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Abstract

Motivation: Protein–Protein Interactions (PPI) are essentials for most cellular processes and thus,

unveiling how proteins interact is a crucial question that can be better understood by identifying

which residues are responsible for the interaction. Computational approaches are orders of magni-

tude cheaper and faster than experimental ones, leading to proliferation of multiple methods

aimed to predict which residues belong to the interface of an interaction.

Results: We present BIPSPI, a new machine learning-based method for the prediction of partner-

specific PPI sites. Contrary to most binding site prediction methods, the proposed approach takes

into account a pair of interacting proteins rather than a single one in order to predict partner-

specific binding sites. BIPSPI has been trained employing sequence-based and structural features

from both protein partners of each complex compiled in the Protein–Protein Docking Benchmark

version 5.0 and in an additional set independently compiled. Also, a version trained only on

sequences has been developed. The performance of our approach has been assessed by a leave-

one-out cross-validation over different benchmarks, outperforming state-of-the-art methods.

Availability and implementation: BIPSPI web server is freely available at http://bipspi.cnb.csic.es.

BIPSPI code is available at https://github.com/bioinsilico/BIPSPI. Docker image is available at

https://hub.docker.com/r/bioinsilico/bipspi/.

Contact: rsanchez@cnb.csic.es or jsegura@cnb.csic.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–Protein Interactions (PPI’s) are at the basis of virtually every

cellular process. Therefore, elucidating the biochemical underpinnings

of interactions is a fundamental step for improving our understanding

of cellular mechanisms and diseases. Much research has been done on

PPI’s, especially at cellular level, which has led to the availability of

many interactomes (Cafarelli et al., 2017). However, in order to grasp

protein function in cellular processes, not only it is important to know

which proteins interact but how proteins bind to their different partners

and thus, identifying protein–protein interfaces becomes a central issue.

Many experimental methodologies exist for the characterization

of protein–protein interfaces, including mass spectrometry (Sobott

and Robinson, 2002), mutagenesis (Chen et al., 2014), X-ray

crystallography (Shi, 2014) or nuclear magnetic resonance

(O’Connell et al., 2009). Nevertheless, in many cases, these

approaches require expensive and time-consuming experiments and

are not suitable for the analysis of large datasets. As a result, many

computational approaches have been designed to predict and char-

acterize PPI’s at different levels. For example, several protein–pro-

tein docking approaches (Rodrigues et al., 2015; Zhang et al., 2016)

have been developed to obtain atomic models for the interaction of

two proteins when solved structures of both partners are available.

For those other cases in which there is no structural information, or

it only exists at low resolution, other methods to identify which

pairs of domains are likely to bind in PPI’s have been proposed

(Segura et al., 2015b; Segura et al., 2016; Wang et al., 2007).
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Nonetheless, most approaches work at residue level predicting

which protein residues constitute binding sites or interfaces of a pro-

tein complex. Generally, these algorithms employ knowledge

derived from structurally solved protein in order to build templates

or statistical models (Xue et al., 2015).

Different knowledge-based methods can be found in the scientif-

ic literature. Some of them use homology information, inferring pro-

tein interfaces from templates of homologous complexes (Mosca

et al., 2013; Segura et al., 2016; Xue et al., 2011). Other approaches

employ correlated mutations in order to identify pairs of residues

that are likely to interact (Jones et al., 2012; Morcos et al., 2014;

Pazos et al., 1997). On the other hand, most proposed data-driven

methods make use of machine learning algorithms that are trained

on heterogeneous sets of structurally solved complexes (Ahmad and

Mizuguchi, 2011; de Vries et al., 2006; Fout et al., 2017; Hwang

et al., 2016; Meyer et al., 2018; Minhas et al., 2014; Murakami and

Mizuguchi, 2010; Neuvirth et al., 2004; Porollo and Meller, 2006;

Savojardo et al., 2017; Segura et al., 2011, 2012). The different

strategies have different relative merits, depending on the context.

For example, template-based approaches might offer accurate pre-

dictions when homologue complexes are available (Xue et al.,

2015). Similarly, correlated mutations have been shown to provide

very useful information when high quality multiple sequence align-

ments can be compiled (Ovchinnikov et al., 2014). On the other

hand, machine-learning solutions are not limited by the need of high

quality templates or alignments, so that they can be used in more

general contexts. Finally, docking algorithms, which are able to

achieve atomic resolution in their prediction but are also computa-

tionally demanding, can benefit from data-driven predictions in

order to get faster and more accurate solutions (Rodrigues et al.,

2015; Segura et al., 2015a).

Several formulations can be found to the problem of predicting

protein complex interfaces or binding sites (Ahmad and Mizuguchi,

2011). On the one hand, partner-independent binding site predic-

tions aim to identify all residues of a given protein that interact with

any protein. On the other hand, partner-specific binding site predic-

tions (from now on ‘interface predictions’) pursue to identify which

residues are involved in a particular PPI. Partner-specificity is a de-

sirable attribute for interface predictors as most proteins interact

with several partners (Grigoriev, 2003) and the interfaces for each

partner can be totally different. This is especially true for transient

interactions, which are fundamental for processes such as signal

transduction (Xue et al., 2015). It is not then surprising

that partner-specific methods tend to outperform non-specific

approaches (Ahmad and Mizuguchi, 2011; Minhas et al., 2014).

However, most current binding site prediction approaches based on

machine learning algorithms are designed to achieve non-partner

specific predictions. Indeed, to our knowledge, only a few machine-

learning based methods computing partner-specific binding sites are

currently available. Ahmad et al. proposed PPiPP, an ensemble of 24

neural networks which used amino acid type and PSSMs (Position

Specific Scoring Matrices) through a sliding window as features to

predict binding sites on protein sequences (Ahmad and Mizuguchi,

2011). PAIRpred (Minhas et al., 2014), one of the state-of-the-art

methods, is a Support Vector Machine that employs a specific pair-

wise kernel over a set of structural and/or sequence-based features.

This latter set of sequence-based features is comprised by PSSMs,

PSFMs (Position Specific Frequency Matrices) and solvent accessibil-

ity predictions, while the structural descriptors include residue

depth, solvent accessibility, protrusion index and half sphere amino

acid compositions. In general, better performance is achieved when

structures of the protein partners are available. Recently, Fout et al.

developed a graph convolutional neural network (GCNN) method

using the set of features described in PAIRpred (Fout et al., 2017).

Finally, the ECLAIR method (Meyer et al., 2018), which was

designed to function in high-throughput scenarios, is based on an

ensemble of Random Forests, each of them trained on a different set

of features including biophysical, structure-base, docking-based and

co-evolution features.

In this work, we present BIPSPI (xgBoost Interface Prediction of

Specific-Partner Interactions), a new machine-learning based

method for the partner-specific prediction of residue–residue con-

tacts and binding sites. BIPSPI can predict interface residues from ei-

ther protein sequences or protein structures. To that end, BIPSPI

employs multiple structural and/or sequence-based amino acid fea-

tures that are combined through an Extreme Gradient Boosting

(XGBoost) (Chen and Guestrin, 2016) model and a new scoring

function that converts residue contact predictions into binding site

scores. BIPSPI performance has been evaluated by means of a leave-

one-out cross-validation over different datasets (Hwang et al., 2008;

Vreven et al., 2015) and against an independent testing set derived

from CAPRI targets (Janin et al., 2003). Finally, BIPSPI was com-

pared with similar methods, outperforming previous reported

results. A web server where BIPSPI can be employed and results and

datasets downloaded is freely available at http://bipspi.cnb.csic.es.

2 Materials and methods

BIPSPI classifier has been trained to predict interfaces from protein

structures and/or sequences. This section describes the implementa-

tion of the method using structural data. A full description of the

sequence-based classifier is available in Supplementary Section S1.

2.1 Datasets
Different sets of protein complexes were used to train and evaluate

the performance of BIPSPI predicting protein interfaces. The first

one was the Protein–Protein Docking Benchmark version 5 (Vreven

et al., 2015) dataset, that contains 230 non-redundant protein com-

plexes for which bound and unbound structures are available. Each

of these complexes has resolution better than 3.25 Å and the length

of each sequence is >30 amino acids. To avoid redundancy, this

dataset was compiled ensuring that none of the protein complexes

belonged to the same pair of SCOP families (Andreeva et al., 2008).

This set will be referred to as DBv5. The second dataset was the

Protein–Protein Docking Benchmark version 3, in this work termed

DBv3, (Hwang et al., 2008), which is a subset of DBv5.

In addition to DBv5 and DBv3, we have compiled a new dataset

of 117 protein dimers (DImS) following a similar approach as the

one used to compile the different Protein–Protein Docking

Benchmark versions. This dataset was built selecting PDB dimers of

at least 35 amino acids long, with resolutions better than 3 Å and

for which >90% of their residues were structurally determined.

Similar to DBv5 and DBv3, non-redundancy between protein com-

plexes was established at SCOP family level in such a way that only

dimers with one SCOP domain per partner were considered and

none of the dimers shared the same combination of SCOP families

(see Supplementary Section S6.12 for a detailed list). Finally, several

CAPRI targets (see Supplementary Section S6.12 for a detailed list)

were also employed as independent testing data and as a way to pro-

vide a direct comparison with other methods (Savojardo et al.,

2017).
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2.2 Residue–residue contact definition
Different definitions of residue–residue contact can be found in the

scientific literature (Xue et al., 2015). Two of the most commonly

used are: (i) residue solvent accessibility reduction after complex

formation and (ii) distance threshold between residue heavy atoms.

In order to compare with other existent methods, we have adopted

the same contact definition that was used in PPiPP (Ahmad

and Mizuguchi, 2011) and PAIRpred (Minhas et al., 2014).

Accordingly, a pair of residues is defined as interacting if the dis-

tance between any of their heavy atoms is <6.0 Å.

In our analysis, we found that in DBv5 there are 20799 interact-

ing residue pairs as opposed to 15 333 317 non-interacting residue

pairs; thus, an extreme class imbalance. To properly handle this situ-

ation during the different training steps of BIPSPI, we only considered

random samples of all non-interacting pairs, including non-accessible

residues to account for possible conformational changes. Several sam-

pling proportions were tested, achieving the best performance when

the number of selected negative cases was three times larger than the

number of interacting pairs (data not shown). This random sample,

which also makes training faster, is drawn at protein complex level, in

such a way that all complexes contribute to the dataset with the same

relation of positive and negative cases. Finally, it is important to no-

tice that no sampling is done for evaluation and, hence, it is per-

formed on whole proteins data.

2.3 Data encoding
Residue pairs are codified as a vector of numerical features. In this

work, a protein A is defined as a collection of residues ai and a pair

of residues ðai; bjÞ will identify two amino acids belonging to pro-

teins A and B, respectively. Due to the symmetry of the problem,

each pair ðai; bjÞ can also be defined as ðbj; aiÞ. To tackle this, we

have included both representations as different examples in the

training set and, when computing scores, we have assigned the aver-

age of predictions for ðai; bjÞ and predictions for ðbj; aiÞ to both of

them. Next sections describe how the vector of features associated

to a pair of residues ðai; bjÞ is built.

2.3.1 Single amino acid features

Each single residue is encoded by a set of sequence-based and struc-

tural features. Sequence-based features include amino acid type, codi-

fied as a vector of 22 binary elements (one-hot encoded), sequence

profiles computed with PSI-BLAST (Altschul et al., 1997) or retrieved

from 3DCONS-DB (Sanchez-Garcia et al., 2017) when available, and

sequence conservation scores computed with AL2CO (Pei and

Grishin, 2001). Structural features are also calculated to describe resi-

dues, including geometrical descriptors and hydrophobicity computed

with PSAIA (Mihel et al., 2008), one-hot encoded secondary structure

determined by DSSP (Kabsch and Sander, 1983) and half-sphere ex-

posure and contact number (Hamelryck, 2005) computed at radius of

12 Å with Biopython (Cock et al., 2009). An exhaustive list of the

residue features is available in Supplementary Section S2.

2.3.2 Residue environment features

Residue environments are also described and included into the vec-

tor of features in such a way that for each feature its environment

feature is calculated. Several residue environment definitions have

been employed in different works, two of the most common ones

are: (i) sequential environment through sliding window (Siki�c et al.,

2009) and (ii) structural environment by Euclidean distance thresh-

old (Porollo and Meller, 2006). In these works, three types of

environments are used in combination: sequential environment,

structural environment and structural pairwise environment.

Sequential environment is obtained by a sliding window ap-

proach of length 11 amino acids in which all sequence-based fea-

tures described above are concatenated for all residues of the

window. On the other hand, structural environment features are

computed from all sequence-based and structural features of each

residue employing a structural neighbourhood definition based on

Voronoi Diagrams (Segura et al., 2011). Basically, according to this

definition, two residues are considered as neighbours if they share a

common edge in the Voronoi Diagram defined by all C-a atoms of

the protein. The computation of structural environment features is

different depending whether the feature is represented by a real

number or if it is represented as one-hot encoded. Hence, let fi be a

real value feature for residue ai, then, its associated structural envir-

onment feature efi is define as a set of four values:

efi ¼
X
r2Ni

fr;
1

j Ni j
X
r2Ni

fr max
r2Ni

fr;min
r2Ni

fr

( )
(1)

Where Ni is the set of neighbours of residue ai according to Voronoi

neighbourhood definition.

Similarly, let hi ¼ ðh1
i ;h

2
i ; . . . ; hk

i Þ be any one-hot encoded

feature for

residue ai, where k is the number of classes of the feature h.

Then, its associated structural environment feature of dimension k is

computed as follows:

ehi ¼
X
r2Ni

hr (2)

Residue pair scores predicted in the first step classifier are also

included as new features in the second step (see Section 2.4); those

scores can be regarded as pairwise features. Then, given a pair of

residues ðai; bjÞ and a pairwise score Fij, the structural pairwise en-

vironment score eFij is defined as:

eFij ¼ feF�jij; eFi�
ij; eF��ijg (3)

where

eF�jij ¼
X
r2Ni

Frj;
1

j Ni j
X
r2Ni

Frj;max
r2Ni

Frj;min
r2Ni
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(4)
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X
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X
s2Nj

Frs; max
r2Nis2Nj

Frs; min
r2Nis2Nj

Frs

8<
:

9=
;
(5)

Ni is the set of neighbours of residue ai and Nj is the set of

neighbours of residue bj according to Voronoi neighbourhood

definition.

2.4 BIPSPI algorithm
BIPSPI algorithm was designed as a three steps workflow (see

Fig. 1). First, a XGBoost classifier (Chen and Guestrin, 2016) is fed

with the set of sequence-based and structural features and their re-

spective environments. After that, a second XGBoost classifier is fed

with the same input features adding the predictions that were

obtained in the first step and their associated environment scores.

Finally, a scoring function converts interacting pair predictions

into binding site residue scores (see Section 2.5). The training pro-

cedure and selected algorithm hyperparameters are described in

Supplementary Section S3.
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2.5 From residue–residue contact scores to binding site

prediction
In order to obtain individual interface residues, we have designed a

scoring function to compute single amino acid binding site scores

from residue–residue pairs results. This scoring function takes into

account all residue pairs scores relying on the rank of the predictions

when all pairs are sorted from highest to lowest score. Thus, the

binding site score of a given residue is derived from the list of all

pair predictions ordered from highest to lowest score using the fol-

lowing expression:

IsðaÞ ¼
X

i� log2ðnÞ

Xcða; 2iÞ
2i

(6)

Where a is the particular residue whose score is computed, n is the

number of residue pairs and Xcða; 2iÞ is the number of times that

residue a appears among the 2i highest score pairs (see

Supplementary Section S4). Additionally, with the aim of making

predictions smoother, scores are averaged along the sequence

employing a window size of three amino acids and using the vector

of weights (1/4, 1/2, 1/4).

Finally, in order to provide a manageable score that allows

for easy threshold selection, BIPSPI web server computes an

expected precision value that is estimated using an isotonic regres-

sion model on the original scores (Zadrozny and Elkan, 2002) (see

Supplementary Section S4.2 for more details).

2.6 Performance evaluation
The performance of BIPSPI predicting residue–residue contact pairs

and binding sites was evaluated computing a leave-one-out cross-

validation over the complexes included in the different datasets (see

Section 2.1). Specifically, each of the classifiers of the method was

trained with the sampled pairs of all protein complexes except for

the ones that belong to the left-out complex. This evaluation proced-

ure is the same that was used in PAIRpred and PPiPP and, when

trained over DBv3, allows for a straight and fair comparison with

those methods. In addition, several CAPRI targets interfaces were

predicted as an independent benchmark. Residue–residue contact

predictions (RRCP) were evaluated with the AUC values of ROC

curves averaged over protein complexes (AUCROC) and mixing all

residue–residue scores from the different complexes (AUCROC).

Additionally, as these measurements can provide an over-optimistic

view of performance due to the imbalance between interacting and

non-interacting pairs, the AUC of the precision-recall curve

(AUCPR) is also provided. Single residue binding site predictions

were also evaluated in terms of the Matthew Correlation Coefficient

(MCC), precision (PR), recall (RC), specificity (SPC) and negative

predictive value (NPV), which were computed at the threshold that

maximized the MCC.

3 Results

3.1 BIPSPI feature importance analysis
The importance of the different features employed in BIPSPI has

been analyzed by counting the total number of tree splits caused by

each variable during model training (Friedman and Meulman,

2003). In order to obtain easily interpretable results, we have

focused on families of features when those are classified by type (e.g.

accessibility, conservation, secondary structure, etc.). Accordingly,

the family of features with the highest contribution (sum of import-

ance of all variables in the class), approximately 65%, was conser-

vation. However, individually, the most informative variables

belonged to the accessibility family for the first step and previous

step prediction scores for the second one, being accessibility the next

most important family feature. Additionally, we have studied the

importance of the residue environment and observed that structural

environment features explained >55% of the total importance

despite being <31% of the total features number. An extended dis-

cussion of feature importance can be found in Supplementary

Section S5.

3.2 BIPSPI performance analysis
The performance of BIPSPI predicting residue–residue contacts and

binding sites was evaluated computing a leave-one-out cross-valid-

ation on DBv5 and DImS datasets. As expected, the method

achieved the best performance when structural features and two

classification steps were computed (see Table 1). Although the im-

provement in performance predicting residue–residue contacts be-

tween the first and second step is small, the improvement in

performance predicting single residue binding sites after the second

step is not negligible. For example, while BIPSPI AUCROC measured

in DBv5 are 0.9011 and 0.9052 for the first and second step, re-

spectively, the binding site AUCROC increases from 0.8046 in the

first step to 0.8235 in the second one (see Table 1). This behaviour

can be explained due to the high imbalance of interacting and non-

interacting residue pairs, and, as a consequence, small improvements

in residue–residue contact predictions can involve important

improvements in binding site prediction.

In general, binding site evaluation measurements improved after

the second step. For example, when BIPSPI was evaluated in DBv5

the MCC in the second step increased by >0.01 respect the first

step. Also, AUCROC, AUCROC and AUCPR measurements increased

after the second step was employed (see Table 1). It is worth noting

that the apparent precision drop in the second step that could be

inferred from Table 1 values is a consequence of the fact that preci-

sion and recall were obtained for those thresholds that maximized

the MCC in each step independently and thus, they cannot be com-

pared. In fact, as it can be appreciated in the precision-recall curves

included in Supplementary Section S6.2, most precision and recall

values improved after the second step was applied. This improve-

ment between the two steps can be explained by the addition of the

first step scores and their associated structural pairwise environment

scores (see Section 2.3.2). Protein binding sites tend to form continu-

ous surface patches and thus, providing predicted scores of neigh-

bour residues can be useful in order to find residues surrounded by

high scored regions.

Fig. 1. BIPSPI workflow. Sequence-base and structural features are used to

codify pairs of residues. At first step, XGBoost classifier is fed with encoded

pairs in order to obtain interacting pairs predictions. Interacting pairs scores

are combined with original features and fed to a second step classifier. Lastly,

interacting predictions obtained in step two are converted to binding site pre-

dictions employing our scoring function
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Furthermore, we analyzed the feature importance for the second

step classifier obtaining that the first step scores and its associated en-

vironment values were the most important features (see Section 2.3.2

and Section 3.1). In addition to XGBoost algorithm, which has not

been widely explored in bioinformatics, we have also analyzed

Random Forest (Breiman, 2001) as classifier. Results obtained by

XGBoost were superior to Random Forest in all the evaluated metrics

(see Supplementary Section S7). Specifically, XGBoost achieved a

higher recall (over 7%) while having a similar precision and increased

the RRCP AUCROC over 1% and binding site MCC over 0.02.

3.3 BIPSPI behaves partner-specific
In order to measure the partner-specificity of BIPSPI, we have com-

piled a dataset where some proteins interact with multiple partners

through different binding sites. Then, we have compared the scores of

binding site residues for a particular interaction (e.g. protein PA inter-

acting with PB) with the scores of residues involved in the interaction

of the same partner but with other proteins (e.g. protein PA interacting

with PC or with PD). For this analysis, equivalent proteins (sequence

identity >90%) that interact with different partners were identified

from our datasets DBv5 and DImS. As a result, 46 different proteins,

involving 123 interactions, were found in DBv5 and 17 proteins,

involving 43 interactions, in DImS (see Supplementary S9.1 for a list

of pdb chains). To avoid any effect or artefact due overtraining, we

analyzed the scores obtained in the leave-one-out cross-validation

computed on DBv5 and DImS (see Section 3.2). Then, for each pro-

tein, scores from its specific interface residues were collected for the

partner-specific binding site distribution and scores from residues that

belong to the interfaces of other interactions were included in the

non-specific binding site distribution (see Supplementary Material

Section S9.2 for a detailed explanation and a particular example).

Finally, both distributions were compared using the Mann–Whitney

U test, achieving P-values of 2.6e-13 and 2.5e-14 for DBv5 and

DImS, respectively and thus, rejecting the null hypothesis of the test

that both distributions are equivalent.

3.4 Binding site scoring function improves other

approaches
In PPiPP and PAIRpred, the binding site score of a particular residue

is computed as the mean or the maximum of the residue pair scores

involving this particular residue. Then, for a single residue, the

resulting binding site score depends on the score of a unique pair

and thus, the predicted score of other possible contacts are ignored.

In this work, we have designed a novel scoring function to compute

single residue binding site scores considering all predicted score pairs

for a particular residue (see Section 2.5). This approach increased

the performance when compared with the maximum score value

proposed in PAIRpred. Finally, we have also found that averaging

the predicted binding site scores through a sliding window (see

Section 2.5) increased the final performance.

Table 2 summarizes the performance of different scoring

approaches predicting biding sites from residue pair scores. In our

benchmark, the best performance was achieved by the newly defined

scoring function averaging the resulting scores through a sliding

window. At this point, we would like to highlight that our proposed

Table 1. Performance evaluation for BIPSPI leave-one-out over the DBv5, DBv3 and DImS complexes and comparison with other methods

Algorithm Dataset Input Residue–residue contact prediction Binding site prediction

AUCROC AUCROC AUCPR AUCROC AUCROC AUCPR MCC PR RC SPC NPV

BIPSPI DImS Seq 0.7469 0.7300 0.0170 0.6883 0.6741 0.3375 0.2330 0.3592 0.4264 0.8219 0.8595

Struc* 0.8800 0.8909 0.0432 0.7940 0.7816 0.4739 0.3679 0.4750 0.5098 0.8680 0.8832

Struc 0.8789 0.8875 0.0439 0.7985 0.7847 0.4772 0.3779 0.4416 0.5983 0.8228 0.8974

DBv5 Seq 0.8024 0.8137 0.0110 0.7286 0.7527 0.3049 0.2791 0.3003 0.4828 0.8349 0.9322

Struc* 0.9011 0.9184 0.0238 0.8046 0.8154 0.3967 0.3721 0.4012 0.5079 0.9037 0.9353

Struc 0.9052 0.9188 0.0234 0.8235 0.8225 0.4104 0.3855 0.3910 0.5585 0.8895 0.9407

DBv3 Seq 0.8153 0.8154 0.0113 0.7361 0.7492 0.3041 0.2830 0.3233 0.4396 0.8828 0.9251

Struc* 0.9024 0.9186 0.0269 0.8103 0.8136 0.4081 0.3712 0.4223 0.4815 0.9112 0.9287

Struc 0.9044 0.9131 0.0234 0.8157 0.8163 0.4058 0.3730 0.3831 0.5458 0.8871 0.9383

PAIRpred Dv3 Seq 0.809 NA NA 0.708 0.708 NA NA NA NA NA NA

Struc-d 0.8783 0.8930 0.0125 0.7587 0.6913 0.2012 0.1807 0.1680 0.7809 0.5030 0.9470

Struc-p 0.8783 0.8930 0.0125 0.7689 0.7741 0.3412 0.3112 0.3716 0.4197 0.8987 0.9256

PPiPP Dv3 Seq 0.729 NA NA 0.661 0.661 NA NA NA NA NA NA

Note: Seq, Sequence-based features only; Struct*, Structural and sequence-based features one step; Struc, Structural and sequence-based features two steps (de-

fault). Struc-d, PAIRpred structural and sequence-based features and maximum as scoring function (default); Struc-p, PAIRpred structural and sequence-based

features and proposed scoring function. NA, Not available

Table 2. Performance evaluation for BIPSPI interface scores esti-

mated by a leave-one-out cross-validation over the complexes

compiled in DBv5 using different scoring strategies

Algorithm Input Binding site prediction

AUCPR MCC PR RC SPC NPV

IsðaÞ Seq 0.2968 0.2740 0.3005 0.4679 0.8617 0.9272

Struc 0.4043 0.3826 0.3947 0.5444 0.8940 0.9392

IsðaÞþ wAVG Seq 0.3049 0.2791 0.3003 0.4828 0.8349 0.9322

Struc 0.4104 0.3855 0.3910 0.5585 0.8895 0.9407

Maximun Seq 0.1955 0.1684 0.1761 0.6459 0.6163 0.9320

Struc 0.3199 0.2977 0.2679 0.6394 0.7780 0.9444

Note: IsðaÞ, Proposed scoring function; IsðaÞþ wAVG, Proposed scoring

function followed by averaging along sequence (default); Seq, Sequence-based

features only; Struct, Structural and sequence-based features two steps (default).
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scoring function is not specific for our method but also can be

applied to other pair prediction methodologies. Indeed, when

applied to PAIRpred scores, it also improves its performance (see

Table 1 and Section 3.5).

3.5 Comparison with other methods
We have compared our approach with four other methods (PPiPP,

PAIRpred, GCNN and ECLAIR) that also use a machine-learning

based approach and have been designed to predict partner-specific

binding sites. In order to make comparisons with PAIRpred and PPiPP

easier, we have used the same evaluation protocol consisting in a leave-

one-out cross-validation over DBv3 complexes. Table 1 shows the per-

formance of PPiPP, PAIRpred and BIPSPI using the metrics described

in Section 2.6. The best performance was achieved by BIPSPI when

structural data was included in the input data. Moreover, when only

sequence-based features were used, BIPSPI also outperformed the other

approaches. It is worth to highlight that original PAIRpred binding site

predictions considerably improved when our scoring function was

applied (see Section 2.5), raising the MCC coefficient by>0.1 points.

Comparison with GCNN was carried out as described in the ori-

ginal publication (Fout et al., 2017). Thus, BIPSPI was retrained on

the set of complexes of DBv5 that are contained in Docking

Benchmark v4 (DBv4) (Hwang et al., 2010) and tested on the com-

plexes contained in DBv5 but not in DBv4. The median ROC-AUC

obtained by BIPSPI on the testing set was 0.942 and thus, >4 points

better than the reported in GCNN publication. Similarly, we com-

pared our method with ECLAIR and several other non-partner-

specific methods using the BM90C dataset (Meyer et al., 2018). In

this case, BIPSPI also achieved the best MCC when compared with

the other methods, 0.389. A detailed comparison table is included in

Supplementary Section S8.1.

In addition, we have also evaluated BIPSPI performance over a

set of CAPRI targets (see Supplementary Section S6.12 for a com-

plete list of proteins and detailed results). In this evaluation, BIPSPI

achieved an AUCROC for pair prediction of 0.885 and, for binding

site AUCROC and MCC, values of 0.763 and 0.297, respectively.

Moreover, we could compare these results with ISPRED4 predic-

tions (Savojardo et al., 2017) as these targets were also used during

its testing. It is worth noting that, ISPRED4 is a non-partner-specific

predictor and thus, predicting global binding sites is a more general

problem. Even so, BIPSPI obtains better MCC than ISPRED4, which

reported an MCC of 0.28.

3.6 Use case
In this section, we illustrate how BIPSPI can be employed in order to

obtain meaningful information of protein–protein interfaces, espe-

cially in those cases where several partners are involved and thus,

partner-specificity becomes more important. One of these examples

can be found in pdb 4ov6, in which two subunits of the preprotein

convertase subtilisin/kexin type 9 (PCKS9) are in complex with a

PCSK9-binding adnectin protein. PCSK9 plays an important role in

the regulation of low-density lipoprotein (LDL) serum levels thanks

to its LDL receptor degrading activity and it has been demonstrated

that self-association of PCKS9, that occurs at the catalytic region, in-

crease that activity (Fan et al., 2008). For these reasons, it has be-

come a potential pharmacological target for the treatment and

prevention of cardiovascular diseases (Mitchell et al., 2014).

PCSK9-binding adnectins, which were derived from human

Fig. 2. BIPSPI interface predictions for the proteins included in pdb 4ov6 bioassembly number 2. Subtilase domain of PCKS9 protein (pdb-chain E), surface repre-

sentation. Peptide inhibitor domain of PCKS9 (pdb-chain D), green ribbon or trace schema. PCSK9-binding adnectin protein (pdb-chain G), magenta ribbon or

trace schema. (A) Normalized binding site prediction scores for the prediction of the PCKS9 subtilase domain (heat map surface) interacting with the peptide in-

hibitor domain (green ribbon). Scores for all residues are displayed. (B) Normalized binding site predicted scores for the prediction of the PCKS9 subtilase domain

(heat map surface) interacting with PCSK9-binding adnectin protein (magenta ribbon). Scores for all residues are displayed. (C) Compact representation of (A)

and (B) in which just the highest score binding site residues for each interacting binding site are depicted. For the PCKS9 subtilase domain (grey surface), resi-

dues that interact with the peptide inhibitor domain (green ribbon) are coloured in lemon-green and in light-pink when they interact with the PCSK9-binding

adnectin protein (magenta). (D) Residue spheres representation of the top four highest score residue predictions coloured in light-pink for the PCSK9-binding

adnectin protein (magenta) and lemon-green for the peptide inhibitor domain (green) (Color version of this figure is available at Bioinformatics online.)
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fibronectin as an alternative to therapeutic antibodies, are known to

bind also close to the active site (Mitchell et al., 2014).

BIPSPI interface residue predictions for the PCKS9-PCKS9 inter-

action and for the PCKS9-Adnectin interaction are shown in

Figure 2. As it can be observed, BIPSPI partner-specificity allows the

identification of some of the residues of each native binding site, des-

pite being spatially close. Moreover, it can be noticed that BIPSPI

predictions are spatially close to the active site that was identified

through 3DBIONOTES application (see Supplementary Section S10

for additional information and Section S11 for an additional use

case) (Segura et al., 2017; Tabas-Madrid et al., 2016).

4 Conclusion

In this work, we have presented BIPSPI, a partner-specific predictor

of residue–residue contacts and protein binding sites that uses as in-

put either protein sequences or structures. BIPSPI employs the

Extreme Gradient Boosting algorithm over a set of structural and/or

sequence-based features in order to predict scores of residue pairs

that are likely to interact. Then, these predicted scores are converted

into binding site predictions by a novel scoring function. BIPSPI was

compared with state of the art methods using a leave-one-out cross-

validation on different datasets. Additionally, several CAPRI targets

were also tested as an independent evaluation benchmark. In all

these evaluations, BIPSPI achieved the best performance compared

to previously reported methods. Moreover, its partner specificity

was successfully evaluated through a Mann–Whitney U statistical

test. Finally, BIPSPI is freely available through a user-friendly web

application at http://bipspi.cnb.csic.es where prediction and visual-

ization of binding site residues can be compute from either protein

structures or sequences.

Funding

Instituto de Salud Carlos III, project number PT13/0001/0009 and

PT17/0009/0010 funding the Spanish National Institute of Bioinformatics.

The Spanish Ministry of Economy and Competitiveness through Grants

AIC-A-2011-0638, BIO2013-44647-R, BIO2016-76400-R(AEI/FEDER, UE),

the ‘Comunidad Autónoma de Madrid’ through Grant: B2017/BMD-3817.

Horizon 2020 through Grant CORBEL (INFRADEV-1-2014-1—Proposal:

654248), ELIXIR-EXCELERATE (INFRADEV-1-2015-1—Proposal:

676559) and West-Life (EINFRA-2015-1, Proposal: 675858). J. Segura is re-

cipient of a ‘Juan de la Cierva’ fellowship and R. Sanchez-Garcia is recipient

of a FPU fellowship. The authors acknowledge the support and the use of

resources of Instruct, a Landmark ESFRI project.

Conflict of Interest: none declared.

References

Ahmad,S. and Mizuguchi,K. (2011) Partner-aware prediction of interacting

residues in protein–protein complexes from sequence data. PLoS One, 6,

e29104.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Andreeva,A. et al. (2008) Data growth and its impact on the SCOP database:

new developments. Nucleic Acids Res., 36, D419–D425.

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.

Cafarelli,T.M. et al. (2017) Mapping, modeling, and characterization of pro-

tein–protein interactions on a proteomic scale. Curr. Opin. Struct. Biol., 44,

201–210.

Chen,J. et al. (2014) Protein–protein interface analysis and hot spots identifi-

cation for chemical ligand design. Curr. Pharm. Des., 20, 1192–1200.

Chen,T. and Guestrin,C. (2016) XGBoost: a scalable tree boosting system. In:

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining—KDD’, Vol. 16, pp. 785–794.

Cock,P.J.A. et al. (2009) Biopython: freely available Python tools for

computational molecular biology and bioinformatics. Bioinformatics, 25,

1422–1423.

Fan,D. et al. (2008) Self-association of human PCSK9 correlates with its

LDLR-degrading activity. Biochemistry, 47, 1631–1639.

Fout,A. et al. (2017) Protein interface prediction using graph convolutional

networks. Adv. Neural Inf. Process. Syst., 30, 6512–6521

Friedman,J.H. and Meulman,J.J. (2003) Multiple additive regression trees

with application in epidemiology. Stat. Med., 22, 1365–1381.

Grigoriev,A. (2003) On the number of protein–protein interactions in the

yeast proteome. Nucleic Acids Res., 31, 4157–4161.

Hamelryck,T. (2005) An amino acid has two sides: a new 2D measure pro-

vides a different view of solvent exposure. Proteins Struct. Funct.

Bioinformatics, 59, 38–48.

Hwang,H. et al. (2016) A hybrid method for protein–protein interface predic-

tion. Protein Sci., 25, 159–165.

Hwang,H. et al. (2008) Protein–protein docking benchmark version 3.0.

Proteins Struct. Funct. Bioinformatics, 73, 705–709.

Hwang,H. et al. (2010) Protein–protein docking benchmark version 4.0.

Proteins, 78, 3111–3114.

Janin, J. et al. (2003) CAPRI: a critical assessment of predicted interactions.

Proteins Struct. Funct. Genet., 52, 2–9.

Jones,D.T. et al. (2012) PSICOV: precise structural contact prediction using

sparse inverse covariance estimation on large multiple sequence alignments.

Bioinformatics, 28, 184–190.

Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure:

pattern recognition of hydrogen-bonded and geometrical features.

Biopolymers, 22, 2577–2637.

Meyer,M.J. et al. (2018) Interactome INSIDER: a structural interactome

browser for genomic studies. Nat. Methods, 15, 107–114.

Mihel,J. et al. (2008) PSAIA—protein structure and interaction analyzer.

BMC Struct. Biol., 8, 21.

Minhas,Fu. et al. (2014) PAIRpred: partner-specific prediction of interacting

residues from sequence and structure. Proteins, 82, 1142–1155.

Mitchell,T. et al. (2014) Pharmacologic profile of the adnectin BMS-962476, a

small protein biologic alternative to PCSK9 antibodies for low-density lipo-

protein lowering. J. Pharmacol. Exp. Ther., 350, 412–424.

Morcos,F. et al. (2014) Direct coupling analysis for protein contact prediction.

Methods Mol. Biol., 1137, 55–70.

Mosca,R. et al. (2013) Interactome3D: adding structural details to protein net-

works. Nat. Methods, 10, 47–53.

Murakami,Y. and Mizuguchi,K. (2010) Applying the Naı̈ve Bayes classifier

with kernel density estimation to the prediction of protein–protein inter-

action sites. Bioinformatics, 26, 1841–1848.

Neuvirth,H. et al. (2004) ProMate: a structure based prediction program to

identify the location of protein–protein binding sites. J. Mol. Biol., 338,

181–199.

O’Connell,M.R. et al. (2009) The structural analysis of protein–protein inter-

actions by NMR spectroscopy. Proteomics, 9, 5224–5232.

Ovchinnikov,S. et al. (2014) Robust and accurate prediction of residue–resi-

due interactions across protein interfaces using evolutionary information.

Elife, 3, e02030.

Pazos,F. et al. (1997) Correlated mutations contain information about pro-

tein–protein interaction. J. Mol. Biol., 271, 511–523.

Pei,J. and Grishin,N.V. (2001) AL2CO: calculation of positional conservation

in a protein sequence alignment. Bioinformatics, 17, 700–712.

Porollo,A. and Meller,J. (2006) Prediction-based fingerprints of protein–pro-

tein interactions. Proteins Struct. Funct. Bioinformatics, 66, 630–645.

Rodrigues,J.P.G.L.M. et al. (2015) Information-driven structural modelling of

protein–protein interactions. Methods Mol. Biol., 1215, 399–424.

Sanchez-Garcia,R. et al. (2017) 3DCONS-DB: a database of position-specific

scoring matrices in protein structures. Molecules, 22, 2230.

Savojardo,C. et al. (2017) ISPRED4: interaction sites PREDiction in protein

structures with a refining grammar model. Bioinformatics, 33, 1656–1663.

476 R.Sanchez-Garcia et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty647#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty647#supplementary-data
http://bipspi.cnb.csic.es


Segura,J. et al. (2017) 3DBIONOTES v2.0: a web server for the automatic an-

notation of macromolecular structures. Bioinformatics, 33, 3655–3657.

Segura,J. et al. (2016) 3DIANA: 3D domain interaction analysis: a toolbox for

quaternary structure modeling. Biophys. J., 110, 766–775.

Segura,J. et al. (2012) A holistic in silico approach to predict functional sites in

protein structures. Bioinformatics, 28, 1845–1850.

Segura,J. et al. (2011) Improving the prediction of protein binding

sites by combining heterogeneous data and Voronoi diagrams. BMC

Bioinformatics, 12, 352.

Segura,J. et al. (2015a) VORFFIP-driven dock: V-D2OCK, a fast and accurate

protein docking strategy. PLoS One, 10, e0118107.

Segura,J. et al. (2015b) Using neighborhood cohesiveness to infer interactions

between protein domains. Bioinformatics, 31, 2545–2552.

Shi,Y. (2014) A glimpse of structural biology through X-ray crystallography.

Cell, 159, 995–1014.

Siki�c,M. et al. (2009) Prediction of protein–protein interaction sites in sequen-

ces and 3D structures by random forests. PLoS Comput. Biol., 5, e1000278.

Sobott,F. and Robinson,C.V. (2002) Protein complexes gain momentum.

Curr. Opin. Struct. Biol., 12, 729–734.

Tabas-Madrid,D. et al. (2016) 3DBIONOTES: a unified, enriched and inter-

active view of macromolecular information. J. Struct. Biol., 194, 231–234.

Vreven,T. et al. (2015) Updates to the integrated protein–protein interaction

benchmarks: docking benchmark version 5 and affinity benchmark version

2. J. Mol. Biol., 427, 3031–3041.

de Vries,S.J. et al. (2006) WHISCY: what information does surface conserva-

tion yield? Application to data-driven docking. Proteins Struct. Funct.

Bioinformatics, 63, 479–489.

Wang,H. et al. (2007) InSite: a computational method for identifying protein–-

protein interaction binding sites on a proteome-wide scale. Genome Biol., 8,

R192.

Xue,L.C. et al. (2015) Computational prediction of protein interfaces: a re-

view of data driven methods. FEBS Lett., 589, 3516–3526.

Xue,L.C. et al. (2011) HomPPI: a class of sequence homology based protein–-

protein interface prediction methods. BMC Bioinformatics, 12, 244.

Zadrozny,B. and Elkan,C. (2002) Transforming classifier scores into accurate

multiclass probability estimates. In: Proceedings of the Eighth ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining—KDD ’02, p. 694.

Zhang,Q. et al. (2016) Recent advances in protein–protein docking. Curr.

Drug Targets, 17, 1586–1594.

BIPSPI 477


	bty647-TF1
	bty647-TF2

