0.07 1599±244 96.0±1.8 0.80±0.79

AG 51 (43) 70±7 22.2±2.8 84±9 36.1±0.5 1.13±0.08 1663±325f 96.3±1.4 0.68±0.63

GG 59 (49) 68±8 22.0±2.9 83±10 36.0±0.5 1.13±0.08 1507±310f 96.5±1.2 0.54±0.63

FOXO3A Men TT 19 (56) 73±6 22.6±2.3 85±8 36.0±0.5 1.18±0.10 1534±165 96.6±1.2 0.63±0.68

GT 15 (44) 74±4 22.7±2.6 85±8 36.1±0.9 1.14±0.06 1682±329 96.1±1.6 0.67±0.49

Women TT 50 (58) 69±7 21.9±3.0 84±10 36.1±0.5g 1.12±0.06 1565±336 96.6±1.2 0.59±0.68

GT 36 (42) 67±7 21.9±2.9 81±8 35.8±0.5g 1.11±0.07 1586±350 96.1±1.3 0.65±0.66

All TT 69 (58) 70±7 22.1±2.8 84±10 36.1±0.5 1.14±0.08 1556±298 96.6±1.2h 0.60±0.67

GT 51 (42) 69±7 22.1±2.8 83±8 35.9±0.7 1.12±0.08 1614±344 96.1±1.4h 0.65±0.61

For men, women and all participants, and for any of the three types of SNPs by genotype, data are expressed as the mean ± standard deviation. The p value was

computed using multivariable linear regression analysis to investigate the association of genotype with lifestyle-related disease-related physiological and anthropometric

measurements and scores for personal medical history, and was expressed after adjustments for both sex and age.

Abbreviations: SNPs, single nucleotide polymorphisms; Age, age (yr); RTL, relative telomere length; BMI, body mass index (kg/m2); WC, waist circumference (cm); BT,

body temperature (˚C); ABI, ankle brachial index; PWV, brachial-ankle pulse wave velocity (cm/sec); SpO2, saturation of peripheral oxygen (%); PMH, personal medical

history.
a p = 0.001
b p = 0.000
c p = 0.013
d p = 0.048
e p = 0.032
f p = 0.03
g p = 0.039
h p = 0.032

https://doi.org/10.1371/journal.pone.0243745.t002
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As previously reported [33], the long RTL group (3rd plus 4th) had a significantly lower fre-

quency of HT than the short group (1st plus 2nd) only in men with unadjusted p value of 0.039,

and the difference was of borderline statistical significance after age adjustment (p = 0.057).

Furthermore, compatible with a previous report [34], our present study found a significant

association between the PMH score and RTL in men and all participants. In the present study,

LRDs consisted mainly of cardiovascular diseases and cancer. Inconsistent with previous

reports [35, 36], however, RTL did not correlate with SBP, DBP or pulse pressure because of

the frequent use of antihypertension medication in the present study (40/120; 33.3%).

The overall effect of individually unique environmental factors during adult life, such as

energy intake, lifestyle, socioeconomic status and mental stress, is relatively small compared

with the joint effect on TL of heritability and shared environmental factors, which is estimated

at ~87% [37]. In addition, in recent years, medical treatment and preventive medicine have

made remarkable progress [38]. Interestingly, the Mendelian randomization approach, which

usually avoids the potential confounding effect of environmental exposure on the relation

between phenotypically measured TL and risk of ischemic stroke, has shown that genetically

predicted TL is not associated with ischemic stroke [8]. The effect of heritability on TL is pre-

sumed to be weaker in the middle-aged to elderly subjects in the present study than in the

younger subjects. For these reasons, in the present study as well, it seems likely that RTL

appears to be more strongly associated with the combination of heritability and shared envi-

ronmental factors than heritability or individual-specific environmental factors alone, in terms

of predisposition to the development of LRDs.

In the present study, men in the long RTL group were shown to be significantly taller than

those in the short RTL group. Although it is undeniable that bone mineral density may be

maintained with long TL [39], it would be more correct to say that height is not a risk factor

for LRDs.

Fig 3. Reproducibility of salivary relative telomere length in independent runs. The same 120 salivary DNA

samples assayed in Fig 1 were assayed again on different days. The linear regression equation and correlation

coefficient were determined using Microsoft Excel.

https://doi.org/10.1371/journal.pone.0243745.g003
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Associations between the SNPs and LRD-related physiological or anthropometric measure-

ments in the present study were as follows: for ADIPOQ rs1501299, in accordance with previ-

ous papers [16, 19], men’s ABI was higher in the T/T genotype than in the G/G or G/T

genotype; for SIRT1 rs7895833, consistent with previous papers [17, 18], men’s BMI and waist

circumference and all participants’ PWV were higher in the A/G genotype than in the G/G

genotype; for FOXO3A rs2802292, women’s BT and all participants’ SpO2 were lower in the G/

T genotype than in the T/T genotype. We confirmed again in the peresent study that the Japa-

nese allele frequencies for SIRT1 rs7895833 [17], which are different from those of Caucasians

[18], might explain why Japanese individuals show less marked obesity than Caucasians. Con-

sistent with a role for FOXO3 in suppression of insulin/insulin-like growth factor and thus

growth to extend lifespan, the longevity-associated G allele variant of FOXO3A rs2802292
seems to be associated with lower BT and SpO2 [9, 40].

Compatible with previous reports [16, 19], only ADIPOQ rs1501299, but not the other two

types of SNPs showed a significant correlation with both risk factors for and PMH score of

LRDs. In any of the three SNPs, there was no significant difference in the frequency of HT or

RTL by genotype.

Many studies have shown that TL is a heritable trait, and SNPs in several candidate genes

including TERT (telomerase reverse transcriptase), TERC (telomerase RNA component),

OBFC1 (oligonucleotide/oligosaccharide-binding folds containing one), CTC1 (conserved

telomere maintenance component 1) and ZNF676 (zinc fingerprotein676) have been identified

to be significantly associated with TL [2, 41]. These genes have limited genetic variations and

encode proteins that are thought to be involved either in TL maintenance or with telomere

binding proteins necessary for telomere stability and structure. Exceptionally, fat mass- and
obesity-associated (FTO) genes have been shown to be associated with obesity and TL [7], and

the FOXO3 G allele of SNP rs2802292 significantly protected against aged-related TL loss rela-

tive to that of carriers of the common TT genotype [42]. However, we could not find any asso-

ciation between RTL and genotype in any of the three SNPs examined in the present study.

SNPs are the most common type of human genetic variation and have been associated with

disease development and phenotypic forecasting [43]. Although GWAS identified genetic vari-

ants involved in complex phenotypes, the fraction of heritability of common traits and diseases

explained by the identified loci is small [44]. The reason for this small proportion of the herita-

bility of these complex traits is still unclear, but the causes can involve epistatic effects, genetic

interactions inside undiscovered pathway or underestimated genotype-environment interac-

tions [45, 46].

SIRT1 also regulates a stress-response transcription factor, FOXO3, thereby modulating cel-

lular senescence/aging, skeletal muscle function, cardiovascular homeostasis, and human lon-

gevity [9, 40, 47]. Furthermore, telomeres have been shown to be closely associated with

sirtuin [48] and FOXO3 [42]. Therefore, further studies are required to clarify the exact corre-

lation between the two SNPs and TL.

DNA methylation is capable of controlling the gene expression of common traits and influ-

encing the development of aberrant health outcomes under external exposure [49]. Recently,

an epigenetic ‘mortality risk score’ based on whole blood DNA methylation at 10 mortality-

related CpG sites has been shown to be strongly associated with TL and even more strongly

associated with all-cause mortality [50]. However, TL failed to correlate with all-cause mortal-

ity. DNA methylation studies of the SNPs may further clarify the relationship among SNPs, TL

and LRDs [51].

In the present study, the frequency of the significant association of genetic factors with

LRDs was higher in men than in women. It is presumed that the reason is, in part, that men

have a higher prevalence of LRDs, especially cardiovascular disease, and a shorter life
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expectancy than women in specific age groups, 50–70 [52]. The number of subjects in this

study was small, 34 men and 86 women, with a total of 120, so the results of the study may be

limited; however, none of the 34 men were excluded (S1 Table). In any case, further studies are

required to confirm our present results.

Conclusion

Over the course of a year and in a single facility, we showed that RTL and the three types of

SNPs determined using saliva are differentially associated with onset of and measured risk fac-

tors for LRDs consisting mainly of cardiovascular diseases and cancer in Japanese individuals

living in a small area near our university.
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