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Integrated network analysis reveals distinct regulatory roles
of transcription factors and microRNAs
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ABSTRACT

Analysis of transcription regulatory networks has revealed many principal features that govern gene expression regulation.
MicroRNAs (miRNAs) have emerged as another major class of gene regulators that influence gene expression post-
transcriptionally, but there remains a need to assess quantitatively their global roles in gene regulation. Here, we have
constructed an integrated gene regulatory network comprised of transcription factors (TFs), miRNAs, and their target genes
and analyzed the effect of regulation on target mRNA expression, target protein expression, protein—protein interaction, and
disease association. We found that while target genes regulated by the same TFs tend to be co-expressed, co-regulation by
miRNAs does not lead to co-expression assessed at either mRNA or protein levels. Analysis of interacting protein pairs in the
regulatory network revealed that compared to genes co-regulated by miRNAs, a higher fraction of genes co-regulated by TFs
encode proteins in the same complex. Although these results suggest that genes co-regulated by TFs are more functionally
related than those co-regulated by miRNAs, genes that share either TF or miRNA regulators are more likely to cause the same
disease. Further analysis on the interplay between TFs and miRNAs suggests that TFs tend to regulate intramodule/pathway
clusters, while miRNAs tend to regulate intermodule/pathway clusters. These results demonstrate that although TFs and
miRNAs both regulate gene expression, they occupy distinct niches in the overall regulatory network within the cell.
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INTRODUCTION genes might be targets of miRNAs (Friedman et al. 2009).
Many miRNA targets are TFs, which in turn regulate
miRNA expression, forming an intricate regulatory network
(O’Donnell et al. 2005; Tsang et al. 2007). For example,
proto-oncoprotein c-MYC simultaneously regulates the ex-
pression of transcription factor E2F1 and a cluster of six
miRNAs that represses E2F1 expression. This positive co-reg-
ulation of E2F1 and its miRNA regulators allows the prolifer-
ative signal in the cell to be tightly controlled (O’Donnell
etal. 2005). In addition, miRNAs often regulate their own ex-
pression through auto-regulatory feedback loops with specif-
ic TFs (Krol et al. 2010).

As the canonical gene expression regulator, TFs have been
well characterized, and system-wide properties of the tran-
scription regulatory network have been explored (Lee et al.
2002; Shen-Orr et al. 2002; Yu and Gerstein 2006). In recent
years, researchers are increasingly interested in the combina-
torial interactions between TFs and miRNAs. An integrated

Gene expression is controlled and fine-tuned at multiple lev-
els within a hierarchical gene regulatory network. Transcrip-
tion factors (TFs) activate or repress gene expression
by binding transcription factor binding sites (TFBS) in
gene promoters or cis-regulatory modules (Harbison et al.
2004; Maston et al. 2006). TFs were believed to be the prima-
ry regulators of gene expression until research in the past dec-
ade revealed microRNAs (miRNAs) as a second major class
of gene expression regulator (Bartel 2004). miRNAs are
small, noncoding RNAs that fine-tune gene expression
post-transcriptionally. Mature miRNAs bind complementary
sequences of target mRNAs, causing mRNA degradation,
and/or translation repression (Bartel 2004). miRNAs regulate
many biological processes and have been implicated in
the development of human diseases including cancer
(Brennecke et al. 2003; Bartel 2004; Flynt and Lai 2008).

Recent research suggested that the majority of human
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regulatory network that includes both transcriptional and

© 2016 Guo etal. This article is distributed exclusively by the RNA Society
for the first 12 months after the full-issue publication date (see http:/
rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available
under a Creative Commons License (Attribution-NonCommercial 4.0 Inter-
national), as described at http://creativecommons.org/licenses/by-nc/4.0/.

1663


mailto:haiyuan.yu@cornell.edu
mailto:haiyuan.yu@cornell.edu
mailto:haiyuan.yu@cornell.edu
http://www.rnajournal.org/cgi/doi/10.1261/rna.048025.114
http://www.rnajournal.org/cgi/doi/10.1261/rna.048025.114
http://www.rnajournal.org/site/misc/terms.xhtml
http://rnajournal.cshlp.org/site/misc/terms.xhtml
http://rnajournal.cshlp.org/site/misc/terms.xhtml
http://rnajournal.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.rnajournal.org/site/misc/terms.xhtml

Guo et al.

post-transcriptional regulation is necessary to provide a more
complete picture of gene expression regulation and may re-
veal basic regulatory principles underlying disease pheno-
types. Recent studies have found recurring co-regulatory
motifs involving both TFs and miRNAs, such as TF-
miRNA co-regulating pairs and feed-forward loops, indicat-
ing prevalent crosstalk and cooperation between these two
modes of gene regulation (Shalgi et al. 2007; Tsang et al.
2007; Su et al. 2010).

As genome-wide transcription-factor-binding data were
not readily available, previous studies on the integrated regu-
latory network inferred TF-gene regulatory relationships
from computationally predicted TFBS. Recently, large-scale
ChIP-seq experiments from the ENCODE project generated
system-wide data on transcription factor binding patterns
(ENCODE Project Consortium 2012). Making use of the
transcription factor binding data from the ENCODE project,
Gerstein et al. (2012) created a human transcriptional regu-
latory network (Gerstein et al. 2012). They integrated
miRNA regulation data with this transcription regulation
network and found that top-level TFs have more regulatory
relationships with miRNAs, and also identified enriched
miRNA-TF co-regulation motifs in the network. However,
the differences between the architectures of miRNA and TF
regulation in the context of the overall gene regulation net-
work are still unclear. In this study, we constructed a human
integrated regulatory network by combining the ENCODE
transcriptional regulation network and high-confidence
miRNA-target predictions to investigate the possible differ-
ences in the roles of TFs and miRNAs in gene regulation
and the synergistic actions of these two types of regulators.
Previous studies of TF-miRNA co-regulation in the regulato-
ry network suggested relationships between regulation and
gene expression (Shalgi et al. 2007; Tsang et al. 2007; Su
et al. 2010), but downstream effects of regulation, especially
at the organismal level, remain unclear. Here we studied
the effects of TF and miRNA regulation at three levels:
mRNA and protein expression, protein—protein interaction,
and organism-level disease phenotypes, and found that TFs
and miRNAs exhibit distinct roles in the regulation of gene
expression.

RESULTS

Effects of TF and miRNA regulation on target gene
expression, protein—protein interaction, and disease
association

By combining TF-gene regulatory relationships from the
ENCODE project (ENCODE Project Consortium 2012;
Gerstein et al. 2012) and high-confidence miRNA-target pre-
dictions from TargetScan (Lewis et al. 2005; Grimson et al.
2007; Agarwal et al. 2015), we constructed a human integrat-
ed gene regulatory network with a total of 35,304 regulatory
relationships among 83 TFs, 77 miRNA families, and 11,407
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target genes. Previous studies have established that both TFs
and miRNAs work cooperatively to regulate their gene targets
(Hobert 2008; Martinez and Walhout 2009). Here we inves-
tigated the additive effects of TF regulation and miRNA reg-
ulation on their target genes.

First, we examined the expression relationships among
genes regulated by the same TF(s) or miRNA(s) at both
mRNA and protein levels. Previous studies have shown in
multiple organisms that genes regulated by the same TF
tend to be coexpressed (Yu et al. 2003; Kim et al. 2006;
Marco et al. 2009; Gu et al. 2011). Here, we found that the de-
gree of expression correlation depends on the number of
shared regulators. We calculated the log odds ratio of
mRNA coexpression of gene pairs co-regulated by one or
more TFs compared to random expectation (see Methods).
We found that the likelihood of two genes being coexpressed
at the mRNA level increases with the number of common TFs
that regulate them (Fig. 1A). On the other hand, genes regu-
lated by the same miRNAs do not tend to be coexpressed at the
mRNA level compared to random gene pairs (Fig. 1B). Even
gene pairs co-regulated by four or more miRNAs are not more
likely to coexpress (LOD =0.21, P =0.28). Although mRNA
expression levels affect the amount of protein produced
in the cell, studies found that there is only a modest correla-
tion between mRNA abundance and protein abundance
(Ghaemmaghami et al. 2003; Vogel and Marcotte 2012).
MicroRNAs not only regulate target mRNA levels but also
act by repressing the translation of target mRNAs into pro-
teins. Therefore, the effects of miRNAs on their targets could
be better reflected at the level of protein expression. To inves-
tigate the effects of TF and miRNA regulation on protein ex-
pression of their target genes, we computed the pair-wise
protein coexpression using protein expression profiles from
the Human Proteome Map (Kim et al. 2014) and calculated
the log odds ratio of protein coexpression of target pairs co-
regulated by one or more common regulators compared to
random expectations. Interestingly, we found that even at
the protein level, genes co-regulated by the same miRNAs
are not more likely to be coexpressed (Fig. 1D). These obser-
vations are the opposite of the commonly accepted view
that co-regulation leads to coexpression. However, the obser-
vation is consistent with our current understanding of
miRNAs: They only have a moderate repressive effect on tar-
get gene expression and do not control the on/off state of the
target genes (Bartel 2004). Furthermore, the overall effect of
miRNA regulation on gene expression is much more subtle
compared to TF regulation (Bartel 2004).

Proteins are the functional units of the cell and carry out
their diverse activities through interactions with other pro-
teins. To investigate the effects of regulation on protein
function, we studied the interactions between protein prod-
ucts of genes regulated by the same TF(s) or miRNA(s).
We found that the protein products of genes co-regulated
by either TFs or miRNAs are significantly more likely to
physically interact with each other than randomly expected,
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FIGURE 1. Synergistic effects of TFs and miRNAs on target gene co-expression. LOD values are
calculated for the enrichment of mRNA co-expression between gene pairs co-regulated by mul-
tiple TFs (A) or miRNAs (B). LOD values are calculated for the enrichment of protein coexpres-
sion between gene pairs co-regulated by multiple TFs (C) or miRNAs (D). (*) P <0.05. P-values
are calculated by the Z-test. Error bars indicate + SE. Difference in the fractions of coexpressed

gene pairs between the first and last bins is calculated by the y* test.

and the likelihood of physical interaction increases with the
number of shared regulators (Fig. 2A,B). For example, pro-
tein products of genes co-regulated by three or more com-
mon regulators are almost twice as likely to physically
interact compared to random expectation (OD =1.88, P<
1076 for TF regulation; OD =1.99, P < 10™* for miRNA reg-
ulation). Furthermore, protein products of genes co-regulat-
ed by more TFs or miRNAs tend to be in closer proximity
in the protein interaction network (Supplemental Fig. 1).
Within the cell, proteins can form stable complexes or
dynamically interact with each other to carry out subcellular
functions. The stable interactions bring proteins into tightly
regulated functional modules, while transient interactions
connect and coordinate these modules (Das et al. 2012). To
investigate the relationship between regulation and protein
interaction dynamics, we identified stable complexes in the
protein—protein interaction network using the ClusterONE
algorithm (Nepusz et al. 2012). We found that genes co-reg-
ulated by the same miRNAs are less likely to encode proteins
in the same complex compared to genes co-regulated by TFs
(Fig. 2C, P < 107°). Previous studies found that genes encod-
ing subunits in the same protein complex are globally coex-
pressed (Jansen et al. 2002; Yu et al. 2008a). On the other
hand, genes encoding proteins involved in transient interac-
tions only coexpress under specific conditions and do not
have highly correlated expression profiles (Das et al. 2012).
This explains our observation that although genes co-regu-
lated by the same miRNAs are more likely to encode for
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tion and coassociation of genes to
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enrichment of co-regulated disease genes
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with respect to random expectations.
Genes jointly regulated by more TFs are
more likely to be associated with the
same diseases (LOD =0.32, 0.75, 0.96,
and 1.25 for gene pairs jointly regulated
by more than 1, 2, 3, and 4 TFs, respectively; Fig. 3A).
Similarly, genes co-regulated by multiple miRNAs are also
more likely to cause the same diseases (LOD =0.22, 0.57,
and 1.24 for genes jointly regulated by more than 1, 2, and
3 miRNAs, respectively; Fig. 3B). Together with the expres-
sion and interaction analyses above, our results demonstrate
that genes co-regulated by multiple TFs tend to be more re-
lated on all three functional levels we examined. This shows
that genes sharing more regulating TFs tend to be more func-
tionally similar and tend to form tightly regulated modules
that function together in the same biological processes/path-
ways. In contrast, miRNAs do not regulate the coordinated
expression of genes in the same functional module and
tend to regulate intercomplex protein—protein interactions,
but target genes co-regulated by the same miRNAs are still
significantly more likely to be associated with the same dis-
ease. This suggests that miRNAs play an important role in
intermodular regulation, where they coordinate target genes
in related biological processes/pathways.

Although TargetScan provides a genome-wide, unbiased
prediction of miRNA targets, most of the targets predicted
are not verified experimentally. On the other hand, the tran-
scription regulation network is derived from ChIP-seq ex-
periments. The difference in the data reliability of each data
source could affect the interpretation of our results.
Unfortunately, it is difficult to benchmark the fractions of
false-positive associations across the different data sources
in a systematic way. To further validate our results, we
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FIGURE 2. Synergistic effects of TFs and miRNAs on the protein—pro-
tein interaction of targets. LOD values are calculated for the enrichment
of protein—protein interactions between gene pairs co-regulated by mul-
tiple TFs through TFs (A) or miRNAs (B). (*) P < 0.05. P-values are cal-
culated by the Z-test. Error bars indicate + SE. Difference in the fractions
of genes pairs encoding interacting proteins between the first and last
bins is calculated by the y” test. (C) The percentage of intramodular in-
teractions among interacting protein pairs encoded by co-regulated
genes.

generated a high-quality set of experimentally verified
miRNA-gene interactions using manually curated data from
Tarbase (Vergoulis et al. 2012) and miRTarBase (Hsu et al.
2014). To avoid study bias arising from small-scale, gene-spe-
cific experiments, we only included data generated by high-
throughput experimental methods such as CLIP-seq and
Degradome-seq. Since these miRNA targets were derived
from high-throughput experiments, the quality of this
miRNA-target set is likely more comparable to the TF target
setderived from ENCODE. We repeated all of our calculations
with this high-quality experimentally verified miRNA-target
set and found the results to be consistent with those described
above (Supplemental Fig. 2). Validating our results from
two independent data sources confirms that our results are ro-
bust across a range of false-positive rates in the input. As
TargetScan identifies miRNA targets on the genome scale
for all known miRNA families, while studies that experimen-
tally identify miRNA targets usually focus on a small number
of miRNAs, the miRNA-target network predicted by
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TargetScan is significantly larger. Since analyses with the pre-
dicted miRNA-target set and with the observed miRNA-target
set yield similar results, we use the predicted miRNA-target set
for all subsequent analyses to ensure sufficient statistical
power.

Functional relationship between regulators
and their target genes

Genes associated with the same disease tend to have correlat-
ed gene expression and their protein products tend to phys-
ically interact, forming functional modules in the cellular
network (Goh et al. 2007; Feldman et al. 2008). As TFs and
miRNAs control the timing and level of expression of their
target genes, we postulate that disruption of the regulator
functions and disruption of the target protein functions are
likely to result in the same diseased state. By comparing the
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FIGURE 3. Effects of TF and miRNA regulation on target gene disease
association. LOD values of the enrichment for co-regulated genes to
cause the same disease are calculated for gene pairs co-regulated by mul-
tiple TFs through TFs (A) or miRNAs (B). Difference in the fractions of
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lator-gene pairs to be associated with the same disease compared to ran-
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diseases associated with TFs and the diseases associated with
their gene targets, we found that overall, TFs are significantly
more likely to cause the same disease as their gene targets
compared to random TF-target pairs (LOD=0.89, P<
1075 Fig. 3C). To perform the same analysis on miRNAs,
we compiled a list of literature-curated miRNA-disease asso-
ciations from the HMDD (Lu et al. 2008) and miR2Disease
(Jiang et al. 2009) databases. Similarly, we found that
miRNAs are also significantly more likely to be associated
with the same disease as the genes they regulate (LOD =
0.36, P< 10719, Fig. 3C). This confirms our hypothesis that
disruptions of TF or miRNA functions tend to have similar
effects as disruptions of their target gene functions.

Different roles of TF and miRNA regulation:
intramodular vs. intermodular

Recent studies found that crosstalk and cooperation between
TFs and miRNAs are highly prevalent and could be an inte-
gral part of the gene regulatory network (Shalgi et al. 2007; Yu
et al. 2008b; Chen et al. 2011; Lin et al. 2012). To further un-
derstand the crosstalk between TFs and miRNAs, we investi-
gated the regulatory relationships between TFs and miRNAs.
From our gene regulatory network, we found 1004 miRNA
pairs co-regulated by at least one common TF, and 262 TF
pairs co-regulated by at least one common miRNA.

First we examined the functional similarity of TFs that are
targeted by the same miRNA(s). We computed the fraction of
shared targets for each TF pair (number of shared targets/to-
tal number of targets of the two TFs) and compared the dis-
tribution of the fraction of shared targets of TF pairs
regulated by the same miRNA and that of random TF pairs.
We found that on average, two TFs co-regulated by the same
miRNA do not share more targets than two random TFs (P =
0.96 by Wilcoxon rank-sum test; Fig. 4A), suggesting that TFs
regulated by the same miRNA may regulate different biolog-

ical processes. However, TFs do tend to share targets with the
miRNA that regulates them, implying functional overlap be-
tween an miRNA and the TFs it regulates (Supplemental Fig.
3). In contrast, ~81% of miRNA pairs regulated by the same
TF share gene targets, which is significantly higher than ran-
dom expectation (P < 1073 Fig. 4C). This shows that
miRNAs regulated by the same TFs tend to have higher func-
tional overlap. As a comparison, we also calculated the distri-
bution of the fraction of shared targets of TF pairs regulated
by the same TF. We found that TFs that are regulated by the
same TF tend to share more gene targets compared to ran-
dom TF pairs (P < 107 Fig. 4B), suggesting that TFs regulat-
ed by the same TF also tend to have related functions. In
summary, TF and miRNA pairs that are co-regulated by an
upstream TF tend to target the same genes, whereas TF pairs
co-regulated by the same miRNAs do not tend to share more
targets compared to random TF pairs.

Furthermore, we found that second degree targets co-reg-
ulated by an upstream TF are more likely to be coexpressed
and to physically interact, whereas second degree targets
co-regulated by the same miRNAs are not more likely to
coexpress or physically interact compared to random expec-
tations (Supplemental Figs. 4, 5). To further verify the above
observations, we formulated a functional similarity metric
for TFs and miRNAs based on the overlap of their target
gene sets, the proximity of their target genes in the pro-
tein—protein interaction network and the similarity of their
target genes according to the Gene Ontology biological
processes terms (see Methods). Consistent with our previous
observations, we found that TFs regulated by the same
miRNAs are not more functionally similar than random TF
pairs, while miRNA pairs (P<107"°) and TF pairs (P<
107"?) regulated by the same TF are significantly more simi-
lar than random miRNA pairs or TF pairs without regulation
(Wilcoxon rank-sum test; Supplemental Fig. 6). This suggests
that TFs regulate groups of functionally similar downstream
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FIGURE 4. Interregulation of TFs and miRNAs. Distribution of the fraction of shared targets of TF pairs regulated by the same miRNA (A), TF pairs
regulated by the same TF (B), and miRNA pairs regulated by the same TF (C). P-values are calculated using the Wilcoxon rank-sum test.
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regulators that tend to target the same genes or functionally
related genes. In contrast, miRNAs regulate functionally dis-
parate TFs that are likely to be involved in different biological
processes.

Thus far, we found that genes co-regulated by TFs form
tightly regulated functional modules and that miRNAs/TFs
regulated by the same TF are functionally similar. These re-
sults suggest that TFs tend to regulate genes within the
same functional module, where genes regulated by the
same TF participate in the same biological process/pathway
(Fig. 5A). Examples of intramodular multilevel regulation
are shown in Figure 5A. The oncogenic transcription factor
MYC is involved in many different types of human cancers
(Dang 2012). For example, overexpression of MYC is associ-
ated with human prostate cancer (Gurel et al. 2008; Koh et al.
2011). It has been found that MYC regulates the expression of
many tumor-suppressing miRNAs in lymphoma and pros-
tate cancer cells (Chang et al. 2008; Koh et al. 2011). In our
integrated regulatory network, MYC regulates hsa-miR-19b
and hsa-miR-92a, which are themselves also associated with
prostate cancer. These miRNAs in turn regulate PTEN, a tu-
mor suppressor gene that was found to be inactivated in
somatic prostate cancers (Cairns et al. 1997). Here, the tran-
scription factor MYC regulates a group of miRNAs, which in
turn regulate the downstream gene PTEN in the same disease

module. In this disease module, we also found another
miRNA, hsa-miR-19a, that has not been previously associat-
ed with prostate cancer. As hsa-miR-19a is in the same
miRNA family as hsa-miR-19b, it is likely that it also plays
a role in prostate cancer.

On the other hand, genes regulated by the same miRNA(s)
do not tend to coexpress globally; their protein products tend
to interact intermodularly, but they are still more likely to be
associated with the same disease. In addition, a single miRNA
may regulate multiple TFs that carry out different functions.
Taken together, our results suggest that miRNAs are involved
in intermodular regulation, where genes regulated by the
same miRNA may not necessarily be in the same protein
complex or pathway but are involved in related cellular pro-
cesses (Fig. 5B). An example of intermodular multilevel reg-
ulation is shown in Figure 5B.

DISCUSSION

In this study, we have constructed an integrated gene regula-
tory network comprising both transcriptional regulation and
post-transcriptional regulation, and investigated on a global
scale the differences between the two layers of regulation
on three functional levels. Our results revealed that TFs are
involved in intramodular regulation, where multiple TFs
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FIGURE 5. Intramodular regulation and intermodular regulation. (A) Schematic and an example of intramodular regulation by TF. Transcription
factor MYC and downstream targets are associated with prostate cancer. (B) Schematic and an example of intermodular regulation by miRNA. miR-
27ab targets three different TFs that each regulates different biological processes.
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act cooperatively to regulate a set of genes that tend to coex-
press, interact physically, and associate with the same diseas-
es. On the other hand, miRNAs coordinate related cellular
pathways/processes through intermodular regulation. Gene
targets regulated by the same miRNA(s) show higher expres-
sion variability, they do not tend to encode proteins in the
same complex, although their protein products are in closer
proximity in the protein—protein interactome network, and
they are more likely to be associated with the same diseases.
A previous study by Liang and Li on the correlation between
miRNA regulation and protein—protein interactions found
that miRNAs have a higher propensity to target intermodular
protein hubs compared to intramodular protein hubs (Liang
and Li 2007), which further supports our observations.
miRNA regulation of genes across different functional mod-
ules/pathways is biologically important, as different function-
al modules have diverse expression profiles and regulation is
essential for the coordination among different functional
modules in the cell. Indeed, clustering of miRNAs by func-
tional similarity revealed that disease-associated miRNAs
tend to be at the interface between adjacent functional mod-
ules compared to non-disease-associated miRNAs (Xu et al.
2011).

In conclusion, we found that although TFs and miRNAs
share similar regulatory logic, such as combinatorial regula-
tion of gene targets in recurring network motifs (Shen-Orr
etal. 2002; Shalgi et al. 2007; Gerstein et al. 2012), they appear
to occupy distinct niches in the gene regulatory network, and
that these differences impact the role that TFs and miRNAs
play in mediating disease risk. Our findings provide new in-
sights into the global architecture and organization principles
of the gene regulatory network.

MATERIALS AND METHODS

Integrated gene regulatory network

The TF-gene regulatory relationships were derived from ENCODE
data generated by ChIP-seq experiments. To ensure the quality of
the network, we downloaded the filtered, high-confidence set of
TF-gene associations from the supplementary website of Gerstein
et al. (2012). The high-confidence TF regulatory network was fil-
tered based on a probabilistic model called target identification
from profiles (TIP) (Cheng et al. 2011). TIP learns a characteristic
binding profile for each TF and predicts a regulatory score between
the TF and each of its potential target genes based on the binding
regions of the gene. TF-gene interaction was then ranked using
the regulatory score, and those with FDR < 0.01 were included in
the high-confidence TF-gene association provided by Gerstein and
colleagues. Among the 119 transcription-related factors studied in
the ENCODE project, we only considered sequence specific tran-
scription factors that recognize and bind to specific DNA sequence
motifs. The resulting transcriptional regulatory network comprises
83 sequence specific transcription factors and 8243 target genes.
Currently, several major miRNA-target prediction algorithms,
such as TargetScan (Lewis et al. 2005), miRanda-mirSVR (John

et al. 2004; Betel et al. 2010), PicTar (Krek et al. 2005), and PITA
(Kertesz et al. 2007), make genome-wide predictions of miRNA tar-
gets based on target site conservation and other target site features.
Studies of protein levels after miRNA knockdown and transfection
demonstrated that TargetScan and miRanda-mirSVR outperform
other miRNA prediction algorithms in terms of prediction accuracy
(Baek et al. 2008; Selbach et al. 2008; Betel et al. 2010). In this study,
we obtained miRNA identities and their predicted targets from
TargetScan. To ensure that only high-confidence miRNA-gene reg-
ulatory relationships are included, we filtered TargetScan predic-
tions based on both conservation criteria (Lewis et al. 2005;
Friedman et al. 2009) and estimates of site performance, referred
to as Context Score (Grimson et al. 2007; Agarwal et al. 2015).
We used only gene targets with a Pct > 0.5, which indicates that
there is at least a 50% probability that a sequence is selectively main-
tained as a miRNA-target site, and a Context Score < —0.2. Grimson
et al. (2007) demonstrated by siRNA transfection experiments that
predicted miRNA targets with a lower Context Score are more
down-regulated in response to siRNA expression. Context Scores
of —0.2 or lower were chosen as the cutoff because such targets
were measurably down-regulated (~25% change in expression on
average for conserved sites) in the siRNA transfection experiments
(Grimson et al. 2007). To avoid redundancies in the network and
subsequent analyses, mature miRNAs with identical seed regions
were grouped into miRNA families based on the miRNA family in-
formation from TargetScan. In total, we obtained regulatory rela-
tionships between 77 conserved miRNA families and 5858
predicted targets from TargetScan.

In addition, we compiled an experimentally verified miRNA-tar-
get set from Tarbase (Vergoulis et al. 2012) and miRTarBase (Hsu
et al. 2014). This data set includes 6470 interactions among 59
miRNA families and 3660 target genes that are verified by high-
throughput experiments.

Gene expression data and PCC calculation

We used the mRNA expression data generated by the Genotype-
Tissue Expression (GTEx) project (GTEx Consortium 2015), which
measured mRNA expression profiles of 8555 samples across 53 hu-
man tissues using mRNA sequencing. Gene-level expression data
were downloaded from the GTEx data portal and the expression val-
ues were quantile normalized. On average, the 83 TFs in our net-
work are expressed in 90% of the samples in the GTEx data at an
expression cutoff of 0.1 RPKM (cutoff used by the GTEx consor-
tium). Seventy-six of the 83 TFs are expressed in >50% of the
samples.

The gene-level protein expression profiles of 30 human tissues
generated by high-resolution mass spectrometry were downloaded
from the Human Proteome Map (HPM) (Kim et al. 2014). The
HPM data set includes proteins encoded by 17,294 genes, which
covers ~84% of all protein-coding genes in humans. On average,
the protein expression of each TF is detected in 40% of the samples.
All TFs are expressed in at least one sample in the protein
expression data.

Pearson correlation coefficient (PCC) was calculated for all pos-
sible pairs of genes at the mRNA and the protein levels using a mas-
sively parallel Java program (Das et al. 2012). Two genes are
considered to be coexpressed at the mRNA/protein level if their
mRNA/protein expression profiles have a PCC of 0.6 or greater (ap-
proximately the top 1% of all possible interactions ranked by PCC).
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Protein—protein interaction and disease-gene
association data

High-quality, binary protein—protein interactions were obtained
from HINT (Das and Yu 2012), a protein interaction database
with high-quality interactions collated from literature-curation
and high-throughput experiments.

A comprehensive list of disease-associated genes was compiled
from the Human Gene Mutation Database (HGMD) (Stenson
et al. 2003, 2009) and the Online Mendelian Inheritance in Man
(OMIM) (Amberger et al. 2009, 2011) database. miRNA-disease as-
sociations were collated from two databases: the human microRNA
disease database (HMDD) (Lu et al. 2008) and miR2Disease data-
base (Jiang et al. 2009). In total, we collected 2712 manually curated
associations between 263 miRNAs and 184 diseases. To standardize
the disease nomenclature across databases, unique disease identifiers
were assigned to each phenotypically distinct disease through com-
putational and manual curation.

Calculating the similarity score of two regulators

The similarity score of two regulators was calculated based on (i) the
number of gene targets they share, (ii) the number of targets of each
regulator that directly interact with target proteins of the other reg-
ulator in the protein—protein interaction network, and (iii) the
number of targets of each regulator that are functionally similar to
the targets of the other regulator based on biological process terms
from Gene Ontology. Functional similarity of two genes based on
the Gene Ontology biological process was calculated using the total
ancestry measure as previously described (Yu et al. 2007; Das et al.
2012). Functional similarities between all genes were calculated us-
ing a massively parallel Java program (Das et al. 2012).
The similarity score is calculated as

[AUBUC|
19 '

similarity score =

wher

o

A = {Shared targets of the two regulators}

B = {Interacting targets of two regulators}

C = {Functionally similar targets of two regulators}

Q = {All targets of the two regulators}

The most stringent criterion for functional similarity of two reg-
ulators is the number of targets they share, followed by the number
of interacting targets, and then by the number of functionally similar
targets in GO. On average, for any two regulators, targets identified
in sets A, B, and C contribute to about 5%, 10%, and 85%, respec-
tively, to the similarity score between the two regulators. Although
the major component of the similarity score is the set of functionally
similar targets of two regulators, our results remain the same when
we evaluate the similarity of two regulators based solely on the num-
ber of targets they share (Fig. 4), or the number of targets of one reg-
ulator that directly interacts with targets of the other regulator
(Supplemental Fig. 5).

Statistical analyses

We performed randomization tests to evaluate the enrichment
of coexpression, protein—protein interaction, and disease associa-
tion among co-regulated genes. We generated 100 randomized
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networks by permuting gene identifiers of both regulators and target
genes. The randomized networks generated have the same degree
distribution, network topology, and motif structures as the original
network.

For each functional relationship, we compared the fraction of co-
regulated gene pairs sharing a specific functional relationship in the
real network (p;) to the average fraction of co-regulated gene pairs
sharing the same functional relationship in random networks (p,).
The enrichment of each functional relationship among co-regulated
genes with respect to random expectations was measured by log
odds ratio (LOD).

pi/(1 —p1)
LOD = In[ —/——————=).
n(Pz/(l —P2)>

The standard error of the LOD is calculated as

. SEZ, SEZ,
R =\ P —p1Y | p22—(—p2)

The statistical significance of the enrichment was evaluated by the Z-
test. To avoid large errors in the estimation of enrichments, we only
performed the enrichment calculation when there were at least
10 pairs of genes with an observed functional relationship. Also,
we limited the enrichment calculations to up to >4 common regu-
lators because <1% of all gene pairs share five or more common
regulators.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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