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ABSTRACT
Adaptive success in the biosphere requires the dynamic ability to adjust physiological, transcriptional,
and behavioral responses to environmental conditions. From chemical networks to organisms to
whole communities, biological entities at all levels of organization seek to optimize their predictive
power. Here, we argue that this fundamental drive provides a novel perspective on the origin of
multicellularity. Oneway for unicellular organisms tominimize surprise with respect to external inputs
is to be surrounded by reproductively-disabled, i.e. somatic copies of themselves – highly predictable
agents which in effect reduce uncertainty in their microenvironments. We show that the transition to
multicellularity can be modeled as a phase transition driven by environmental threats. We present
modeling results showing howmulticellular bodies can arise if non-reproductive somatic cells protect
their reproductive parents from environmental lethality. We discuss how a somatic body can be
interpreted as a Markov blanket around one or more reproductive cells, and how the transition to
somatic multicellularity can be represented as a transition from exposure of reproductive cells to
a high-uncertainty environment to their protection from environmental uncertainty by this Markov
blanket. This is, effectively, a transition by the Markov blanket from transparency to opacity for the
variational free energy of the environment. We suggest that the ability to arrest the cell cycle of
daughter cells and redirect their resource utilization from division to environmental threat ameliora-
tion is the key innovation of obligate multicellular eukaryotes, that the nervous system evolved to
exercise this control over long distances, and that cancer is an escape by somatic cells from the control
of reproductive cells. Our quantitative model illustrates the evolutionary dynamics of this system,
provides a novel hypothesis for the origin of multicellular animal bodies, and suggests a fundamental
link between the architectures of complex organisms and information processing in proto-cognitive
cellular agents.
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Introduction

The unicellular lifestyle dates back to the origin of life on
Earth some 3,900 million years ago (Mya) [1] and
remains successful today, with the vast majority of
genetic as well as niche diversity found in the unicellular
microbial world [2]. Unicellular prokaryotes and later,
eukaryotes also developed facultatively multicellular life-
styles, e.g. in microbial mat communities, involving
mutual dependence and division of labor (reviewed by
[3–5]). Eukaryotes developed, in addition, the obligate
multicellular lifestyle; indeed the eukaryotic cell is itself
sometimes regarded as the initial obligate multicellular
organism [6]. Unlike facultative multicellularity, obligate
multicellularity compromises or altogether eliminates the
independent reproductive fitness of at least some of the
cells involved. What would induce cells to give up inde-
pendent reproductive fitness in favor of a completely-
dependent lifestyle as part of an obligate multicellular
organism? This question is often answered by the analogy

of a “contract” in which cells cooperatively surrender
independent reproductive fitness for the benefits of
group selection [7,8]; however, the mechanisms driving
such arrangements have remained unclear. Here we sug-
gest that obligate multicellularity provides a solution,
typically satisficing not optimizing, to the problem of
minimizing errors in the prediction of the behavior of
the environment. The selection pressure for obligate
multicellularity is, if this is correct, essentially thermo-
dynamic [9,10].

While facultative multicellularity is commonplace
amongboth prokaryotes and eukaryotes, obligatemorpho-
logically-complexmulticellularity is rare, occurring in only
five eukaryotic clades (reviewed by [1,11,12]). Somatic
multicellularity, in which cell division is restricted wholly
or significantly to specialized stem and/or germ cells, is
characteristic of the Metazoa. Following Haeckel [13], it
has long been theorized that ancestral metazoa were
clonal colonies of morphologically-identical cells. Recent
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ultrastructural and phylogenomic studies have established
choanoflagellates as the closest extant unicellular relatives
of metazoa [14] and provided significant new evidence to
support James-Clark’s [15] hypothesis that choanoflagel-
lates are homologous to sponge choanocytes, and hence
that facultative rosette colonies of choanoflagellates are
plausible models of ancestral multicellularity [16]. Such
studies also suggest that multicellularity may be
a Holozoan character predating the choanoflagellate –
metazoan split [1,12]. Funayama [17,18] has suggested
that choanocytes are ancestral to the ameboid archeocyte
stem cells of demosponges, consistent with the observation
of alternating flagellate and ameboid forms elsewhere in
the unicellular holozoa [12].

Obligate, morphologically-complex multicellularity is
a canonical major transition in evolution, establishing the
multicellular organism as a Darwinian individual charac-
terized by genetic interests and reproductive fitness [6,19].
As Szathmáry [6] emphasizes, the division of labor possi-
ble with multicellularity enables fitness-increasing syner-
gistic interactions between distinct cell types, and hence
specific selection for such interactions. Models of the
evolution of complex multicellularity have, accordingly,
focused on fitness and selection at the whole-organism
level [7,8,20–22]. Motivated by Solana’s [23] primordial
stem cell hypothesis, experimental and modeling results
suggesting that stem cells (neoblasts) in asexual fresh-
water planaria remain Darwinian individuals [24] and
by a conception of cancer as an escape from organism-
scale control [25–28], here we consider the selection
pressures that could drive a transition to multicellularity
from the perspective of a single reproductive cell. We
suggest that the largely-somatic multicellular bodies of
metazoa can, in general, be considered protective envir-
onmental niches constructed by stem and/or germ cells to
assure their own future reproductive fitness. We formu-
late this suggestion in terms of the Free Energy Principle
(FEP) defined by Friston [9,10] as the claim that repro-
ductive (proto-)stem cells construct multicellular bodies
in order to reduce the variational free energy of informa-
tion exchange with the immediate environment and
hence to minimize prediction error as regards their own
survival. From this FEP perspective, somatic multicellu-
larity is a natural outcome of environmental challenges
faced by free-living cells, with the primary genetic driver
of multicellularity being the development of intercellular
signals for cell-cycle arrest. In this “imperial” model of
multicellularity [24], reproductively-competent stem and/
or germ cells produce reproductively-incompetent
somatic cells in order to advance their own genetic inter-
ests by establishing an environment-facing cellular layer
that reduces uncertainty and improves predictive power
(and thus physiological adaptation) for the internal cells.

We begin by considering the effects of increasing
environmental lethality, due to predators, pathogens,
toxins or other threats, on populations of dividing cells
in environments with different resource levels. Using
a simple parametric model, we show that the combina-
tion of high resource levels with high lethality favors
a phase transition from a rapidly-dividing population to
one in which significant resources are devoted to redu-
cing environmental threats. We then generalize from
environmental lethality to any source of high variational
free energy [9,10]. We suggest that a protective environ-
ment composed of reproductively-disabled progeny pro-
vides a satisficing, though not necessarily optimal,
solution to the problem of minimizing variational free
energy and hence prediction error. Using a quantitative
model of stem and somatic cells in an external environ-
ment characterized by varying levels of lethality, we
investigate the parameter dependence of the transition
to multicellularity. We show that a protective multicellu-
lar body can be modeled as a Markov blanket that under-
goes a phase transition to informational opacity as the
environmental free-energy buffering capacity of somatic
progeny is increased. Finally, we review evidence that the
ancestral genetic toolkit of holozoans is sufficient to sup-
port the transition to multicellularity. We discuss these
results from two perspectives: that of individual cells as
information processing units that can be assembled into
a computational interface with the environment, and that
of cancer as an escape by somatic cells from “imperial”
oversight and control.

Methods

The model simulation employs a 30 by 60 grid of pos-
sible cell locations (1800 total) with lethality varying
from 0% per stem cell division cycle to 100% per stem
cell division cycle along the long axis in 60 equal incre-
ments. Stem cells are seeded in random positions at 5%
density. The probability that a stem cell will die before
reproducing is determined by the lethality b of the cell it
occupies, multiplied by the protection β it receives from
neighboring somatic, i.e. non-reproductive cells, if any.

The level a of reproductive resources for stem cells in
the environment is fixed by a parameter setting. The local
resource level αa, where the parameter α represents the
availability of reproductive resources to a stem cell at
a given location, determines the probability of stem-cell
division at that location on each cycle. The value of α for
a stem cell is reduced by 20% for each neighboring stem
cell by default; this reduction parameter is adjustable. If
the production of somatic progeny is enabled, the
resource availability α for a stem cell is increased by 20%
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for each neighboring somatic cell by default; this para-
meter is also adjustable.

Stem cells are only allowed to divide if they have
a neighboring open cell; this restriction models the
relative rigidity of the somatic body.

Somatic cells protect neighboring cells, stem or
somatic, by an adjustable factor β. Somatic cells resist
lethality by an adjustable factor, with a default of 20%.

The model simulation is implemented in javascript
using the HTML 5 Canvas function for display. All
probabilities are calculated by comparing random num-
bers generated by the javascript Math.random function
to parameterized limit values. The simulation is available
for use and its source code can be examined at https://
chrisfieldsresearch.com/somatic-protection-model.htm.

Results

Environmental challenges drive a phase transition
from reproduction to protection

A multicellular body composed primarily of reproduc-
tively-disabled somatic cells is a eukaryotic innovation
widely recognized as a major evolutionary transition
[6,19]. Why, however, would an ancestral eukaryotic cell
devote reproductive resources to the generation of non-
reproductive progeny? Doing so manifestly decreases
reproductive fitness. What selective environment would
tolerate and even reward this fitness-decreasing strategy
long enough to enable the cellular differentiation and
synergistic interactions characteristic of complex multi-
cellularity to arise?

Here we suggest that a high-resource environment that
is also high in potential lethality, e.g. due to the presence of
predators, pathogens, toxins, changing conditions, or other
threats, rewards the investment of reproductive resources
to produce amulticellular somatic body, provided the body
is capable of protecting its reproductive cells from the
environment. Such a high-lethality environment imposes
a conflict between the demands of short-term reproductive
fitness and short-term survival; a protective body resolves
this conflict in favor of survival at the expense of fitness. In
this picture, the primary evolutionary innovation enabling
the multicellular lifestyle is not increased cooperation
between reproductively-competent cells as suggested by
either “fraternal” or “egalitarian” aggregation-basedmodels
[7,8] (see also [29] for a review of aggregation-based mod-
els), but rather the ability of a reproductively-competent cell
to actively suppress the reproductive potential of its somatic
progeny. This innovation is most fully expressed in obli-
gately-sexual organisms in which a single, gamete-
producing stem cell lineage, i.e. a specific germ lineage, is
the sole carrier of reproductive fitness.

To describe this situation quantitatively, consider
a uniform population of free-living, reproductive cells
in a resource-rich environment, and let τ be the mini-
mal cell-cycle time for these cells. If every cell divides in
each period of length τ, then the population size N(t)
after n cycles, i.e. at t = nτ is:

N tð Þ ¼ N0 � 2n

where N0 is the initial population size. If only r of the
cells divide on each cycle, we can write:

N tð Þ ¼ N0 � rn

Now let us consider an environment in which:

r ¼ 1þ αað Þ � 1� βbð Þ
where 0 ≤ a,b ≤ 1 are parameters describing the envir-
onment and 0 ≤ α,β ≤ 1 are parameters describing the
cells. These parameters are interpreted as follows:

● a measures the availability of resources for repro-
duction in the environment, with a = 0 being
starvation conditions allowing population mainte-
nance only and a = 1 being sufficient resources for
(in practice) unlimited growth.

● b measures the lethality of the environment, with
b = 0 being completely benign and b = 1 being
complete lethality for the population in question.

● α measures the efficiency with which available
resources are employed for reproduction by a given
cell, with α = 0 being minimal and α = 1 maximal
efficiency.

● β measures the degree to which dividing cells are
exposed to the environment, with β = 0 complete
protection from the environment and β = 1 com-
plete exposure.

Maximum population growth is clearly achieved when
a = α = 1 and either b = 0 or β = 0.

For independent, free-living cells, we can set
α = β = 1, i.e. the cells employ all available resources
for reproduction and are fully exposed to the environ-
ment. In this case, increasing the environmental lethality
b causes population collapse as shown in Figure 1, with
populations in resource-poor environments (i.e. a < 1)
collapsing sooner but no populations able to maintain
growth above b = 0.5.

What happens, however, when cells are able to divert
some fraction of the available resources from reproduc-
tion to protection, i.e. to shielding themselves from the
environment? At high resource levels and low lethality,
this is a low-fitness strategy: the resulting protected popu-
lations are lower than unprotected free-living popula-
tions, even when losses due to environment lethality are
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taken into account. As lethality increases, however, this
ceases to be the case, as shown in Figure 1. Population
survival past b = 0.5, in particular, requires protection
from the environment regardless of resource level or
resource-usage efficiency. A fitness-optimizing popula-
tion would, therefore, be expected to undergo a phase
transition from unprotected to protected at a critical
point in b, the lethality level at which the declining free-
living population reached the protected population sus-
tainable at the achievable values of α and β. Population
survival (i.e. r ≥ 1) requires βb ≤ αa/(1 + αa). We show
below that this phase transition can be represented as
crossing a percolation threshold, here given by the
above inequality.

The phase transition shown in Figure 1 is, we suggest,
the phase transition to complex multicellularity imple-
mented by the free-living holozoan ancestors of the meta-
zoa. It is highly plausible that the period between the rise
of heterotrophic eukayotes, i.e. predators roughly 800
Mya [1] and the appearance of multicellular Ediacaran
fauna roughly 575 Mya saw not only rapid eukaryotic
diversification but multiple instances of population-scale
exposure to high-lethality environmental change. Such
changes can be expected to have imposed severe selective
pressure inducing multiple population bottlenecks. In the
sections that follow, we employ Friston’s [9,10] FEP to
develop a scenario in which a reproductively-disabled
somatic body is a solution to the challenge of protecting
oneself from a challenging environment.

Survival as minimization of prediction error

The FEP characterizes organisms as systems that
behave so as to minimize the variational free energy
(VFE) of their environments [9,10]. The VFE of the
environment measures the unpredictability – the “var-
iational freedom” – of the environment and hence the
mismatch between the environment’s behavior and the
organism’s expectations about its behavior. Zero VFE
corresponds to perfect predictability of its environment
by an organism or, equivalently, of an organism by its
environment. Minimizing net information flow mini-
mizes net energy transfer; hence minimization of VFE
is a least-action principle analogous to the energetic
least-action principles of physics [30]. In a Bayesian
setting, zero VFE corresponds to equality between pos-
terior and prior probabilities, where both provide com-
pletely accurate accounts of outcomes. While the FEP
has primarily been applied in a cognitive-neuroscience
context, it is a general principle applicable to organism-
environment dynamics at evolutionary, developmental,
or learning time scales [10,31].

Living beings face numerous challenges due to the
ever-changing chemical, physical, and biological events
in their immediate environment. Successful organisms,
tissues (e.g. populations of neurons [32]), and even socie-
ties (e.g. swarm intelligence [33]) must act in order to
adaptively respond to these challenges [34,35]. Gene-
regulatory networks, organelle machinery, cell behaviors,
system-level physiological changes, and behavior are
among the mechanistic options available to biosystems
at multiple scales in the face of stresses. As Friston [10]
has emphasized, maintenance of homeostasis is the fun-
damental predictive problem faced by any organism, and
the probability of continuing homeostasis is the funda-
mental prior probability for any organism. To incorporate
reproductive fitness, we can extend the meaning of
“homeostasis” to include maintaining the cell cycle at
the rate allowed by the environment. Prediction failures,
i.e. differences between posterior and prior probabilities
of continuing homeostasis, including continuing repro-
duction, can be addressed either by revising priors (i.e.
learning) or acting in a way that alters the posteriors
(“active inference”). An important special case of the
former is revision of Bayesian precision assignments to
either environmental inputs or expectations, implemen-
ted in humans by changes in salience and attention [36].

A threatening environment challenges the mainte-
nance of homeostasis and therefore has high VFE;
a lethal environment takes this challenge to the extreme.
We can, from this perspective, see the phase transition
from growth to protection shown in Figure 1 as an

Figure 1. Plots of population growth rn for n = 10 from a single
initial cell as functions of environmental lethality b under dif-
ferent assumptions. Pink, blue and purple curves show the
effect of decreasing resource levels on the rate of population
collapse as lethality increases. Light and dark green curves
show relative stability of fully (β = 0) or partially (β = 0.4)
protected populations at different levels of resource-use
efficiency.
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instance of active inference, i.e. behavior change that
preserves the prior probability for continuing homeosta-
sis. What is this behavior change? Merely curtailing cell
division is not by itself protective. In facultative multi-
cellular eukaryotes such as Dictyostelium, mitotic arrest
followed by aggregation, collective motility, differentia-
tion and spore formation increases the probability of
population-level survival. The Dictyostelium spore, like
spores in general, is a differentiated form that isolates
the cellular components needed for later reproduction
from the environment. Spore-generating cells actively
induce the cell-cycle arrest and differentiation of the
supporting stalk cells, which do not contribute DNA to
the subsequent population, by secreting small-molecule
morphogens [37,38]. Here we suggest that obligate multi-
cellular organisms adopt a very similar strategy, in which
reproductive cells actively induce cell-cycle arrest and
differentiation by cells dedicated to protection against
the environment. The key difference between obligate
and facultative multicellular strategies is that in obligate
multicellular organisms, reproductive cells induce differ-
entiation and disable reproduction in their own progeny.

To make this suggestion precise, consider a cell
C with time-varying state c(t) is embedded in an uncer-
tain environment E with time-varying state e(t).
Consider the cellular state c(t) to have two orthogonal
components, c(t) = a(t) × p(t) defined by the the actions
of functions:

A : E ! C;A : e tð Þ ! a t þ δtð Þ andP : C ! C; P : c tð Þ
! p t þ δtð Þ;

for some suitably small time increment δt. We interpret
A as the action of E on C to produce an “input state”
a(t+ δt) and P as the prediction by the cell C of its future
“internal state” p(t+ δt). The implementations of these
state components may be, for example, the state of all
membrane-bound receptors and channels at t for a(t)
and the combined metabolome and transcriptome state
at t for p(t). The prediction implemented by P is accurate
(optimal) if the cell’s behavior given p(t) is an optimal
response to the environmental conditions e(t) and hence
to a(t); in this case, we can (abusing the notation some-
what) write p(t) = a(t). The prediction is satisficing if C is
able to maintain homeostasis; clearly some satisficing
solutions have higher fitness than others. The prediction
function P implements, in this case, a “model” of the
E – C interaction, in the sense defined by Conant and
Ashby [39] in stating the good-regulator theorem; C can
be viewed as regulating its interaction with E by using this
model. Having an accurate model minimizes prediction
error andmaximizes fitness within the constraints dictated
by the environment.

We can, similarly, consider the environmental state e(t)
to have two orthogonal components, e(t) = r(t) × v(t)
defined by the the actions of functions:

R : C ! E;R : c tð Þ ! r t þ δtð Þ andV : E ! E; V

: e tð Þ ! v t þ δtð Þ;
where we interpret R is the reaction ofC on E and V is the
variation by E that generates its future state. From an
informational perspective, the components C and E are
symmetric; however, for simplicity we can assume E is
“large” enough that R is negligible, so that e(t) ~ v(t). The
interaction between C and E is summarized in Figure 2.
The prediction problem faced by C is the problem of
minimizing the difference Δ(t) = |a(t) – p(t)| between its
input a(t) from E and its prediction p(t). An accurate
or optimal solution to this minimization problem has
Δ(t) = 0; a satisficing solution has 0 < Δ(t) ≤ Δlethal,
where Δlethal is the prediction error sufficient to cause
cell death.

As a simple example, suppose the states c(t) are
vectors in R2 with norms |c(t)| ≤ 1 for all t, the states
e(t) are real numbers in [0,1], the functions V, A, R,
P [0,1]: → [0,1], the value V(e(t)) and hence e(t) is
random as a function of t, and the function A(t) can be
represented by a(t + 1) = β · e(t), with 0 ≤ β ≤ 1 as
above representing the degree to which a(t) is
“exposed” to e(t). Assume that P is the “homeostatic
success” prediction that E and A are invariant, i.e. p
(t + 1) = a(t). In this case, the prediction error Δ → 0 as
β → 0. As β → 1, Δ(t) → random due to the random-
ness of e(t). The lethality b of the environment can, in
this case, be identified with the level Δlethal of prediction
error that is fatal; the fraction of cells that implement
insufficiently accurate predictions and therefore die is
βb = βΔlethal.

Thismodel can clearly be extended tod real dimensions,
variation in each ofwhich is restricted to [0,1], representing
distinct degrees of freedom of E that C needs to predict
sufficiently accurately to maintain homeostasis and hence
survive. If these dimensions are independent (i.e. orthogo-
nal in R2d) and a prediction failure for any one dimension
k is lethal (i.e. Δk > Δlethal(k)), then any one of 2d−1 distinct
prediction failures will be lethal. In this case, survival is

Figure 2. Interaction between an environment E and an
embedded cell C. The functions V and P specify environmental
variation and cellular predictions, respectively.
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reasonably probable only if the environmental exposure
β ~ 2−d. Free-living cells with d independently-lethal
dimensions thus face an exponential prediction problem;
solving this problem and hence surviving is clearly infea-
sible as d becomes large. Controlling the effective dimen-
sionality of the environment is thus a key component of
VFE reduction.1 Geometrically-symmetrical aggregates of
identical cells in which all cells are equally exposed to the
environment, e.g. Volvox colonies or choanoflagellate
rosettes, provide protection against unicellular predators
[40], but do not decrease β along other dimensions.
Metazoan embryos that take this form are either protected
within a specialized environment – an egg or womb – or
suffer high mortality.

Minimizing prediction error with
reproductively-disabled progeny

From an FEP perspective, one would expect cells to
respond to increasing environmental lethality in one of
the two ways given by the theory of active inference: either
by changing their prior probability distributions and
hence their regulatory models or by acting so as to change
their environments and hence their posterior, i.e. input,
probability distributions.2 Modifying the genome is the
most available way of altering the prior probability dis-
tribution, i.e. the generative model of the environment,
for prokaryotes; the enormous genetic diversity of pro-
kayrotes [2,41] suggests that genome modification is the
primary prokaryotic strategy for dealing with environ-
mental change. Rapid genome modification by lateral
gene transfer is ubiquitous among prokaryotes, with
environmental-response genes particularly frequently

transferred [42–44]. Motility is the most available way of
altering the posterior probability distribution; the eukar-
yotic development of the cytoskeleton enabled multiple
motility solutions for unicellular eukaryotes, with envir-
onment-dependent morphological changes supporting
different motility solutions, e.g. flagellar propulsion and
ameboid crawling, available in many lineages [12].
Motility is, however, only useful if the lethality of the
environment varies significantly over short distances
and hence permits escape. Somatic multicellularity can,
we suggest, be understood as a more radical solution to
the problem of altering the posterior probability distribu-
tion in an environment in which lethality varies only over
longer ranges (Figure 3). The reproductive cells within an
obligate multicellular organism alter their environment
by constructing and then inhabiting a new environment
that they largely control, i.e. one with consistently low
VFE. The components employed for this construction
project are their own progeny, the most predictable living
components available.

The most important criterion for a synthetic, protec-
tive environment is that it not be or become a competitor.
From a fitness perspective, the simplest way to assure
non-competition is by constructing the environment out
of cells or other materials, e.g. extracellular matrix com-
ponents, that have no independent genetic interests or
reproductive fitness. Such materials cannot respond to
environmental variation by varying their allocation of
resources to reproduction; hence they are intrinsically
more predictable than reproductively-competent cells.
Hence a system – a reproductive cell – driven to minimize
VFE can be expected to build a somatic body comprising
non-reproductive cells as a protective environment in

Figure 3. a) The theory of active inference postulates that systems challenged by high environmental free energy respond either by
updating their prior probability distributions or world models, or by altering their posterior probability distributions by acting on the
world so as to change its effects on them. b) Reproductive cells challenged by environmental lethality can be expected either to
update their prior probability distributions by altering their genomes, or to execute some behavior that changes their environment’s
lethality. Genome modification by rapid evolution or lateral gene transfer is primarily a prokaryotic strategy. Motility is a successful,
primarily eukaryotic strategy when environmental lethality varies over short ranges. Building a multicellular structure, a body, that
protects reproductive cells from the environment provides a solution when escape is not possible.
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preference to either a clonal (i.e. fraternal) or aggregative
(i.e. egalitarian) body composed of other reproductively-
competent cells. The demosponges, with a single class of
proliferative, totipotent stem cells (the archeocytes),
exemplify this body-building strategy [17], suggesting
that it may be ancestral in the Metazoa. That a single
class of proliferative, totipotent stem cells (the neoblasts)
are also found in planaria [24] indicates that an all-or-
nothing strategy for regulating cellular reproduction was
maintained at least into early-branching bilaterals.

To extend our earlier model to this situation, sup-
pose that C can reproduce a copy C’ of itself with
time-varying state c’(t) = a’(t) × p’(t) as above, and
interpose this C’ as a protective buffer between itself
and E as shown in Figure 4. Protection by C’ replaces
the exposure β of C with some βprot < β; if protection
is complete, βprot = 0. Assume as above that the reac-
tions R and R’ are negligible, and consider the simplest
case, reproduction of an exact copy C’ with prediction
mapping P’ = P and environmental exposure β’ = β. In
this case, the probability of C’ dying and requiring
replacement to prevent re-exposure of C to E in any
reproductive cycle is β’ Δlethal; if β’ Δlethal ≥ 0.5αa, all
available resources must be dedicated to reproduction
for protection, and C remains exposed to E during
part of each cell cycle. Hence the ability of C to main-
tain C’ is critically dependent on the availability of
reproductive resources and their efficient use by C.
As before, population survival is only possible if
β’Δlethal ≤ αa/(1 + αa). Reproducing an exact, repro-
ductively-competent copy as protection against a lethal
environment is, therefore, no better as a strategy than
aggregation.

Effective protection from a lethal environment requires
the production of progeny or materials that have
decreased environmental sensitivity relative to C, i.e.
that have β’ < β. Non-reproductive cells can be expected
to have β’ < β, due both to their lower metabolic require-
ments [45,46] (see also below) and their ability to re-tool
metabolism toward the production of either inert protec-
tive materials or active defenses. The production of long-
lived non-reproductive progeny increases fitness if it
allows the subsequent production of protected reproduc-
tively-competent progeny, e.g. daughter stem cells. If

k protective cells must be produced every m cell cycles,
with k < m, the population of reproductive cells is able to
grow as r(n/m)(m – k) over an elapsed time nτ; for k ≪ m,
this approaches the best-case rate rn.

To investigate this model of non-reproductive, i.e.
somatic progeny as highly-predictable protectors of
reproductive cells, assumed here to be totipotent stem
cells as in demosponges or planaria, from the external
environment, we have developed a quantitative simula-
tion that embeds stem cells in an environment of vary-
ing lethality and allows parameters governing their
ability to reproduce either stem or somatic progeny to
be manipulated (see Methods). Consistent with the
model, unprotected stem cells cannot successfully
invade an environment with greater than 50% lethality
(b = 0.5) on each division cycle even if reproductive
resources are optimal (Figure 5(a)).

When the production of somatic progeny is enabled,
different combinations of protective ability and resis-
tance to lethality lead to different abilities for stem cells
protected by somatic-cell “bodies” to colonize the
higher-lethality (> 50%) sector of the environment. In
general, long-lived but only moderately-protective
(β = 0.5) somatic cells enable small colonies at moder-
ate lethality (Figure 5(b)), while shorter-lived but fully-
protective (β = 0) somatic cells enable larger colonies
even at high lethality (Figure 5(c)). Combining these
somatic-cell advantages enables invasions of the entire
environment (Figure 5(d)). The increasing occupation
of the high-lethality (b > 0.5) part of the environment
as the protection of stem cells by somatic cells increases
is shown in Figure 6.

In these simulations, stem cells that are fully enclosed
by a somatic “body” cannot escape to generate new pro-
geny. They can and do, however, explore the external
environment whenever one of the surrounding somatic
cells dies; most such pioneering stem cells die before
reproducing if the environmental lethality is greater than
50%. “Budding” of a stem cell with its surrounding
somatic cells from a large connected mass to form an
independent colony has been observed in some simula-
tion runs.

Percolation theory describes a phase transition to
informational opacity

To characterize the phase transition to multicellularity
more precisely, consider the environment E as a source
and the cell C as a receiver of VFE, i.e. prediction-
violating information. We can represent protective cells
and/or their internal processes collectively as a channel
that probabilistically decreases the transmitted VFE, i.e.
has an effective β < 1. Any such channel can, alternatively,

Figure 4. Adding a buffer between C and E by reproducing
a copy C’ of C. Competition for reproduction-enabling resources
is eliminated C’ if reproductively disabled.
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be decomposed into a network of smaller channels, each
of which transmits VFE with a well-defined probability,
with interconnections between these channels represent-
ing cross-modulation or other probabilistic dependency.
Such a network constitutes a “Markov blanket” as defined

by Pearl [47] around the cell C (technically, the internal
states of cells directly interacting with both E and C form
the Markov blanket; “expanding” each cell into a network
of internal processes creates a multi-layer Markov blan-
ket). Markov blankets provide a general model of the
interactions between biological systems and their envir-
onments [3,10]. We assume here that the conditional
dependencies that define the Markov blanket around the
cell C are in a state of flux and can be affected by regula-
tory changes withinC (in the language of active inference,
actions by C) that alter either its sensitivity to environ-
mental VFE or the behavior and hence protective cap-
abilities of its neighboring cells. Decreasing exposure to
environmental VFE is then a matter ofC finding the right
set of conditional dependencies, i.e. the right Markov
blanket, to interpose between itself and E.

If we only consider transmission of VFE from E to C,
ignoring the corresponding flow from C to E (i.e. the
reaction map R) as above, we can represent the Markov
blanket as a weighted directed graph with nodes {k} and
connection weights given by a real matrix M with
elements Mij representing the probability of transmitting
VFE from node i to node j. The Mij represent, in this case,
the coupling or conditional dependency between the

Figure 5. Typical model simulation runs under different conditions. The simulation depicts an environment varying in lethality from
0% (b = 0, black, left margin) to 100% (b = 1.0, red, right margin). Stem cells (green) are randomly seeded in this environment at
a density of 5% and allowed to reproduce for 120 division cycles. Neighboring stem cells compete for reproductive resources.
Somatic progeny (blue) protect their nearest-neighboring cells, whether these are stem or other somatic cells. a) Stem cells alone
cannot invade the higher-lethality half of the environment, even with optimal reproductive resources (a = 1.0). Here neighboring
stem cells suffer a 20% resource reduction (α = 0.8) due to competition; removing this reduction does not allow them to cross the
50% lethality boundary. b) Moderately (50%, i.e. β’ = 0.5) protective but relatively long-lived (50% resistance to lethality) somatic
cells allow mainly small colonies in the moderately-lethal (50% – 75%) sector of the environment (a = 0.8, probability of somatic-cell
progeny 50%). c) Fully (100%, β’ = 0) protective but shorter-lived (only 20% resistance to lethality) somatic cells allow larger colonies
to populate even the high-lethality (75% – 100%) sector of the environment (a = 0.8, probability of somatic-cell progeny 50%). d)
Fully-protective and relatively long-lived (50% resistance to lethality) somatic cells allow invasion of the lethal sector of the
environment (a = 1.0, probability of somatic-cell progeny 25%).

Figure 6. Increasing occupation of the high-lethality (b > 0.5) half
of the environment as the somatic cell protection factor 1 – β is
increased from 0.0 to 1.0, with all other parameters as in Figure 5c.
Filled circles show averages over 10 runs with random starting
populations; bars show full range of results obtained.
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states i and j. Some subset {kin} of the nodes represent
states of E, while another, disjoint subset {kout} of nodes
represent states of C as shown in Figure 7; intermediate
nodes represent states of intermediate cells, e.g. non-
reproductive somatic cells surrounding C. In the simplest
case, transmission of VFE through the blanket can be
considered effective only for values of the conditional
dependencies Mij above some threshold; hence these can
be considered binary without loss of generality. The effec-
tive transmission from E to C is, in this case, given by
counting paths between them. A binary blanket in which
every pair of nodes is connected has the maximal number
of paths; one in which no nodes are connected has no
paths. If {kin} ∪ {kout} = {k} (i.e. the graph representing the
Markov blanket is bipartite), only if Mij = 0 for all i, j are
there no paths from E to C; otherwise this is not the case.

Markov blankets in which every input node is con-
nected by a path to some output node and vice-versa
fully expose C to E, i.e. correspond to β = 1. Such
blankets are in a natural sense “transparent” to VFE.
States in which no path exists from any input node to
any output node fully protect C from E, correspond to
β = 0, and are in a natural sense “opaque.” The transi-
tion from only local communication between nodes
(i.e. opacity) to global communication between essen-
tially all nodes (i.e. transparency) as connections are
randomly added to an information-transmission net-
work has been extensively studied using percolation

theory, e.g. in models of epidemics [48,49], predator-
prey interactions [50], intracellular coordination of
mitochondrial function [51], and long-range signaling
in microbial communities [52]. Such transitions are
characterized by a critical point, the percolation thresh-
old, at which opacity switches exponentially to trans-
parency or, as in the problem of interest here,
transparency switches exponentially to opacity. The
number of connections that must be added to reach
the percolation threshold from below, or removed to
reach it from above, depends strongly on the size, local
connectivity, and density of long-range connections in
the starting graph [48]. In particular, the percolation
threshold rapidly decreases as the number of long-
range connections in the starting graph is increased.

If we consider the input nodes of the Markov blan-
ket around a cell to correspond to environmental states
characterized by distinct dimensions of environmental
lethality, e.g. pathogenicity or toxicity, long-range con-
nections in the blanket correspond to multiple paths by
which the cell can be exposed to each dimension of
lethality. The relatively low percolation threshold of
such a blanket means that many connections have to
be severed to induce opacity and hence protection.
A blanket in which each input node is linked to only
one output node has fewer long-range connections,
a higher percolation threshold, and hence a smaller
number of links that must be severed to induce opacity

Figure 7. a) Simplified representation of a Markov blanket. Input nodes represent environmental states that transmit environmental
VFE to a network of intermediate nodes, with conditional dependencies specified by a connectivity matrix Mij. Output nodes
represent protected cell states that receive the “blanketed” VFE. It is natural to interpret distinct input nodes as transmitting the VFE
of different dimensions of the environment, e.g. pathogenicity or toxicity. b) A network very near its percolation threshold: removing
either link A or B results in opacity. On the other hand, adding any downward-going link between black nodes, or between black
and green nodes, increases the cell’s exposure to its environment.
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(Figure 7(b)). One would, therefore, expect successful
cells to produce protective progeny that are each spe-
cialized to deal with one kind of environmental threat,
and to regulate the morphology and/or metabolism of
each of these cell types to maximize its opacity, i.e. to
minimize the exposure to environmental VFE of the
protected cell by decreasing the VFE transmission of its
Markov blanket. The tendency of regulatory [53], meta-
bolic [54], and cell-cell communication [55] networks
toward small-world [56] structure, in which long-range
connections link distant clusters of nodes, renders this
kind of specialization difficult to achieve.

The ancestral genetic toolkit provides signals for
controlling daughter cells

Successful construction of a protective Markov blanket
out of daughter cells requires two genetic capabilities: the
ability to arrest the daughter’s cell cycle and the ability to
modulate its gene expression and metabolism away from
independent motility and continued cell division and
toward adhesion, a specialized morphology, and the pro-
duction of specialized products. Both comparative geno-
mics and the cell and developmental biology of unicellular
eukaryotes increasingly show that these capabilities were
available in the genetic toolkit of ancestral holozoans.

As noted earlier, prespore cells in migratory
Dictyostelium secrete morphogens (Differentiation-
Inducing Factors or DIFs) that arrest the cell cycle and
induce terminal differentiation in prestalk cells [37,38].
Native Dictyostelium DIFs have been shown to deacti-
vate the Wnt pathway and suppress Cyclin D1 and
hence cell division in mammalian cells by activating
the GSK-3β kinase [57]. While the Wnt pathway appears
to be unique to metazoans [58], GSK-3, a β-catenin
homolog, and Frizzled homologs are present in
Dictyostelium and are involved in cAMP-induced migra-
tion and cell adhesion [59] and epithelial polarity [60].
Additional signals involved in Dictyostelium spore differ-
entiation, including the metazoan neurotransmitters
GABA and glutamate, have also been identified and in
part characterized [61]. Hence it is reasonable to assume
that morphogens capable of both inducing cell-cycle
arrest and regulating motility and adhesion are available
to eukaryotes at least since the last common ancestor of
Amoebozoa and Opisthokonts.

The availability of both whole-genome and sample
sequences from choanoflagellates and earlier-branching
holozoans confirms that not all, but many metazoan
cell polarity, adhesion, signaling, and transcriptional
control systems predate the choanoflagellate –
metazoan split and may be ancestral to holozoans in
general [1,62], with adhesion and motility regulators

such as Src [63], the Rac/Rho second messengers [64],
and cell-division regulators such as Myc [65] as promi-
nent examples. The ancient roots of hormonal [66,67]
and neurotransmitter [68,69] systems suggest that both
were available to reproductive cells as a means of mod-
ulating or controlling the behavior of non-reproductive
progeny in the earliest obligate multicellular organisms.

Discussion

Somatic cells as information-processing modules

In all metazoans, distinct differentiated cell types per-
form distinct functions. From the perspective adopted
here, these distinct functions can be seen as information-
processing functions. Distinct non-reproductive cell
types act in different ways to reduce environmental
VFE, and to replace it, in their interactions with the
reproductive cells with which they share inclusive fitness,
with highly-predictable protective behavior. The modu-
larization of protective and other supportive behaviors in
distinct cell types is consistent with the vast expansion
and diversification of transcription factors, relative to the
unicellular eukaryotic toolkit, seen in multicellular
eukaryotic lineages (reviewed by [70]). Such systematic
reduction of VFE is precisely the role ascribed to func-
tional networks of the nervous system by Bayesian
approaches to cognition [9,71,72]. This view of somatic
cells in general as essentially cognitive [73–75] suggests
an integrative, scale-free approach to biological informa-
tion processing that spans all of phylogeny, in which the
sensory, regulatory and behavioral roles of the mamma-
lian nervous system are seen as fundamentally analogous
to the sensory, regulatory and behavioral roles of meta-
bolic processes in unicellular organisms [76].

Within an “imperial” model of multicellularity that
views reproductive, i.e. stem or germ, cells as both
regulatory controllers of and receivers of information
from surrounding somatic tissue [24], the VFE reduc-
tion performed by somatic cells is in service of the
genetic interests of their parent stem/germ cells, inter-
ests which they share via inclusive fitness. Reproductive
fitness remains, in this model, at the level of stem/germ
cells; it is not necessary to define an independent
“organismal” level of reproductive fitness as it is in
aggregation followed by cooperation models [7,8]. Re-
assertion of individual reproductive fitness by pre-
viously somatic cells (i.e. cancer) is not “cheating” on
a cooperative “contract” that divides cellular labor [20]
but rather escape from regulatory control. Somatic
mutation is tolerated in this “imperial” setting provided
it does not reprogram somatic cells toward division, i.e.
cancer.
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Cancer as an escape from “imperial” oversight

As noted earlier, re-allocation of resources away from
reproduction is, on this model, one of the key enablers of
multicellularity. Without such re-allocation, cells within
an aggregate compete both for resources and genetically;
the latter form of competition has been recently demon-
strated in cytokinesis-inhibited Saccharomyces cerevisiae
aggregates [77]. Somatic cells that reprogram to either
normal reproductive cells or cancer cells must re-allocate
resources to cell division, including high-turnover pro-
duction of nucleotide bases, membrane components,
and proteins [78–80]. Such reprogramming is inducible
by multiple signals in vertebrates, the receptors or effec-
tors for many of which (e.g. Src, Rho and Myc as noted
earlier) are present in the ancestral toolkit.

By reprogramming metabolism for division, cancer
cells are re-asserting an independent genetic interest
and abandoning their previous role as somatic protec-
tors of “normal” reproductive stem, non-stem progeni-
tor or, in obligate sexual species, germ cells [20,81].
From their perspective, the host body is a protective
environment which they can exploit to their own ends.
One would expect, therefore, cancer cells to transmit
regulatory signals to surrounding tissue, whether
somatic or reproductive, to suppress cell division and
otherwise minimize detectable VFE. Such suppression
by tumor cells of cell division in surrounding non-
tumor somatic tissue has been observed [82,83].

Neural signaling as a mechanism for enforcing
somatic cell fates

The nervous system is a multicellular eukaryotic inno-
vation, evident as a network of cell-cell communication
in Porifera [84], supported by specialized cells in
Ctenophores, and fully developed in Cnidarians and
Bilaterians [85,86]. Nervous systems are traditionally
thought of as providing sensing and behavioral coordi-
nation functions at the level of the whole organism. The
current model suggests an additional, deeply ancestral
function of the nervous system: distributed control of
cell proliferation. As bodies become more complex
geometrically, local suppression of somatic-cell prolif-
eration by individual stem cells becomes insufficient to
maintain a regular shape; hence sponges, with intersti-
tial stem cells but no long-distance neurons, are amor-
phous, but all other metazoans, with neurons, are not.
The current model predicts that neural communication
is directly involved in the regulation of somatic cell
proliferation, and hence in the control of morphology.
While innervation is known to be important for regen-
eration [87] and the nascent CNS has recently been

found to be crucial for the patterning of distant somatic
regions [88], the role of innervation in regulating pro-
liferation, apoptosis, and neoplasia remains an active
area for future research (reviewed by [89,90]).

Obligate sexuality with a differentiated germline places
a second demand on proliferation control: germ cells
must assure that non-germ stem cells do not proliferate
indefinitely [23,24]. As germline cells are typically segre-
gated early in development while stem cells remain rela-
tively dispersed, regulation of stem cell proliferation
requires a long-range mechanism. In organisms like
C. elegans with invariant cell lineages [91], the solution
is, in effect, for the germline cells to be the only adult
stem cells. The current model predicts that in organisms
with adult stem cells, stem cell proliferation will be under
regulatory control by the germ line, with neural and/or
hormonal systems as effectors.

Conclusions

The selection pressures that drove the transitions to
obligate multicellularity with complex morphology in
plant and animal lineages remain poorly understood.
Here we have suggested that multicellularity solves
a problem for proliferating cells: the problem of pre-
dicting the behavior of the environment. By sur-
rounding themselves with reproductively-disabled
copies of themselves, proliferating cells, which then
become stem cells, provide for themselves a local
environment that buffers the VFE of the larger envir-
onment outside. On this model, the transition to
obligate multicellularity can be viewed as a phase
transition in which the blanket of surrounding
somatic cells becomes effective opaque to environ-
mental variation. Maintaining this opacity is, as
Clark [92] has pointed out, the key to maintaining
autopoesis [93] for the blanketed system as a whole.
As only a satisficing solution is required, the opacity
of the blanket is not expected to be complete in any
but the most challenging environments.

This model of the transition to multicellularity is con-
sistent with an “imperial” view of the multicellular state as
one in which stem cells effectively control the differentia-
tion and behavior of somatic cells. It suggests that the
fundamental role of neural signaling is the control of cell
fate, and that cancer is an escape by somatic cells from the
non-proliferating fate imposed on them by stem cells.

Notes

1. For a given organism, the VFE of the environment is its
complexity (the Kullback-Leibler (KL) divergence
between posterior and prior probability distributions)
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minus the organism’s predictive accuracy. The KL diver-
gence measures the effective dimensionality of the envir-
onment, i.e. its dimensionality as it is represented by the
organism. Representations (generative models [9,10])
with high dimensionality may be prone to overfitting
and hence brittleness; reducing the effective dimension-
ality by coarse-graining provides a solution to this pro-
blem, albeit one that may miss significant details.

2. As VFE depends on the KL divergence between posterior
and prior probability distributions, changing either dis-
tribution separately changes the VFE. Here we refer to
any change in the posterior distribution made by the
organism as an “action” on the environment and refer to
any change in the prior probability distribution made by
the organism as a “regulatory” change. The latter corre-
spond to alterations of the organism’s generative model
of the environment, e.g. by evolution or learning.
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