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A genomic perspective on stoichiometric regulation
of soil carbon cycling
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Similar to plant growth, soil carbon (C) cycling is constrained by the availability of nitrogen (N) and
phosphorus (P). We hypothesized that stoichiometric control over soil microbial C cycling may be
shaped by functional guilds with distinct nutrient substrate preferences. Across a series of rice fields
spanning 5–25% soil C (N:P from 1:12 to 1:70), C turnover was best correlated with P availability and
increased with experimental N addition only in lower C (mineral) soils with N:P⩽ 16. Microbial
community membership also varied with soil stoichiometry but not with N addition. Shotgun
metagenome data revealed changes in community functions with increasing C turnover, including a
shift from aromatic C to carbohydrate utilization accompanied by lower N uptake and P scavenging.
Similar patterns of C, N and P acquisition, along with higher ribosomal RNA operon copy numbers,
distinguished that microbial taxa positively correlated with C turnover. Considering such tradeoffs in
genomic resource allocation patterns among taxa strengthened correlations between microbial
community composition and C cycling, suggesting simplified guilds amenable to ecosystem
modeling. Our results suggest that patterns of soil C turnover may reflect community-dependent
metabolic shifts driven by resource allocation strategies, analogous to growth rate–stoichiometry
coupling in animal and plant communities.
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Introduction

Although microbial communities are critical to
carbon (C) flow in the biosphere, ecosystem models
have only recently begun to simulate variation in
their metabolism in soils (Li et al., 2014; Wang et al.,
2015; Weider et al., 2015). Increasingly powerful and
available data on microbial community structure and
function might help to better inform these efforts
(McGuire and Treseder, 2010; Singh et al., 2010;
Schimel and Schaeffer, 2012; Graham et al., 2016).
Yet, compared with taxonomically constrained pro-
cesses such as ammonia or methane oxidation
(Bouskill et al., 2012; Ho et al., 2013), delineation
of functional groups for decomposition in soils is
challenging due to the broad distribution and
functional redundancy of the relevant traits
(Allison and Martiny, 2008; Schimel and Schaeffer,
2012; Berlemont and Martiny, 2013; Martiny et al.,
2015). However, consideration of interactions
between C and nutrient cycling by soil microbes
may help clarify ecologically relevant functional
guilds. For example, consistent shifts in terrestrial

soil C turnover and retention with mineral N
addition (Craine et al., 2007; Treseder, 2008) appear
mediated in part by increased abundance of
microbes utilizing simple C substrates, at the
expense of those mining complex aromatic C and
organic N (Treseder et al., 2011; Fierer et al., 2012;
Ramirez et al., 2012; Cederlund et al., 2014; Amend
et al., 2015).

Phosphorus (P) availability can also contribute to
regulation of soil C cycling, and the underlying traits
for microbial P cycling could analogously be linked
with traits for C and N acquisition. Although less
commonly studied than soil C and N interactions, P
availability may affect land C sink strength at
ecosystem and global scales (Wang et al., 2007;
Vitousek et al., 2010; Goll et al., 2012) and contribute
to the regulation of soil C turnover rates even in
nominally N-limited habitats, such as grasslands,
temperate forests and leaf litter (Bradford et al., 2008;
Manzoni et al., 2010; Strickland et al., 2010; Fisk
et al., 2015). Soil P availability may not only affect
the biomass of soil microbes (Griffiths et al., 2012;
Zhang et al., 2015) but critically might also control
community-scale rates of metabolism (Strickland
et al., 2010; Spohn and Chodak, 2015), which could
reflect underlying stoichiometric constraints at the
scale of individual cells (Hartman and Richardson,
2013).
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As posited by the growth rate hypothesis (Elser
et al., 1996, 2000, 2003), cellular growth rates are
linked to biomass N:P ratios by the high P demands
of ribosomal RNA, which determines in part the rate
of synthesis of N-rich proteins. Differentiation of
organism C, N and P demands based on growth rate
variation forms the foundation of Ecological Stoi-
chiometry theory (Sterner and Elser, 2002; Vrede
et al., 2004; Allen and Gillooly, 2009), enabling
community shifts under different nutrient regimes to
be connected with predictable alterations in ecosys-
tem C cycling, particularly in aquatic ecosystems
(Sterner and Elser, 2002; Weber and Deutsch, 2010;
Follows and Dutkiewicz, 2011; Hessen et al., 2013;
Mock et al., 2015). Development of a parallel frame-
work to link stoichiometric regulation of microbial
metabolism to soil C cycling at the community and
ecosystem scales is highly desirable (Hall et al.,
2011; Sistla and Schimel, 2012; Zechmeister-
Boltenstern et al., 2015), especially given the
integration of stoichiometric regulation of primary
producers and decomposition into current terrestrial
ecosystem models (Yang et al., 2014; Reed et al.,
2015).

However, the inter-relationships between soil
stoichiometry, microbial communities and soil C
cycling are not currently well understood. In culture,
microbial growth rates are linked with cell N:P
stoichiometry and ribosomal RNA content or gene
copy number (Makino and Cotner, 2004; Karpinets
et al., 2006; Keiblinger et al., 2010; Vieira-Silva and
Rocha, 2010; Franklin et al., 2011), which can vary
among bacterial lineages (Mouginot et al., 2014;
Roller et al., 2016). Separately, variation or manip-
ulation of P availability and stoichiometry in soils
has been associated with shifts in microbial commu-
nity composition (Güsewell and Gessner, 2009;
Fanin et al., 2013; Leff et al., 2015; Spohn et al.,
2015), without considering relationships to soil C
cycling or metabolic differences among responsive
microbes.

We postulated that ecosystem-scale relationships
between soil C cycling and P availability may arise
due to changes in microbial metabolism, which
reflect a dependence of growth rates on P avail-
ability, and are underpinned by shifts in microbial
communities based on differences in their nutrient
utilization potential. We combined plot-scale manip-
ulations and measurements of C cycling across a
broad soil C:N:P gradient with high-throughput
sequencing techniques to address specific hypoth-
eses at different scales of ecological organization,
including: (1) Soil C cycling rates are associated with
P availability and stoichiometry at the ecosystem
scale; (2) At the community scale, taxonomy and
function of microbes are associated with soil P
stoichiometry; (3) At the individual scale, genomic
features and potential utilization of C, N and P
substrates differ characteristically among taxa, and
(4) Across these scales, rates of soil C cycling are
linked with the abundance of microbial groups

defined by differences in stoichiometric resource
allocation. To enable evaluation of the latter two
hypotheses and interrogate relationships across
scales, we inferred the stoichiometric utilization
potential of individual microbes in situ, using 16S
rRNA and shotgun metagenome sequencing in
combination with inference from existing reference
genomes (Langille et al., 2013).

Materials and methods

Experimental design and measurement of soil C cycling
and chemistry
Soils and C flux data were obtained from a ca. 120
hectare area under continuous rice cultivation since
2008 on Twitchell Island (38.1053 N, 121.6542 W) in
the Sacramento-San Joaquin Delta, California, USA.
Study plots (4 × 5m2) were established to test N
fertilization effects across a gradient of soil C content
in Rindge mucky silt loam soils (Typic Halposapr-
ists). Additional details of this study and site,
including crop yield and plant N uptake, are
described by Espe et al. (2015). Fertilized plots had
solid urea pellets broadcast at a single time point
within 5 days of flooding on 15 May 2013.

A subset of these plots was used to test effects of
added N on trace greenhouse gas fluxes in a
complete randomized block design with four repli-
cate plots each for control (0 N) and 80 kg N ha− 1

fertilization (80 N) treatments in each of four fields
with ca. 5, 10, 20 and 25% soil C content (32 total
plots). Fluxes of CO2, CH4 and N2O in closed vented
soil chambers were measured weekly for the calen-
dar year 2013, with complete methods and data
described in a companion study (Ye et al., 2016).

For each plot across the soil C gradient, CO2 fluxes
were integrated over the inundated period of
the rice-growing season (15 May–10 August;
Supplementary Figure S1) to match soil collection
date, instead of using closely correlated annual
fluxes (Ye et al., 2016). We then calculated soil C
turnover, the proportion of soil C content (in the top
15 cm of soil) respired over the growing season as
CO2 (Σ g CO2m−2 per g soil Cm− 2) to account for
differences in bulk C supply on soil respiration.

Soil samples were obtained from each of the
experimental plots between rows of rice at the end
of the growing season (9–10 August 2013), just prior
to water drawdown and timed to coincide with peak
flooded soil CO2 and CH4 emissions (Supplementary
Figure S1, Ye et al., 2016). Three replicate topsoil
samples were taken from each plot 0–15 cm beneath
the soil surface, corresponding approximately to the
soil horizon (anthraquic horizon) affected by agri-
cultural activity in paddy soils (Kögel-Knabner et al.,
2010), which also harbors the most abundant
populations of bacteria (Lee et al., 2015).

Soils from each plot were composited and ana-
lyzed for pH, chloride and sulfate concentrations,
total pools of C, N and P and extractable NH4

+,

Genomic stoichiometry constrains soil C cycling
WH Hartman et al

2653

The ISME Journal



NO3
− and PO4

2−. Further details on soil collection,
processing, biogeochemistry and greenhouse gas
fluxes are provided in Supplementary Methods and
Supplementary Table S1. The relative abundances of
C compound classes were determined in lyophilized
soils using Fourier-transformed infrared spectro-
scopy (attenuated total reflection Fourier-
transformed infrared spectroscopy), with 64 scans
by a Thermo-Scientific (Waltham, MA, USA), Nico-
let iS50 FT-IR and peak assignments were made
following Parikh et al. (2014).

Microbial community sequencing and data processing
Soil DNA was extracted from 0.5 g of homogenized
composite sample from each plot using a MoBio
Laboratories (Carlsbad, CA, USA) PowerLyzer
PowerSoil DNA Extraction Kit. For metagenomic
shotgun sequencing, ~ 300 bp insert indexed
libraries (Kapa Biosystems, Wilmington, MA, USA)
were pooled 12 per lane on an Illumina (San Diego,
CA, USA) HiSeq 2500 using TruSeq SBS v4
chemistry to produce 150 bp length paired-end
reads, yielding ~5.0 Gbp per sample after contami-
nant and quality filtering (Supplementary Methods,
Supplementary Table S2). Sequences were anno-
tated via the Integrated Microbial Genomes (IMG)
pipeline (Huntemann et al., 2015) (details in
Supplementary Methods). Gene abundance data
calculated using the clusters of orthologous group
(COG) ontology (Galperin et al., 2015) and adjusted
for contig depth were downloaded from JGI’s IMG
database (Markowitz et al., 2014) as a gene count by
sample table from samples stored under IMG
Genome IDs 3300005873–3300005905. Across our
samples, ca. 42% of genes were assigned to COGs
(Supplementary Table S2); others were not consid-
ered further.

Reads aligning to large subunit ribosomal RNA
genes of bacterial, archaeal, fungal and other eukar-
yotic origins were identified and classified using the
METAXA2 pipeline (Bengtsson-Palme et al., 2015).

Bacterial and archaeal community composition
was determined from soil DNA extracts by amplify-
ing the V4 region of 16S rRNA using barcoded
multiplexed primers 515F and 816R (Caporaso et al.,
2012; Tremblay et al., 2015). Sequences were
processed using a standard pipeline (Tremblay
et al., 2015) yielding ca. 24 000 unique operational
taxonomic units (OTUs) at depth of 474 000 reads
per sample (details in Supplementary Methods).

For imputation of community function by
PICRUSt (Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States) (Langille
et al., 2013), 16S rRNA sequences were mapped at
97% sequence identity to the GreenGenes reference
database (DeSantis et al., 2006) for which PICRUSt
provides precomputed functional profiles, matching
ca. 46% of sample reads and 48% of abundant OTUs
(4250 total reads) (Supplementary Table S2). Abun-
dance data from 16S sequences were corrected for

ribosome copy number bias before predicting
the abundance of COG ontology functions in
soil metagenomes using PICRUSt. Imputed and
sequenced metagenome COG function tables were
rarified separately and then both normalized to 10
million COGs/sample to compare accuracy of
PICRUSt predictions using the evaluate_test_dat-
sets.py function.

Statistical data analysis
Statistical relationships were evaluated using
packages in the R statistical program (R Core Team,
2015) and Quantitative Insights Into Microbial
Ecology (QIIME) software (Caporaso et al., 2010).
Relationships between log-transformed soil biogeo-
chemical data, soil CO2 fluxes and C turnover were
screened using linear regression, and selected rela-
tionships were evaluated using standardized major
axis regression, with tests of N fertilization interac-
tions (R: SMATR 3 package). Soil C chemistry (by
Fourier-transformed infrared spectroscopy) was
compared with nutrients and C turnover using
partial least squares regression (R: pls package).

Relationships between C turnover and the abun-
dance of metagenome functions and taxonomic
categories (aggregated at each taxonomic rank) were
evaluated using Pearson’s correlations with control
of false discovery rates (FDRs) at ⩽ 5% false positive
(FDR⩽ 0.05). Shifts in the abundances of these
functions were shown in heatmaps (R:Heatmap2)
using log-transformed COG count data, which were
standardized (z-score scaled) across all soil plots.
Aggregated shifts in C, N and P metabolism (catego-
rical hierarchy in Supplementary Table S3) were
compared with soil N:P ratios using log, Box–Cox or
polynomial transformations prior to standardized
major axis regression. Phylogenetic patterns were
visualized using the Interactive Tree of Life web
interface (Letunic and Bork, 2016).

Abundance weighted UniFrac distances (Hamady
et al., 2009) were used to evaluate relationships
between phylogenetic community structure, soil
chemistry and C turnover using Mantel’s tests, while
N fertilization effects on community UniFrac dis-
tance were tested by analysis of similarities, each
with 999 permutations of samples (R: vegan).
Fertilization responses of log-transformed OTU and
taxonomic group abundances were tested with
indicator species analysis (R: vegan) and using
analysis of variance models with FDR⩽ 0.05 (QIIME:
category_significance.py).

Trait differentiation and gradient responses of imputed
function
Microbial genera correlated with soil C turnover
(FDRo0.05) were recoded as either positively or
negatively correlated, and shrinkage linear discrimi-
nant analysis (R: sda) was used to test differences
among these groups in PICRUSt-imputed pathways
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of C, N and P substrate metabolism (Supplementary
Table S3) and ribosome copy numbers.

We calculated the relative ‘allocation’ of genes for
utilizing available or recalcitrant C, N and P
substrates for each OTU in our soils, based on ratios
of metabolic categories (Supplementary Table S3).
Each OTU was scored by its ratio of imputed copy
numbers of carbohydrate to aromatic and carboxylic
utilization functions (Ccarb:arom), while nitrogen utili-
zation was scored on assimilatory vs dissimilatory
processes (Ndiss:assim) following Helton et al. (2015),
and P functions were scored based on ratios of
scavenging (for example, phosphatases) vs uptake
(for example, P transporters) genes (Pscav:uptk). Details
of functional genes and categories can be found in
Supplementary Methods and Supplementary Table
S3. Patterns of C, N and P substrate allocation for
each OTU were plotted on the three axes Ccarb:arom,
Ndiss:assim and Pscav:uptk with confidence intervals for
major taxonomic groups (R: plot3Drgl). ADONIS
non-parametric modeling (R: vegan) was used to test
the sequential contribution of taxonomic ranks to the
three-dimensional C, N and P allocation of microbial
OTUs, using standardized and centered scores.

Relationships between these functional traits
(including ribosome copy number) and microbial
community composition were evaluated using a
linear model for community assembly by trait
selection (CATS) with the mvabund R package
(Warton et al., 2015). The CATS model represents

taxon count data as a function of environmental and
trait variables, with significant trait by environment
interactions (filtered by LASSO) indicating ‘trait
selection’.

De novo functional ‘guilds’ were formed using
K-means clustering (R: vegan) of preselected func-
tional genes related to C, N and P substrate
metabolism (Supplementary Table S3). Comparisons
of microbial community structure (16S UniFrac
distance) and de novo functional ‘guilds’ as pre-
dictors of trends in soil C cycling were made using
Mantel’s tests to determine correlations between
differences in community or guild structure and C
turnover using Bray–Curtis dissimilarity matrices.
Guild abundances were also weighted (multiplied)
by their mean ribosome copy number and/or
Ccarb:arom allocation values prior to additional Man-
tel’s tests to evaluate how accounting for these traits
might improve relationships between guild abun-
dances and soil C turnover.

Results

Soil C cycling mediated by N:P availability and C
quality
Soil respiration varied significantly along the soil C
gradient, with effects of N fertilization appearing
contingent on ambient nutrient availability. The high-
est cumulative CO2 fluxes occurred at intermediate
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Figure 1 C, N and P interactions shape soil CO2 flux and soil C turnover. Effects of soil C content and added N on cumulative growing
season CO2 fluxes (a) and C turnover (b) from rice soils. (c) Soil N:P ratios as a function of soil C in rice study plots (colors) and globally
(gray). Soil C turnover as a function of (d) total N:P ratios and (e) soil available (Olsen) P. Correlation coefficients (R2) and dashed lines in
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levels of soil C (Figure 1a, Supplementary Figure S1),
while soil C turnover (Σ g CO2−Cm−2 per g soil Cm−2)
decreased with soil C content and total N:P ratios
(Figures 1b and d), consistent with global-scale
patterns of higher N:P ratios with increasing soil C
content (Figure 1c). Soil C turnover was also positively
correlated with extractable inorganic P (Figure 1e,
Table 1). N fertilization increased both CO2 production
and C turnover only in lower C soils (5% and 10% C;
here termed ‘mineral’), where N:P ratios were less than
the ratio of 16:1 by Redfield (1958) (Figures 1a, b
and d). Soil C compounds also varied with C
content along the soil gradient, with mineral soils
containing relatively more carbohydrates and fewer
aromatic and carboxylic compounds (Figure 1f,
Supplementary Figure S2) than higher C soils
(20 and 25% C; here termed ‘organic’).

Shifts in C, N and P substrate metabolism associated
with C turnover
Major classes of C, N and P elemental metabolism in
shotgun metagenome data varied with N:P ratios along
the soil C gradient (Figure 2a, Table 2), with steeper
shifts in the relative abundances of aggregated func-
tions for C, N and P metabolism appearing near the
Redfield ratio (N:P=16:1). With increasing soil N:P
ratios (and soil C content), dominant metabolic path-
ways shifted from carbohydrate to aromatic/carboxylic
metabolism and from N dissimilation to assimilation,
while P scavenging potential increased (phosphatases,
phytases and phosphonate utilization; Figure 2a,
Supplementary Figures S3–5). Conversion of these
data into ratios representing preference for more or
less readily available substrates (see Materials and
methods section) revealed increasing use of more
resistant C, N and P forms with increasing N:P along
the soil C gradient (Supplementary Figures S6a–c,
Supplementary Table S4). C, N and P substrate
utilization patterns were also intertwined, with carbo-
hydrate degradation linked to denitrification and P
transport and aromatic/carboxylic utilization linked
with N assimilation and P scavenging (Supplementary
Figures S6d–f, Supplementary Table S5).

Higher rates of soil C turnover in mineral soils
were associated with more abundant carbohydrate

degradation genes and inversely correlated with the
abundance of aromatic compound utilization and
small carboxylic (TRAP) transporter genes
(Figure 2b, Supplementary Figure S3). Soil C turn-
over was also correlated with the metagenomic
abundance of dissimilatory nitrate reduction and
negatively correlated with P uptake and P scaven-
ging (alkaline and acid phosphatases, phytase) genes
(Figure 2b, Supplementary Figures S3–S5).

Metabolic functions predicted based on 16S
profiles (using PICRUSt) were largely consistent
(Spearman ρ2 = 0.82) with shotgun metagenome
annotations at the plot scale (Supplementary Table
S6), and similarly predicted higher C turnover was
linked with more genes for carbohydrate utilization
but fewer for carboxylic/aromatic utilization or P
scavenging (Figure 2a), though not all patterns were
reproduced, particularly for N metabolism.

Total eukaryotic and fungal abundances based on
large subunit rRNA sequences in our metagenome
data were generally low (0.9–3.9 and 0.1–1.4%,
respectively; Supplementary Table S2).

Microbial communities varied with C content and
turnover, not N addition
Rice soil microbial community membership at the
end of the growing season was not significantly
altered by N fertilization at any level of soil C
(Supplementary Figures S7a and d), from the
perspective of community structure (UniFrac dis-
tances), taxonomic groups or individual OTUs.
Changes in microbial community structure were
correlated with each chemical factor along the soil
C gradient but were most closely aligned with soil C,
pH and P stoichiometry (Table 1), including soil C:P,
N:P and extractable inorganic N:P. Partial Mantel’s
tests excluding variance attributable to main study
factors of soil C and (co-varying) pH showed
significant, independent relationships between
microbial community structure and soil stoichiome-
try, total P and inorganic P (Table 1) but not total or
inorganic N forms. Soil C turnover was moderately
correlated with shifts in microbial community
structure (UniFrac distance; Mantel’s r=0.42), with

Table 1 Statistical relationships among soil C turnover, chemistry and prokaryotic community composition (by UniFrac distance)

Response pH Total Extractable Ratios

C N P NO3
− NH4

+ PO4
2− C:N C:P N:P N:PExtr.

C turnover 0.22 0.58 0.47 — 0.29 0.38 0.62 0.65 0.70 0.69 0.72

UniFrac 0.67 0.74 0.67 0.28 0.56 0.46 0.48 0.45 0.64 0.67 0.68
partial|pH, C — — — 0.32 — — 0.43 0.40 0.41 0.41 0.43

C.turn|UniFrac — 0.24 — — — — 0.49 0.55 0.55 0.54 0.59

Data for soil C turnover responses are R2 values of log-linear standardized major axis regression models, while microbial community (UniFrac)
responses are Mantel’s r correlation coefficients. Boldface numbers: correlation coefficients 40.5, and only relationships with R2 or r 40.2 and
P⩽ 0.05 are shown. Italicized numbers indicate predictors that are not independent from C turnover by their definition, and boldface was removed.
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residual variance attributable to soil stoichiometry
and inorganic P (Table 1).

The abundances of several lineages were corre-
lated with soil C turnover (Figure 3a, Supplementary
Figure S7b and c, Supplementary Table S7) includ-
ing Actinobacteria (primarily genera within the
order Actinomycetales), Chloroflexi (Anaerolineae

and Ktedonobacteria) and Fibrobacteres. The phyla
Actinobacteria, Chloroflexi and Firmicutes also had
significantly more OTUs that were positively corre-
lated with C turnover than were negatively corre-
lated (Figure 3a, Supplementary Figures S7b and c).
Phyla that were negatively correlated with soil C
turnover included Euryarchaeota, Gemmatimona-
detes and Planctomycetes (except Isosphaeraceae).

Imputed microbial traits associated with soil C turnover
OTUs with increasingly positive correlations to soil
C turnover tended to have higher imputed ribosome
copy numbers (Figure 3b), and linear discriminant
analysis revealed that ribosome copies were higher
on average in organisms positively correlated with C
turnover (Figure 3c). In parallel to community-scale
functional patterns (Figure 2), microbes that were
positively correlated with C turnover had more
abundant carbohydrate utilization and dissimilatory
nitrate reduction genes (Figure 3c). High C turnover
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Figure 2 Microbial C, N and P substrate use linked with stoichiometry and soil C turnover. Metabolic classes share color schemes in both
panels, which compare their abundances in shotgun sequence and PICRUSt imputed data for each study plot. (a) Abundance of aggregated
metabolic functional classes for C (top), N (middle) and P cycling varied strongly with soil N:P ratios. Vertical scales (aggregate ortholog
counts) are displayed for each metabolic category, with additional scales for PICRUSt-imputed data given in small italics where needed to
align data trends but absent if data were on the same scale as metagenome sequence counts. (b) Relative abundance of specific metabolic
functions correlated with soil C turnover (Pearson’s r⩾0.7; FDRo0.05) among rice soils, with both positively and negatively correlated
functions shown. Additional functions for C, N and P metabolism that were not correlated with soil C are shown in Supplementary Figures
S3–S5.

Table 2 Regression relationships between soil N:P ratios and
aggregate categories of C, N and P substrate metabolism in
metagenome and PICRUSt data (shown in Figure 2a)

Data source Ccarb Carom Ndiss Nassim Puptk Pscav

Metagenome 0.84 0.72 0.64 0.80 0.58 0.84
PICRUSt 0.58 0.49 0.34 0.53 0.55 0.55
Metagenome vs PICRUSt 0.70 0.55 0.48 0.34 0.17 0.81

Abbreviation: PICRUSt, Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States. Data are R2 from linear models,
with transformation by Box–Cox or quadratic regression models
(italicized) as needed to satisfy model assumptions. All models shown
had P⩽0.001; boldface shows R2⩾0.5.
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organisms also had less P scavenging and more
abundant low affinity (pit) rather than high affinity
(pst) phosphate transporter genes (Figure 3c).

C, N and P substrate utilization linked to community
composition and C turnover
Comparison of imputed genome allocation to C, N
and P substrates (Ccarb:arom, Ndiss:assim and Pscav:uptk)
showed gross differences in substrate and element
use strategies among OTUs (Figures 4a and b,
Supplementary Figure S8), with much of the varia-
tion attributable to differences among phylum
(R2 = 0.46) and class (R2 = 0.79) level taxonomic
groupings (Table 3).

Microbial traits for C, N and P allocation and
ribosome copy number each had significant interac-
tions with soil chemical variables in CATS ‘trait
selection’ models (Warton et al., 2015) of the joint

abundance of microbial orders across plots (Figures 4c
and d). At each taxonomic rank, ribosome copy
numbers were positively associated with inorganic P
concentrations (Figure 4d, Supplementary Figure S9)
and had weak negative association with nitrate. Soil
nitrate concentrations had positive interactions with
relative allocation to carbohydrates (Ccarb:arom), N
dissimilation (Ndiss:assim) and, to a lesser extent, P
scavenging (Pscav:uptk). Accounting for variation in these
traits improved CATS community assembly models
considerably compared with null models using only
chemical predictors (Supplementary Table S8).

De novo functional groups based on clustering of
similar patterns of potential C and nutrient use alone
were not more predictive of differences in soil C
cycling rates than were differences in 16S profiles
(Table 4). However, weighting the abundance of
these groups by simple growth rate-related traits,
including ribosome copy number and carbohydrate
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Figure 3 Imputed C, N and P substrate use and genomic features vary with phylogeny and among OTUs correlated with soil C turnover.
(a) Phylogenetic patterns of soil microbes associated with soil C turnover (shown at OTU level and higher taxonomic ranks, R2⩾0.5,
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allocation (Ccarb:arom), considerably improved correla-
tions between soil C turnover and microbial ‘guilds’
(Table 4), particularly where N was added to soils
(R2 = 0.75).

Discussion
Stoichiometric nutrient limitation of soil C cycling and
metabolism
In the wetland soils studied, C cycling rates appeared
dependent on the supply of soil C, N and P, yet
constraints imposed by P availability featured most

prominently. Non-linear patterns of soil CO2 fluxes
reflected declining soil C turnover rates with
increasing organic matter (Figures 1a and b). One
explanation for this decline in soil C turnover is the
lower availability of P relative to N as soil C
accumulates (Figure 1c), consistent with global-
scale patterns (Hartman and Richardson, 2013).

In agreement with our first hypothesis, soil C
turnover was most closely associated with P avail-
ability, including N:P ratios and inorganic P (Table 1,
Figures 1d and e). Moreover, we observed a break-
point in N fertilization effects roughly corresponding
to the Redfield ratio of N:P = 16:1 (Figure 1d), which
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Figure 4 Taxonomic differentiation in C, N and P allocation contributes to microbial community assembly. (a) Taxonomic differences in
stoichiometric allocation, where log-transformed axes for allocation among C, N and P substrates are derived from ratios of broad element
classes and data points are individual PICRUSt-imputed genomes scaled by total COG count and colored by taxonomic groups. (b) 95%
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‘Community assembly via trait selection’model (Warton et al., 2015) illustrated in (c) were used to evaluate significant environment× trait
interactions in a joint species distribution model. (d) CATS model interaction terms between stoichiometric traits and soil chemical
variables for rice soils, where color indicates the sign and intensity of interactions for traits aggregated at the order level.

Table 3 Sequential contribution of taxonomic ranks to differentiation of C, N and P substrate allocation and genomic features among
imputed genomes

Taxonomic rank C:N:P allocation Ribosome copy
no.

COG count Ccarb:arom

allocation
Ndiss:assim

allocation
Pscav:uptk

allocation

Phylum 0.46 0.50 0.22 0.67 0.44 0.28
Class 0.79 0.68 0.49 0.87 0.80 0.71
Order 0.86 0.78 0.73 0.88 0.87 0.82
Family 0.91 0.90 0.85 0.94 0.94 0.87
Genus 0.95 0.96 0.96 0.96 0.96 0.93
OTU (resid.) 1.00 1.00 1.00 1.00 1.00 1.00

Abbreviations: COG, clusters of orthologous group; OTU, operational taxonomic unit. Data are R2 values from ADONIS models of genomic features,
partitioned sequentially by taxonomic rank levels. Taxonomic contributions to C:N:P allocation were calculated from distance matrices using C, N
and P substrate allocation ratios jointly. Correlation coefficients were calculated using all taxa bins at each rank, by comparing Euclidean
dissimilarity matrices of standardized z-scores of log-transformed C, N and P allocation ratios.
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delineates a shift from N to P limitation (Redfield,
1958; Sterner and Elser, 2002; Cleveland and Liptzin,
2007). Similar to interacting effects of N and P
additions on soil C cycling in upland soils
(Nottingham et al., 2015; Poeplau et al., 2016), our
results suggest N fertilization altered C cycling only
where N was limiting relative to P. Importantly,
these results are opposite of those expected from C:N
ratios alone, which would predict N fertilization
effects only in high C:N organic soils.

Alternately, declining C turnover at higher soil C
may reflect accumulation of aromatic compounds,
which are both resistant to degradation and hypothe-
sized to directly inhibit decomposition (Melillo
et al., 1982; Freeman et al., 2001). Accordingly, we
found aromatic and carboxylic compounds were
more abundant in higher C organic soils (Figure 1f).
These shifts were mirrored by changes in microbial C
substrate utilization potential in our metagenome
data, which revealed more carbohydrate-degrading
genes in mineral soils and greater potential utiliza-
tion of complex C forms in organic soils (Figure 2,
Supplementary Figure S6). Notably, aromatic com-
pounds were most closely associated with increasing
C:N, C:P and N:P ratios, opposite of inorganic P
availability, while increasing soil C content was
linked with greater abundance of both carbohydrates
and aromatics (Supplementary Figure S2).

Despite its effects on C turnover, N fertilization did
not significantly alter microbial metabolic potential
or community structure in our rice soils (Figure 2,
Supplementary Figure S7a and d), in contrast to
upland soils where N fertilization consistently
reduces soil C turnover and alters microbial com-
munities (Ramirez et al., 2010; Fierer et al., 2011;
Ramirez et al., 2012). Both nitrous oxide fluxes (Ye
et al., 2016) and gene abundances for N dissimilation
were higher in our mineral soils (Figure 2), which
could suggest excess N availability consistent with
their lower C:N ratios. However, N addition
increased C turnover only in mineral soils

(Figure 1) and did not alter in situ N2O fluxes in
any of our soils (Ye et al., 2016). This decoupling of
denitrification from N supply could indicate that
denitrifiers are instead limited by available C, as
suggested by correlated N dissimilation and carbo-
hydrate genes across the gradient (Figure 2,
Supplementary Figure S6).

P fertilization effects on decomposition also
appear to be contingent on the availability of labile
C (Fisk et al., 2015; Nottingham et al., 2015; Poeplau
et al., 2016). The strong relationship we observed
between inorganic P availability and C turnover
(Figure 1) in our rice soils resembles coupling of
available P with microbial metabolic rates across
land use and global habitat types, including wet-
lands (Strickland et al., 2010; Hartman and
Richardson, 2013). We hypothesized that this varia-
tion in C cycling and metabolism arises from under-
lying shifts in microbial community structure and
function, and that coupling of ecosystem biogeo-
chemical cycles reflects metabolic coupling of ele-
ment use within and among microbial taxa.

Microbial communities and traits linked with
stoichiometry and C cycling
Microbial community structure varied with several
factors along the soil gradient, including strong
independent relationships with soil P stoichiometry
(Table 1), in agreement with our second hypothesis.
The abundances of several microbial groups were
correlated with soil C turnover, including members
of the Actinobacteria, Firmicutes, Chloroflexi, some
clades of the Acidobacteria and narrower groups of
Proteobacteria and Bacteroidetes (Figure 3,
Supplementary Figure S7b–c, Supplementary Table
S7). Many of these lineages have been previously
associated with higher rates of soil C cycling or
microbial metabolism (Fierer et al., 2007; Goldfarb
et al., 2011; Fierer et al., 2012; Ramirez et al., 2012)
potentially reflecting their greater carbohydrate
utilization potential (Berlemont and Martiny, 2013;
Berlemont et al., 2014).

In our soils, microbial taxa correlated with C
turnover rates were enriched in imputed carbohy-
drate utilization genes while harboring fewer genes
for P scavenging (Figure 3), consistent with biogeo-
chemical and metabolic shifts observed along the
gradient (Figures 1 and 2). Organisms that were
highly correlated with soil C turnover also had
greater imputed ribosome gene copy numbers
(Figure 3), which are associated with increased
growth rates among cultured microbes
(Klappenbach et al., 2000; Shrestha et al., 2007;
Vieira-Silva and Rocha, 2010; Roller et al., 2016).
This key trait also integrates growth rates with
cellular demand for N and P (Elser et al., 1996,
2003), underlying functional differentiation and
trophic status in higher organisms (Sterner and
Elser, 2002; Wright et al., 2004; Arrigo, 2005;
Hessen et al., 2013).

Table 4 Comparison of de novo stoichiometric guilds with
different trait weighting factors and phylogenetic community
structure as predictors of soil C turnover

Predictor data All plots Control (no N) Fertilized (+80 N)

CNP guilds 0.43 0.36 0.71
CNP guilds × rrn 0.46 0.38 0.74
CNP guilds ×Ccarb:arom 0.48 0.44 0.74
CNP guilds × rrn×
Ccarb:arom

0.51 0.49 0.75

16S UniFrac 0.42 0.41 0.68

Values shown are Mantel’s correlation coefficients (r) of Bray–Curtis
distances among guild abundances (or UniFrac distance) and soil C
turnover among plots. Stoichiometric guilds (CNP guilds) representing
functionally similar organisms were delineated using K-means
clustering (n=20) on imputed sets of genes for C, N and P metabolism.
Guilds were weighted by their mean trait value for ribosome copy
numbers (rrn) and Ccarb:arom. The highest correlation coefficient for
each set of fertilization treatment groups is highlighted in boldface.

Genomic stoichiometry constrains soil C cycling
WH Hartman et al

2660

The ISME Journal



Trait differentiation underlies community assembly
and C cycling
Tradeoffs in allocation to resource acquisition and
growth contribute to metabolic specialization and
niche partitioning among organisms (Tilman, 1990;
Johnson et al., 2012; Edwards et al., 2013a; Litchman
et al., 2015a, b; Díaz et al., 2016). In our data,
organisms inferred to use proportionately more
carbohydrates had less allocation to P scavenging
(Figure 4, Supplementary Figure S8, Supplementary
Table S9), consistent with their opposing patterns
among OTUs positively or negatively correlated with
C turnover (Figure 3), and with shifts in ecosystem C
and P cycling in soil biogeochemical and metage-
nomic data (Figures 1 and 2, Supplementary
Figure S6).

Allocation to use of C, N and P substrates differed
among high-level taxonomic groups (Figure 4,
Supplementary Figure S8,Table 3), in agreement
with our third hypothesis, that genomic features and
potential utilization of C, N and P substrates would
differ characteristically among taxa. Taxonomic
patterns in carbohydrate use and P scavenging in
our data also appeared broadly similar to those
observed in comparative genomic and metagenomic
studies (Berlemont and Martiny, 2013; Berlemont
et al., 2014; Chai et al., 2014). Deeply rooted
partitioning of nutrient allocation could help
account for consistent biogeographic patterns in
microbial communities (Phillipot et al., 2010;
Ramirez et al., 2014) and their responses to fertiliza-
tion at high taxonomic ranks (Leff et al., 2015; Spohn
et al., 2015). Higher taxonomic ranks also accounted
for most of the covariation of microbial communities
with chemistry in our soils (Supplementary Table
S10), consistent with results compared across terres-
trial and aquatic ecosystems (Lu et al., 2016).

Differences in resource allocation strategies may
underlie patterns of community assembly across
environmental gradients (Weber and Deutsch, 2010;
Edwards et al., 2013a, b; van Bodegom et al., 2014;
Litchman et al., 2015a, b). Our CATS models
(Warton et al., 2015) revealed interactions between
soil nutrient availability and genomic resource
allocation (Figure 4d) that suggest differences in
nutrient utilization shape community composition.
Genomic allocation to carbohydrate use and N
dissimilation both had positive interactions with
nitrate concentrations across taxonomic ranks
(Figure 4, Supplementary Figure S9), suggesting
again that higher denitrification rates (Ye et al.,
2016) and genetic potential in our mineral soils
(Figure 2) were associated with greater carbohydrate
use, analogous to coupled mineral N and carbohy-
drate use in upland soils (Ramirez et al., 2012;
Amend et al., 2015).

Although P scavenging allocation was less clearly
related to soil nutrient availability, ribosome copy
numbers had significant positive interactions with
inorganic P concentrations at each taxonomic
rank tested (Figure 4d, Supplementary Figure S9).

This result could suggest that inorganic P availability
limits the abundance of high ribosome copy number
organisms, whose high growth rates and low C use
efficiency (Roller et al., 2016) may in part account for
greater C turnover in our P-rich mineral soils. This
mechanism, if observed elsewhere, could in part
account for large-scale relationships between inor-
ganic P availability and microbial metabolic rates
across soils (Strickland et al., 2010; Hartman and
Richardson, 2013).

Incorporation of functional trait variation can
enable community-driven metabolic modeling of
nutrient-mediated changes in ecosystem C cycling
(Weber and Deutsch, 2010; Bouskill et al., 2012;
Litchman et al., 2015a; Martiny et al., 2015), which
may be simplified by accounting for tradeoffs among
traits (Edwards et al., 2012; Johnson et al., 2012;
Litchman et al., 2015b). We tested simplified
representations of microbial communities by deriv-
ing de novo functional ‘guilds’ of microbes based on
similar patterns of imputed C, N and P use.
Accounting for differences in carbohydrate alloca-
tion (Ccarb:arom) and ribosome copy numbers among
these guilds yielded stronger relationships with soil
C cycling in our soils than phylogenetic relation-
ships alone (Table 4), while using fewer free
parameters (Supplementary Table S11). This finding
supports our fourth hypothesis that rates of soil C
cycling are linked with the abundance of microbial
groups defined by differences in stoichiometric
resource allocation, although this awaits confirma-
tion in other ecosystems.

Conclusions

We observed that C turnover across a large soil C:N:P
gradient is in part mediated by P availability,
reflecting differences in microbial P metabolism
related to growth rates and nutrient use. Interactions
among ecosystem C, N and P cycling were mirrored
by community metabolic potential and appear
related to shifts in community structure arising from
trait-based environmental filtering of organisms by
soil nutrient availability. Our findings suggest that
stoichiometric resource allocation and ribosome
copy number are key traits that underpin patterns
of microbial community structure and function in
some soils and may mediate ecosystem C cycling
under multiple nutrient limitation. Grouping
microbes by their resource allocation patterns
improved relationships with soil nutrients and C
turnover in the rice paddy soils studied, and the
tradeoffs we observed among traits might help to
simplify future efforts to assimilate microbial
sequence data into ecosystem models.

Data availability

Annotated metagenome sequences are available
from the Joint Genome Institute’s IMG database
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(http://img.jgi.doe.gov) under IDs 3300005873–
3300005905. Shotgun metagenome and 16S rRNA
data are deposited together in the NCBI Sequence
Read Archive, under SRA study numbers
SRP099852–SRP099861, SRP099869–SRP099878,
SRP099883–SRP099890 and SRP099897–
SRP099900.
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