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Abstract

Campylobacter coli is a bacterial species that is a major cause of diarrheal disease world-

wide, and Campylobacter spp. are among the top 5 foodborne pathogens in the United

States. During food production organic acids (OAs) are often used to remove bacteria from

animal carcasses. The interactions of six OAs with 111 C. coli strains obtained from swine

and retail pork chops were studied by determining the molar minimum inhibitory concentra-

tions (MICMs) of the C. coli strains, and the pH at the MICMs. The Henderson-Hasselbalch

equation was used to calculate the concentrations of the undissociated and dissociated

OAs at the MICMs of the C. coli strains. The results for the 111 different C. coli strains

obtained from different locations were treated as a single group for each OA since many of

the C. coli strains behaved similarly to each different OA. Inhibition of C. coli was not depen-

dent on pH or on the undissociated OA species, but C. coli inhibition correlated with the dis-

sociated OA species. Therefore, if the concentration of the dissociated OAs decreases from

optimum, one may then expect that C. coli bacteria would escape disinfection. The concen-

tration of the dissociated OA should be carefully controlled in a carcass wash. We suggest

maintaining a concentration of the dissociated acetic, butyric, citric, formic, lactic and propi-

onic acids at 29, 23, 11, 35, 22 and 25 mM, respectively, when using a carcass wash with

these OAs to remove C. coli bacteria. However, due to C. coli utilization of acetate, formate,

lactate and propionate, these four OAs may not be the best choice to use for a carcass

wash to remove C. coli contamination. Of the six OAs, citric acid was the most efficient at

inhibiting C. coli.

Introduction

Campylobacter spp. are Gram-negative, non-spore forming bacterial rods [1,2] that are a

major cause of diarrheal disease in the United States [3] and throughout the world [1,4–8].

The Centers for Disease Control and Prevention (CDC) has estimated that each year there are
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9.4 million domestically acquired foodborne illnesses, 55,961 hospitalizations, and 1,351

deaths due to 31 major pathogens in the United States [3,9]. Campylobacter spp. are among the

top 5 foodborne pathogens in the United States, and they are estimated to be responsible for

845,024 illnesses, 8,463 hospitalizations, and 76 deaths each year [3,9]. Campylobacter jejuni
and C. coli are the two main species most often associated with human foodborne illness in

this genus [10–13], and they have a high % of DNA homology [14] and possess identical or

highly related antigens [15]. In 2016, the CDC reported that Campylobacter and Salmonella
caused the most reported bacterial foodborne illnesses in the United States [16]. In England

during 2002 C. jejuni accounted for 93% of the reported cases and C. coli accounted for 7% of

the reported cases [4]. Campylobacteriosis was the most often reported zoonosis in the Euro-

pean Union (E.U.) in 2015 [7]. The type and number of organisms in the E.U. illnesses during

2015 caused by Campylobacter spp. were primarily divided between C. jejuni and C. coli at

81.0% and 8.4%, respectively [7], although in France C. coli had a higher percentage of cases at

15.25% [13]. Therefore, C. jejuni, which is commonly found in poultry and poultry products,

causes the most campylobacteriosis, and low levels of C. jejuni are also found in swine [17].

However, in some areas of the world the percentage of campylobacteriosis caused by C. coli
may be as high as 35–40% [18]. Campylobacter coli is the predominant Campylobacter species

found in the intestines of pigs and on pork products [19,20]. The impact of C. coli on infectious

intestinal disease in humans has largely been ignored, even though C. coli is the second most

common cause of human campylobacteriosis [21]. Most likely C. coli have been neglected as

a human pathogen because of the predominance of C. jejuni campylobacteriosis [21]. Trace

back investigations of C. coli foodborne outbreaks in Belgium (1995) [22], in Poland (2006)

[23] and in Alaska (2013) [24] have all resulted in not determining the source of contamina-

tion. Epidemiologic and microbiologic data compiled by the Great Britain Public Health

Laboratory Service (PHLS) Communicable Disease Surveillance Centre determined that risk

factors for transmission of C. coli to humans are different compared to those for C. jejuni [4].

Therefore, this data shows a need to carry out species-specific studies, and develop separate

strategies for control of these different organisms [21].

Comprehensive strategies to control foodborne pathogens throughout the food chain from

the farm to the table are important [25]. A critical step in processing animals into food prod-

ucts is to wash the animal carcasses with organic acids (OAs) to remove surface bacteria. The

OAs often used are acetic [26–28], citric [26], formic [27], lactic [26–31] and propionic acids

[27,28]. Bacteria that are not removed from the carcass during the acid wash may later be

found on the processed meat. Therefore, the efficacy of the acid wash step should be carefully

evaluated.

It is believed that bacterial inhibition by OAs is dependent on pH or the undissociated acid

species [32–35]; however, the specific mechanisms by which pH and OAs inhibit bacteria are

not understood [36]. In our previous studies, molar values have been used for minimum inhib-

itory concentrations (MICMs) when comparing pH, undissociated or dissociated acid forms

because it allows an equivalent comparison of MIC results for acids with different molecular

weights [37]. Previous studies evaluated Escherichia coli O157:H7 [37], Pseudomonas aerugi-
nosa [38], non-O157 Shiga toxin-producing E. coli (non-O157 STECs) [39] and Salmonella
enterica serovars [40] against OAs and clearly show that pH and levels of undissociated acids

do not correlate with the MICMs. However, levels of dissociated acids do closely correlate with

the MICMs. Also, a fully dissociable acid has been shown to cause the disintegration of the bac-

terial LPS layer [41]. During our previous studies it was observed that a decrease in the concen-

tration of the dissociated acids may result in a large number of bacteria escaping disinfection

[37–40].

Organic acid interactions with Campylobacter coli
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In this present study, we describe the interactions of six different OAs with 111 C. coli
strains, which were obtained in earlier studies that evaluated the pathogens in market age pigs

[42], and food animals and retail meat [43]. Susceptibility studies of 111 C. coli strains to the

OAs, acetic, butyric, citric, formic, lactic and propionic acids were conducted here. Compari-

sons are shown of the pH, undissociated acid species and dissociated acid species at the

MICMs of the C. coli strains.

Materials and methods

Ethics statement

No animals were utilized in this study. All C. coli strains were obtained from frozen stocks in

glycerol as prepared by researchers in previous studies.

Campylobacter coli and media

Previously, C. coli was isolated from cecal contents (n = 7), rectal swabs (n = 51) and feces

(n = 5) of market age pigs [42], and C. coli also was previously isolated from cecal contents

(n = 16) of market age pigs, from cecal contents of sows (n = 20) and from retail pork chops

(n = 12) [43]. The above 111 C. coli strains were grown in our laboratory for 48 hours at 42˚C

on trypticase soy agar w/5% sheep blood BBL Stacker Plates (Becton, Dickinson and Company,

Sparks, MD, USA) in a microaerobic atmosphere of 10% CO2, 5% O2, and 85% N2. For cryo-

preservation, the 111 C. coli strains were transferred from the BBL Stacker Plates and placed in

FBP medium [44]. Briefly, FBP medium was made with Nutrient Broth (234000, Difco, Frank-

lin Lakes, NJ, USA), Bacto™ Agar (214010, BD, Franklin Lakes, NJ, USA) at a final concentra-

tion of 0.12% (w/v), glycerol (49769, Fluka, Sigma-Aldrich, St. Louis, MO, USA) at a final

concentration of 15% (v/v), and Bacto™ Yeast Extract (212750, BC, Franklin Lakes, NJ, USA)

at a final concentration of 0.1% (w/v). The prepared FBP mixture was then autoclaved for 15

min at 121˚C and 15 PSI and allowed to cool to 50˚C in a water bath. Per label directions,

Campylobacter Growth Supplement (SR0232E, Oxoid, Basingstoke, United Kingdom) was

added to the cooled mixture. The prepared medium (1 ml) was added to each sterile cryogenic

vial (5000–0020, Thermo Fisher Scientific, Houston, TX, USA). Campylobacter cells were

added to the FBP medium at a turbidity of McFarland 3 to 4. The cells were then placed in a –

80˚C freezer for long term storage.

Organic acid susceptibility testing

The OA MICs against the C. coli strains were determined by broth microdilution testing of

fastidious bacteria according to the Clinical and Laboratory Standards Institute (CLSI) [45],

and the methods presented by TREK Diagnostic Systems for susceptibility using Campylo-
bacter sensititre plates [46]. Briefly, The C. coli strains were grown for 48 hours at 42˚C, as

described earlier. All Campylobacter susceptibility studies required incubation for 48 hours

at 42˚C either on trypticase soy agar w/5% sheep blood or in 96-well plates (U-bottom micro-

plate, Greiner bio-one North America Inc., Monroe, North Carolina, USA) for broth micro-

dilution testing because there were some strains that did not grow a sufficient amount in 24

hours to run the test. Several C. coli colonies were selected from the trypticase soy agar plates

and diluted in 5 ml of Sensititre™ cation adjusted Mueller-Hinton broth w/TES (Remel

Lenexa, KS, USA) to a 0.5 McFarland standard in a Nephelometer (TREK Diagnostic Sys-

tems Ltd., East Grinsted, UK). Since our experiments have a final total liquid volume of

100 μl in each well, to maintain a consistent bacterial concentration as suggested by the

TREK Diagnostic Systems sensititre susceptibility test for Campylobacter, 200 μl of the 0.5

Organic acid interactions with Campylobacter coli
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McFarland suspension was placed in tubes containing 11 ml of Sensititre™ cation adjusted

Mueller-Hinton broth w/TES w/Lysed horse blood to provide 1 × 106 CFU/ml. Following

the proper dilution of OAs to 50 μl in each well of the 96-well plates [40], 50 μl of the lysed

horse blood diluted bacteria was layered in all 96-wells of the microplate. Briefly, the OA

dilutions consisted of 50 μl of each OA solution placed in wells 1 and 2, and the well 2 solu-

tion was diluted 1:2 across a 96-well U-bottom Greiner bio-one microplate through column

11, and column 12 was used as the positive control [40]. The bacteria filled microplates were

covered with a perforated plastic adhesive cover sheet (YG522EA, Remel, Lenexa, KS, USA)

and placed in a BD GasPak™ EZ standard or small incubation container (BD #260671 or BD

#260002, respectively, Becton, Dickinson and Company, Sparks, MD, USA). BD GasPak™ EZ

Campy Container System Sachets (BD #260680, Becton, Dickinson and Company, Sparks,

MD, USA) were placed inside the incubation containers and the sealed containers were

allowed to incubate for 48 hours at 42˚C. MICs were determined as the lowest concentration

of a compound that showed no visible growth of the organism [47] on a SensiTouch imaging

system (TREK Diagnostic Systems Ltd., East Grinsted, UK). Campylobacter jejuni ATCC

33560 was used as a control organism for the OA susceptibility testing in the microaerobic

atmosphere. These results were compared with results obtained from testing Escherichia
coli ATCC 25922 in aerobic conditions, as ATCC 25922 was previously used as the control

organism during aerobic OA testing [37–40].

Acetic acid was obtained from EM Science (Gibbstown, NY, USA). Butyric, citric, formic

and propionic acids were obtained from Sigma-Aldrich (Milwaukee, WI, USA). Lactic acid

was obtained from Alfa Aesar (Wad Hill, MA, USA). To make working solutions, the OAs

were diluted with reverse osmosis water and then filter-sterilized using a 0.2 μm × 25 mm

syringe filter (No. 431224, Corning Inc., Corning, NY, USA). The following concentrations of

OAs were tested: acetic acid, 32–32,768 μg/ml; butyric acid, 16–16,384 μg/ml; citric acid, 16–

16,384 μg/ml; formic acid, 16–16,384 μg/ml; lactic acid, 8–8,192 μg/ml; and propionic acid,

32–32,768 μg/ml.

Determination of solution pH in 96-well plates at the C. coli MICs

Determination of pH was conducted as previously described [40]. Briefly, the pH was deter-

mined in three separate samples at each MIC for each OA, and then the means and standard

deviations were determined. The solutions from 16-wells (1,600 μl) at the same MIC value for

each OA were combined in a sterile 5 ml microtube (Argos Technologies, Inc., Vernon Hills,

IL, USA). An Orion 3 STAR benchtop pH meter was used to measure the pH with a ROSS

Ultra, glass combination pH electrode (Thermo Fisher Scientific, Chelmsford, MA, USA).

Each pH determination at each MIC was conducted in triplicate.

Calculation of the ratio of undissociated to dissociated acids

The Henderson-Hasselbalch equation can be used to calculate the concentration of conjugate

base and undissociated weak acid [48]:

pH ¼ pKa þ log ½A
� �
.

½HA�

� �

ð1Þ

Where the pKa is–log10 of the acid dissociation constant (Ka), [A–] is the molar concentration

of the conjugate base (or dissociated weak acid), and [HA] is the molar concentration of the

undissociated weak acid [48]. The Henderson-Hasselbalch equation can be rearranged to

Organic acid interactions with Campylobacter coli
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provide the ratio of undissociated to dissociated acid [33]:

ratio ¼ ½HA�
.

½A� �
¼ 1
.

10pH� pKa
ð2Þ

Therefore, when the pKa of a particular acid and the pH of the solution are known, then the

ratio of the undissociated to dissociated acid can be calculated. The pKa for acetic, butyric, cit-

ric, formic, lactic and propionic acid is 4.75, 4.82, 3.14, 3.75, 3.86 and 4.87, respectively. If the

molar concentration of the acid is known, then the concentrations of the undissociated and

dissociated acid species can be calculated from the ratio [37–40].

Statistics

A contingency table association analysis was conducted on the data in Table 1 between the

MICM values and sources. A Fishers Exact test (due to the small sample size) was used to assess

for patterns requiring greater OA concentrations for control of C. coli strains from different

sources.

Table 1. Organic acid MICs and MICMsa for 111 Campylobacter coli strains isolated from cecal contents, feces and rectal swabs of market age pigs, cecal contents of

sows and from retail pork chops.

MIC

(μg/mL)

MICM

(mM)

Number of Bacteria from Swine

Market Age Pigs

Cecal Feces Rectal Swabs Cecal (sows) Pork Chops

Acetic Acid

4096 68.2 –b – – – 1

2048 34.1 19 4 40 14 5

1024 17.05 4 1 11 6 6

Butyric Acid

2048 23.24 22 5 48 15 10

1024 11.62 1 – 3 5 2

Citric Acid

2048 10.66 14 2 27 14 10

1024 5.33 9 3 24 6 2

Formic Acid

2048 44.5 – 4 24 3 –

1024 22.25 23 1 26 17 12

512 11.12 – – 1 – –

Lactic Acid

4096 45.47 1 – 1 3 4

2048 22.74 4 3 17 8 5

1024 11.37 18 2 32 9 3

512 5.68 – – 1 – –

Propionic Acid

2048 27.65 16 5 36 13 8

1024 13.82 7 – 13 7 4

512 6.91 – – 1 – –

256 3.45 – – 1 – –

aMICMs = Molar MICs.
b’–‘ = No observed MIC at this acid concentration.

https://doi.org/10.1371/journal.pone.0202100.t001
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Results

The MICs and MICMs obtained for C. coli strains against the OAs tested here are shown in

Table 1. The C. coli MICMs for acetic, butyric, citric, formic, lactic and propionic acids are sim-

ilar for each individual acid whether the bacterial strains were obtained from market age pigs,

sows or pork chops. Campylobacter coli strains from feces and rectal swabs of market age pigs

required differential levels of OAs for control. The highest level of formic acid (44.5 mM) was

required for inhibition of 50% of the feces and rectal swab strains. But a citric acid level of only

10.66 mM inhibited these same C. coli strains, which also was a lower acid concentration than

the other OAs, acetic, butyric, formic, lactic, and propionic acids, except for lactic and propi-

onic acids which inhibited 1 and 2 strains at levels of 5.68 and 6.91 mM, respectively. The high-

est level of an OA required for control of C. coli strains was for retail pork chop samples, which

required 45.47 mM of lactic acid, and one strain required 68.2 mM acetic acid for inhibition.

The lowest OA levels required for control of all strains was for citric acid (10.66 mM).

Interplay of the six organic acids with respect to differential association for

inhibition of Campylobacter coli from different isolation sources

Using Fishers Exact test, acetic and butyric acids have a weak differential association with

respect to the control of C. coli strains from the different isolation sources, P = 0.107 and

P = 0.097, respectively. Citric acid has no differential association with respect to the control of

C. coli from the different isolation sources, P = 0.24.

Formic acid has differential control of C. coli strains from different isolation sources,

P = 0.0001. Eighty percent of the strains from fecal samples required the highest formic acid

concentrations (44.5 mM) for control, and 77.4% of the strains from rectal swab samples

from market aged pigs required the highest formic acid concentration (44.5 mM) for control

(Table 1).

Lactic acid also has differential control of C. coli strains from different isolation sources,

P = 0.012. Thirty-three percent of the C. coli strains from retail pork chops required the highest

lactic acid concentration (45.47 mM) for bacterial control (Table 1). Also, 41.7% of the C. coli
strains from retail pork chops and 40% of the C. coli strains from cecal sow samples required

the 2nd highest concentration of lactic acid (22.74 mM) for bacterial control (Table 1). While

78.3% of the C. coli strains from cecal samples of market age pigs were controlled at 11.37 mM

lactic acid (Table 1). Propionic acid showed no differential control of C. coli from different

sources, P = 0.91, but required 27.65 mM to inhibit 73.2% of the C. coli strains from fecal and

rectal swab samples (Table 1).

Table 2 presents the median, mode, range and 90th percentile of the C. coli MICs and

MICMs for each OA.

Measured pH at the MICs of the Campylobacter coli against organic acids

Since the C. coli strains behaved similarly against many of the individual different OAs, the pH

determined at the C. coli MICMs for all strains (n = 111) against each individual OA were com-

bined into a single group for each OA. The pH values obtained at the C. coli MICMs for the six

OAs are graphically presented in Fig 1. Each data point is the mean and standard deviation of

triplicate samples, and next to each data point on the graph is depicted the number of strains

at each MICM. The pH at the MICM for 100% of the strains against butyric, citric and propi-

onic acids was 6.34, 5.79 and 5.84, respectively, an average pH of 5.99 ± 0.304. But the pH at

the MICM for 100% of the strains against acetic, formic and lactic acids was 4.60, 4.29 and 3.80,

Organic acid interactions with Campylobacter coli
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respectively, an average pH of 4.23 ± 0.403. The pH difference for 100% of the C. coli strains

against these two groups of acids is on average 1.76 pH units.

Graphical presentations showing the pH at the MICMs of the C. coli strains isolated from

the individual sources, cecal contents, feces and rectal swabs of market age pigs, cecal contents

of sows, and from retail pork chops against the six OAs are shown for each source in S1–S5

Figs, respectively.

Undissociated organic acid concentrations calculated at the C. coli MICMs

The results calculated by the Henderson-Hasselbalch calculation for the undissociated OA

concentrations of acetic, butyric, citric, formic, lactic and propionic acids at the MICMs of

111 C. coli strains are shown in Fig 2. The undissociated acetic, formic and lactic acid con-

centrations at the MICM for 100% of the C. coli strains tested was 39.93, 9.96 and 24.3 mM,

respectively. The undissociated butyric, citric and propionic acid concentrations at the

MICM for 100% of the C. coli strains tested was 0.68, 0.024 and 2.68 mM, respectively. The

MICM of all 111 strains occurred at an undissociated citric acid level of 0.024 mM. The

MICM of all 111 C. coli strains occurred at an undissociated acetic acid concentration of

39.93 mM. A concentration of undissociated butyric and citric acids of 0.68 and 0.024 mM

was observed at 100% of the C. coli at their MICMs. A difference of Δ = 39.91 mM OA levels

between the MICM of 100% of the strains against acetic and citric acids is shown by the

shaded band in Fig 2.

Graphical presentations showing the undissociated acid species at the MICMs of the 111 C.

coli strains isolated from the individual sources, cecal contents, feces and rectal swabs of mar-

ket age pigs, cecal contents of sows, and from retail pork chops against the six OAs are shown

for each individual source in S6–S10 Figs, respectively.

Table 2. Central Tendency of the MICs and MICMsa for the 111 Campylobacter coli strains from cecal contents, feces and rectal swabs of market age pigs, cecal con-

tents of sows and from retail pork chops against six organic acids.

Organic Acid Median Mode Range 90th Percentile

Acetic Acid

MIC (μg/mL) 2048 2048 1024–4096 2048

MICM (mM) 34.1 34.1 17.05–68.1 34.1

Butyric Acid

MIC (μg/mL) 2048 2048 1024–2048 2048

MICM (mM) 23.24 23.24 11.62–23.24 23.24

Citric Acid

MIC (μg/mL) 2048 2048 1024–2048 2048

MICM (mM) 10.66 10.66 5.33–10.66 10.66

Formic Acid

MIC (μg/mL) 1024 1024 512–2048 2048

MICM (mM) 22.25 22.25 11.12–44.5 44.5

Lactic Acid

MIC (μg/mL) 1024 1024 512–4096 2048

MICM (mM) 11.37 11.37 5.68–45.47 22.74

Propionic Acid

MIC (μg/mL) 2048 2048 256–2048 2048

MICM (mM) 27.65 27.65 3.45–27.65 27.65

aMICMs = Molar MICs.

https://doi.org/10.1371/journal.pone.0202100.t002
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Dissociated organic acid concentrations calculated at the C. coli MICMs

The calculated concentrations of the dissociated OAs, acetic, butyric, citric, formic, lactic and

propionic acids at the MICMs of the 111 C. coli strains are shown in Fig 3. The molar dissoci-

ated OA concentrations required to produce MICMs for 100% of the 111 C. coli strains by all

six OAs are shown by the shaded band in Fig 3. The shaded band shows a Δ = 23.9 mM differ-

ence between the MICM of 100% of the 111 C. coli strains inhibited by citric acid and 100% of

the 111 strains inhibited by the other five OAs. The MICM for 100% of the 111 strains occurs

at a dissociated acid level of 10.64 mM citrate. The MICM for 100% of the 111 strains for all

dissociated acids occurs at a level of 34.54 mM formate. However, only the results for the

dissociated butyric and citric acids may not be affected by C. coli utilization. The concentration

difference of these two dissociated acids for inhibition of 100% of the 111 C. coli results in a

Δ = 11.92 mM.

Graphical presentations of the dissociated acid species at the MICMs of the 111 C. coli
strains isolated from the individual sources, cecal contents, feces and rectal swabs of market

age pigs, cecal contents of sows, and from retail pork chops against the six OAs is shown for

each individual source in S11–S15 Figs, respectively.

Discussion

Organic acids are regularly used to decontaminate meat surfaces. But many bacterial food

pathogens have the ability to adapt to varying pH environments, and decontamination

Fig 1. pH at the MICMs of acetic, butyric, citric, formic, lactic and propionic acids for the 111 Campylobacter coli
strains. The number of strains is shown next to each data point. Each data point is the mean and standard deviation of

triplicate samples.

https://doi.org/10.1371/journal.pone.0202100.g001
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strategies are often based on pH [49]. We studied six different OAs, acetic, butyric, citric, for-

mic, lactic and propionic acids against 111 C. coli strains to evaluate the effect that pH, the

undissociated and dissociated acid species had on these bacteria at their MICMs.

The median MICM for acetic and propionic acids required for disinfection of the same

strains are the highest and the median MICM for inhibition of the C. coli strains by butyric and

formic acids have an intermediate value, while the median MICM for inhibition by citric and

lactic acids have the lowest values. However, acetic, formic and lactic acids have the highest

MICM values for the range of disinfection of all six OAs, and 33.3% of C. coli from retail pork

chops required the highest level of lactic acid for bacterial control. While the citric acid MICMs

demonstrate the lowest range, and the lowest 90th percentile value of 10.66 mM for inhibition

of all the 111 C. coli strains. This suggests that citric acid may be the best OA for inhibiting C.

coli. This is also confirmed by showing that citric acid has no differential association with

respect to the control of C. coli from different isolation sources, P = 0.24. Conversely, citric

acid has a common inhibition effect and lowest concentration required on C. coli no matter

where the bacteria are isolated from.

Interestingly, it only took a pH of 6.34, 5.79 and 5.84 to inhibit 100% of these bacteria with

butyric, citric and propionic acids, respectively. But with acetic, formic and lactic acids it

required a pH of 4.60, 4.29 and 3.80, respectively, to inhibit the same 111 C. coli strains. This is

an average of 1.76 pH unit difference between the pH required for these two groups of acids to

inhibit the same 111 C. coli strains. We have reported pH differences between OAs against

other Gram-negative strains, but not this large a difference. Approximately 98% of 175

Fig 2. Concentration (mM) of the undissociated acids at the MICMs of the 111 Campylobacter coli strains. The

shaded band depicts the difference between the undissociated acetic and citric acid concentrations required for

disinfection of 100% of the strains; Δ = 39.91 mM. The number of strains is shown next to each data point.

https://doi.org/10.1371/journal.pone.0202100.g002
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P. aeruginosa strains showed a 0.98 pH unit difference when inhibited by different OAs [38]. A

0.56 pH unit difference was observed between the inhibition by different OAs for 98% of 344

E. coli O157:H7 strains [37], a 0.99 pH unit difference between different OAs was required to

inhibit 100% of 138 non-O157 STEC strains [39], and a 1.1 pH unit difference was observed

between four different OAs for inhibition of 95 to 100% of the same 145 Salmonella strains

[40]. These data show that the inhibition of C. coli or the other Gram-negative bacteria are not

primarily dependent on the pH of the acids, as has been suggested by others [33], but rather

inhibition must be dependent on some other aspect of these acids. If indeed pH were the pri-

mary factor in bacterial inhibition, then one would expect that the MICMs for the same bacte-

ria for all the different OAs would be at the same pH value; but that is not the case. Also, we

saw more acid-tolerance in E. coli O157:H7 strains [37], since they have glutamate and argi-

nine–dependent acid-resistance systems for protection against acid stress [50].

The inhibition range for 100% of the 111 C. coli strains by all six undissociated OAs, acetic,

butyric, citric, formic, lactic and propionic acids extended from 0.024 mM citric acid to 39.93

mM acetic acid, which is an undissociated acid difference of 39.91 mM across the six different

OA species for the same 111 strains. Also, undissociated citric acid shows an inhibition of C.

coli strains at a very dilute acid concentration of 1 μM. There appears to be no correlation as

to concentration of the undissociated OAs with the MICMs for the 111 C. coli strains. These

results are in agreement with the four other Gram-negative foodborne pathogens we have

Fig 3. Concentration (mM) of the dissociated acids at the MICMs of the 111 Campylobacter coli strains. The

shaded band depicts the difference between the dissociated formic and citric acid concentrations required for

disinfection of 100% of the strains, Δ = 23.9 mM; and the line through the 100 strain data point for butyric acid and the

67 strain data point for citric acid shows the difference in concentration for inhibition of 100% of the strains for these

two acids, Δ = 11.92 mM. The number of strains is shown next to each data point.

https://doi.org/10.1371/journal.pone.0202100.g003
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previously studied. In 175 P. aeruginosa strains the difference between undissociated citric acid

(2.53 mM) and acetic acid (21.65 mM) for inhibition of 100% of the strains at the MICMs was

19.12 mM [38]. In 344 E. coli O157:H7 the difference between undissociated citric acid (2.86

mM) and acetic acid (50.63) for inhibition of 98.3% of the strains at the MICMs was 47.77 mM

[37]. In 138 non-O157 STECs the difference between undissociated citric acid (2.2 mM) and

acetic acid (49.11 mM) for inhibition of 100% of the strains at the MICMs was 46.91 mM [39],

and in 145 Salmonella strains the difference between undissociated citric acid (2.29 mM) and

acetic acid (19.0 mM) for inhibition of 100% of the strains at the MICMs was 16.71 mM [40].

In all of these cases, the undissociated acid concentrations did not correlate with the MICMs.

Higher undissociated acid values were observed for E. coli O157:H7 and non-O157 STECs, but

most likely this was a result of the glutamate and arginine–dependent acid-resistance systems

inherent to those bacteria and used to protect themselves from extreme acid stress [50,51].

The inhibition of 100% of the 111 C. coli strains by the dissociated OAs was definitely a

much smaller concentration range than that observed for the undissociated acids. But the inhi-

bition concentration range shown for all six dissociated acids against C. coli is still large when

compared to the dissociated OA concentration ranges against the other four Gram-negative

foodborne pathogens that we previously studied. The inhibition of approximately 98% of 175

P. aeruginosa strains by dissociated citric acid (10.24 mM) and acetic acid (9.98 mM) had a

concentration difference of 0.26 mM [38]. The inhibition of 98.3% of 344 E. coli O157:H7

strains by dissociated lactic acid (19.36 mM) and dissociated propionic acid (13.825 mM) had

a concentration difference of 5.54 mM [37]. The inhibition of 100% of 138 non-O157 STEC

strains by dissociated citric acid (19.12 mM) and lactic acid (12.93 mM) had a concentration

difference of 6.19 mM [39], and the inhibition of 100% of 145 Salmonella strains by dissociated

citric acid (19.03 mM) and propionic acid (13.67 mM) had a concentration difference of 5.36

mM [40]. The overall difference in dissociated acids required for inhibition of these four

Gram-negative bacteria was from 0.26 mM to 6.19 mM. However with P. aeruginosa, we saw a

large increase in the dissociated lactic acid concentration required for inhibition [38]. It is

known that P. aeruginosa utilizes lactate [52,53], and the high inhibition concentration

obtained for dissociated lactic acid could be expected [38]. Lactic acid is not an appropriate

OA to use against P. aeruginosa [38].

Most C. coli strains from swine do not utilize citrate [54], and we see in this study the inhibi-

tion concentration for dissociated citric acid remains low,� 10.64 mM. Also, C. coli were

shown not to utilize butyrate [54]. This study corroborates earlier observations by demonstrat-

ing levels of dissociated butyric acid needed for inhibition of C. coli not widely different from

the levels of other dissociated OAs against Gram-negative pathogens [37,39,40]. However, C.

coli are known to utilize formate, lactate and propionate [55], and in a previous study approxi-

mately 13.5% of the C. coli strains utilized acetate [54]. The authors also noted the source of C.

coli strains utilizing acetate was restricted to hogs [54]. Since all 111 strains are inhibited by both

citric and butyric acid by� 22.56 mM (knowing that C. coli does not utilize citrate or butyrate

[54]), it is very interesting that 31 strains are not inhibited by dissociated formic acid until

nearly 35 mM, 78 strains are not inhibited by dissociated propionic acid until about 25 mM,

and 83 strains are not inhibited by dissociated acetic acid until about 28 mM. Based on our data

for the dissociated acid species at the MICMs of 111 C. coli strains from swine, perhaps as much

as 83/111 strains (75%) of the C. coli analyzed from swine or swine products may utilize acetate.

Conclusion

Inhibition of Campylobacter coli strains in this study was not primarily dependent on pH or on

the concentration of undissociated OAs. The concentration of dissociated OA, butyric, citric,
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formic, lactic and propionic acids correlated with the MICMs of 100% of the 111 C. coli strains.

However, some C. coli can utilize acetate, formate, lactate and propionate, which most likely

resulted in increased levels of these acids at the MICs in our studies. One may expect that a

large number of bacteria could escape disinfection as a result of only a small drop in the con-

centration of a dissociated OA. Therefore, an OA carcass wash may not provide the expected

elimination of surface bacteria if the concentration levels of the dissociated OA used is not

carefully controlled. A concentration of dissociated acetic, butyric, citric, formic, lactic and

propionic acids of 29, 23, 11, 35, 22 and 25 mM, respectively, should be maintained when dis-

infecting the C. coli strains studied here. However, due to the utilization of acetate, formate,

lactate and propionate by C. coli, these four OAs would probably not be the best choice for

control of C. coli. If these 4 acids are used for disinfection of C. coli bacteria the concentrations

of these dissociated organic acids must be held at high enough levels to facilitate complete inhi-

bition of the bacteria. Of the six OAs, citric acid is the most efficient at inhibiting C. coli.

Supporting information

S1 Fig. pH at the MICMs of acetic, butyric, citric, formic, lactic and propionic acids for the

23 Campylobacter coli strains from the cecal contents of market age pigs. The number of

strains is shown next to each data point. Each data point is the mean and standard deviation of

triplicate samples.

(TIF)

S2 Fig. pH at the MICMs of acetic, butyric, citric, formic, lactic and propionic acids for the

5 Campylobacter coli strains from the feces of market age pigs. The number of strains is

shown next to each data point. Each data point is the mean and standard deviation of triplicate

samples.

(TIF)

S3 Fig. pH at the MICMs of acetic, butyric, citric, formic, lactic and propionic acids for the

51 Campylobacter coli strains from the rectal swabs of market age pigs. The number of

strains is shown next to each data point. Each data point is the mean and standard deviation of

triplicate samples.

(TIF)

S4 Fig. pH at the MICMs of acetic, butyric, citric, formic, lactic and propionic acids for the

20 Campylobacter coli strains from the cecal contents of sows. The number of strains is

shown next to each data point. Each data point is the mean and standard deviation of triplicate

samples.

(TIF)

S5 Fig. pH at the MICMs of acetic, butyric, citric, formic, lactic and propionic acids for the

12 Campylobacter coli strains from retail pork chops. The number of strains is shown next

to each data point. Each data point is the mean and standard deviation of triplicate samples.

(TIF)

S6 Fig. Concentration (mM) of the undissociated acids at the MICMs of acetic, butyric, cit-

ric, formic, lactic and propionic acids for the 23 Campylobacter coli strains from the cecal

contents of market age pigs. The shaded band depicts the difference between the undissoci-

ated lactic and citric acid concentrations required for disinfection of 100% of the strains; Δ =

24.3 mM. The number of strains is shown next to each data point.

(TIF)
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S7 Fig. Concentration (mM) of the undissociated acids at the MICMs of acetic, butyric, cit-

ric, formic, lactic and propionic acids for the 5 Campylobacter coli strains from the feces of

market age pigs. The shaded band depicts the difference between the undissociated formic

and citric acid concentrations required for disinfection of 100% of the strains; Δ = 9.96 mM.

The number of strains is shown next to each data point.

(TIF)

S8 Fig. Concentration (mM) of the undissociated acids at the MICMs of acetic, butyric, cit-

ric, formic, lactic and propionic acids for the 51 Campylobacter coli strains from the rectal

swabs of market age pigs. The shaded band depicts the difference between the undissociated

lactic and citric acid concentrations required for disinfection of 100% of the strains; Δ = 24.3

mM. The number of strains is shown next to each data point.

(TIF)

S9 Fig. Concentration (mM) of the undissociated acids at the MICMs of acetic, butyric, cit-

ric, formic, lactic and propionic acids for the 20 Campylobacter coli strains from the cecal

contents of sows. The shaded band depicts the difference between the undissociated lactic and

citric acid concentrations required for disinfection of 100% of the strains; Δ = 24.3 mM. The

number of strains is shown next to each data point.

(TIF)

S10 Fig. Concentration (mM) of the undissociated acids at the MICMs of acetic, butyric,

citric, formic, lactic and propionic acids for the 12 Campylobacter coli strains from retail

pork chops. The shaded band depicts the difference between the undissociated acetic and cit-

ric acid concentrations required for disinfection of 100% of the strains; Δ = 39.86 mM. The

number of strains is shown next to each data point.

(TIF)

S11 Fig. Concentration (mM) of the dissociated acids at the MICMs of acetic, butyric, cit-

ric, formic, lactic and propionic acids for the 23 Campylobacter coli strains from the cecal

contents of market age pigs. The shaded band depicts the difference between the dissociated

formic and citric acid concentrations required for disinfection of 100% of the strains; Δ =

16.96 mM. The number of strains is shown next to each data point.

(TIF)

S12 Fig. Concentration (mM) of the dissociated acids at the MICMs of acetic, butyric, cit-

ric, formic, lactic and propionic acids for the 5 Campylobacter coli strains from the feces of

market age pigs. The shaded band depicts the difference between the dissociated formic and

citric acid concentrations required for disinfection of 100% of the strains; Δ = 23.9 mM. The

number of strains is shown next to each data point.

(TIF)

S13 Fig. Concentration (mM) of the dissociated acids at the MICMs of acetic, butyric, cit-

ric, formic, lactic and propionic acids for the 51 Campylobacter coli strains from the rectal

swabs of market age pigs. The shaded band depicts the difference between the dissociated for-

mic and citric acid concentrations required for disinfection of 100% of the strains; Δ = 23.9

mM. The number of strains is shown next to each data point.

(TIF)

S14 Fig. Concentration (mM) of the dissociated acids at the MICMs of acetic, butyric, cit-

ric, formic, lactic and propionic acids for the 20 Campylobacter coli strains from the cecal

contents of sows. The shaded band depicts the difference between the dissociated formic and
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citric acid concentrations required for disinfection of 100% of the strains; Δ = 23.9 mM. The

number of strains is shown next to each data point.

(TIF)

S15 Fig. Concentration (mM) of the dissociated acids at the MICMs of acetic, butyric, cit-

ric, formic, lactic and propionic acids for the 12 Campylobacter coli strains from retail

pork chops. The shaded band depicts the difference between the dissociated acetic and citric

acid concentrations required for disinfection of 100% of the strains; Δ = 17.59 mM. The num-

ber of strains is shown next to each data point.

(TIF)
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