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Abstract: The research aim of this work is to develop a simple and highly sensitive optical biosensor
for detection of mycotoxins. This sensor is built on a planar waveguide operating on the polarization
interferometry principle, i.e., detecting a phase shift between p- and s-components of polarized
light developed during the binding of analyte molecules. The operation of the proposed sensor is
similar to that of a Mach–Zehnder interferometer, while its design is much simpler and it does not
require splitting the waveguide into two arms. The refractive index sensitivity of the polarization
interferometer sensor was in the range of 5200 radians per refractive index unit (RIU). Several tests
were conducted to detect ochratoxin A (OTA) at different concentrations in direct immunoassay
with specific antibodies immobilized in the sensing window. The lowest concentration of OTA of
0.01 ng/mL caused a phase shift of nearly one period. The results obtained prove high sensitivity
of the sensors, which are capable of detecting even lower concentrations of mycotoxins at the ppt
(part-per-trillion) level.

Keywords: optical biosensor; planar waveguide; polarization interferometer; refractive index
sensitivity; mycotoxins

Key Contribution: A polarization interferometer biosensor based on a planar waveguide was
designed and tested; it showed a capability of detection of mycotoxins in concentrations down
to down to single ppt in direct immunoassay with specific antibodies.

1. Introduction

At present, the detection of toxins is one of the main tasks for environmental science, security,
agriculture, the food industry, and medicine. There is particular interest in detection of mycotoxins,
products of the metabolism of numerous fungi species, which appear to have toxic, carcinogenic,
and hormone-disruptive effects in humans [1]. Worldwide legislation sets quite strict limits on
mycotoxin content in food and feed, typically at the ppb (part-per-billion) concentration level [2],
which makes the detection of small mycotoxin molecules (with typical molecular weight in hundreds
of daltons) a difficult task. Existing high-tech detection methods such as HPLC and mass spectroscopy
can provide the required sensitivity, but such methods are expensive and time-consuming. Therefore,
there is a great demand for development of biosensors for toxin detection. Highly sensitive optical
immunosensors are leading in this development [3].
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Our previous research exploiting the method of total internal reflection ellipsometry (TIRE)
combined with direct immunoassay showed high sensitivity (in the sub-ppb range) for detection
of different mycotoxins [4–6]. The use of a planar waveguide (PW) operating as a polarization
interferometer (PI) [7] is a logical continuation of this work toward the development of portable
sensor devices. The advantages of PW PI devices, due to their thousands of reflections of light,
were demonstrated in [7,8], which may lead to the development of highly sensitive optical biosensors
capable of label-free detection of toxins [3,6]. Several successful biosensors based on planar waveguides
have been demonstrated recently. An inhibition sensor array based on PW optrodes using enzymes
as bioreceptors was capable of detecting traces (in the sub-ppb concentration range) of heavy metals
and pesticides in water [9]. The mainstream development of optical PW-based sensor devices lies in
the use of Mach–Zahender (MZ) interferometers [10–14] and ring resonators [15,16], both approaches
having demonstrating remarkable refractive index sensitivity around 7000 to 8000 rad/refractive index
unit (RIU) [3] and versatility in their application. The development of a fully integrated all-silicon MZ
biosensor [17–20] is particularly attractive and may lead to fabrication of portable, highly sensitive
optical biosensors suitable for in-field or point-of-care detection of analytes of interest.

The main purpose of this work was to further explore the use of a much simpler PW sensor design
(as compared to MZ-based devices) operating as a polarization interferometer with a view toward
developing portable and highly sensitive devices capable of detecting low-molecular-weight molecules
such as mycotoxins, particularly ochratoxin A, in very low concentrations in the ppt range.

2. Interferometric Sensor System

The planar waveguide structures (shown in Figure 1a) were produced on silicon wafers using
standard microelectronic processes and consisted of a thin (200 nm) layer of Si3N4 sandwiched between
much thicker (3 µm) layers of SiO2. Due to the large difference in the refractive indices of Si3N4 core
(n = 2) and SiO2 cladding (n = 1.46), the light propagates at an angle of 47◦ and thus experiences about
800 reflections per mm according to calculations based on the Goos–Hänchen effect [21].

In the experimental polarization interferometer (PI) setup in Figure 1b, a 635 nm light from a
fan-beam laser diode was first made circularly polarized by λ/4 plate, then focused to a narrow strip
using a semicylindrical lens and coupled to the waveguide through the slanted edge. At the other
side of the waveguide, the light was collected with a charge-coupled device (CCD) array. A polarizer
placed in front of the CCD camera allows the conversion of a phase shift between p- and s-components
of polarized light into variations of light intensity (Figure 1c).
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To monitor biochemical reactions, a window was etched in the top SiO2 layer, which brings the
liquid sample in contact with the waveguide core. The reaction cell is sealed against the window and
has inlet and outlet tubes to allow the injection of required liquids into the cell, and thus the adsorption
of biomolecules on the surface of Si3N4. Any changes in either the refractive index or the thickness of
the adsorbed molecular layer affects mostly the p-component of polarized light, while the s-component
acts as a reference, resulting in a multiperiodic output signal (Figure 1c):

Vout = V0 cos(∆φ)

where ∆φ = φp − φs is the phase shift between the p- and s-components of polarized light.
The photographs in Figure 2 show a general view of the PI biosensor setup (2a) and the cell with

the inserted waveguide (2b) and the light coupling through the waveguide slanted edge. A Thorlabs
(UK) LC100–Smart Line Camera was connected to a PC; SPLICCO dedicated software was used to
record the output signals.
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3. Testing the Polarization Interferometer

The sensitivity of the waveguide was initially tested by injecting NaCl aqueous solution of
different concentrations into the cell. Multiperiodic output signals were recorded, and the number of
periods of signal oscillations was roughly estimated from these waveforms. The results of these tests
are presented in Figure 3.
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The refractive index sensitivity (RIS) of PW sensors can be estimated as a gradient of the above
linear dependence:

RIS = 2πN/∆n

where N is the number of periods of oscillations and ∆n = nNaCl − nwater is the change in the refractive
index of liquid medium. The obtained average refractive index sensitivity was around 5200 radians
per refractive index unit (RIU), which was more than double compared to the earlier version of the PI
experimental setup (Nabok, 2017) and close to the values reported for MZ PW sensors (Nabok, 2016).
The achieved sensitivity is much higher than that in other traditional optical methods such as TIRE
(total internal reflection ellipsometry) or SPR (surface plasmon resonance).

4. Immunosensing Tests on Detection of Ochratoxin A

To prepare the system for detection of mycotoxin molecules, we used electrostatic immobilization
of proteins. First, a positively charged layer of poly-allylamine hydrochloride (PAH) was deposited,
followed by adsorption of protein A molecules, which are negatively charged, in Tris-HCl buffer, pH 7.
Finally, monoclonal antibodies to ochratoxin A (in Tris-HCl buffer) were bound to protein A, and the
sensor was ready for detection of ochratoxin A (OTA). All the chemicals used were purchased from
Sigma-Aldrich, Dorset, UK.

Biosensing tests were performed by injection of OTA solution in water of different concentrations
starting from the lowest: 0.01 ng/mL, 0.1 ng/mL, 1 ng/mL, 10 ng/mL, 100 ng/mL, and 1000 ng/mL.
The sensor responses were recorded, and the typical responses to 0.01 ng/mL and 0.1 ng/mL of OTA
are shown in Figure 4a.
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Figure 4. (a) Typical sensor responses to binding of 0.01 ng/mL and 0.1 ng/mL of ochratoxin A (OTA)
to specific antibodies; (b) dependence of PI sensor response on concentration of OTA.

The results of these tests are summarized in Figure 4b as the dependence of the phase shift
against the concentration of OTA. The sensor response increased in a wide range of concentrations
from 0.01 to 100 ng/mL, then decreased at a high concentration of 1 g/mL due to the saturation of
bioreceptors. The results obtained are similar to those reported earlier for detection of aflatoxin B1
(Nabok, 2017), though the RIS value and thus the signal clarity were much better. Such biosensing
tests were repeated several times; while the waveforms looked slightly different each time because of
different initial phase conditions, the total values of a phase shift looked similar, with an accuracy of
about 10%. Control test measurements were carried out after each step of OTA binding by purging
of about 1 mL of pure Tris-HCl buffer in order to wash out nonspecifically bound OTA molecules.
Such tests typically result in a half-period of phase change (see Figure 5a), which corresponds well to
observations in MZ-based biosensors [14]. Corresponding background phase changes are also given in
Figure 4b. After subtracting the π radians background level, a phase shift corresponding to binding of
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0.01 ng/mL of OTA is about one period (or 2π radians). This means that the detection limit could be at
least one order of magnitude smaller, thus reaching ppt level or even below, an absolutely remarkable
outcome, especially considering the direct immunoassay format used.Toxins 2018, 10, x FOR PEER REVIEW  5 of 6 
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5. Conclusions and Future Work

The experimental setup of a planar polarization interferometer was developed and tested.
After several stages of development, a refractive index sensitivity of 5200 rad/RIU was achieved.
A series of biosensing experiments for detecting ochratoxin A in direct immunoassay with specific
antibodies were successful; the biosensor was capable of detecting 0.01 ng/mL of ochratoxin A.
The work is currently under way. Further development will focus on (i) improving the planar
waveguide sensor design using photolithography to make several narrow waveguide channels for
simultaneous detection of several mycotoxins, and (ii) developing the data acquisition system using
NI card and LabView software. Significant improvements in sensor performance and sensitivity are
expected in the near future.
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