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ABSTRACT: We developed a hybrid Monte Carlo self-
consistent field technique to model physical gels composed of
ABA triblock copolymers and gain insight into the structure
and interactions in such gels. The associative A blocks of the
polymers are confined to small volumes called nodes, while
the B block can move freely as long as it is connected to the A
blocks. A Monte Carlo algorithm is used to sample the node
configurations on a lattice, and Scheutjens−Fleer self-
consistent field (SF-SCF) equations are used to determine
the change in free energy. The advantage of this approach
over more coarse grained methods is that we do not need to predefine an interaction potential between the nodes. Using this
MC-SCF hybrid simulation, we determined the radial distribution functions of the nodes and structure factors and osmotic
compressibilities of the gels. For a high number of polymers per node and a solvent-B Flory−Huggins interaction parameter of
0.5, phase separation is predicted. Because of limitations in the simulation volume, we did however not establish the full phase
diagram. For comparison, we performed some coarse-grained MC simulations in which the nodes are modeled as single
particles with pair potentials extracted from SF-SCF calculations. At intermediate concentrations, these simulations gave
qualitatively similar results as the MC-SCF hybrid. However, at relatively low and high polymer volume fractions, the structure
of the coarse-grained gels is significantly different because higher-order interactions between the nodes are not accounted for.
Finally, we compare the predictions of the MC-SCF simulations with experimental and modeling data on telechelic polymer
networks from literature.

■ INTRODUCTION

Here we describe a combination of the Scheutjens−Fleer self-
consistent field theory with a Monte Carlo algorithm, which is
used to simulate a gel network of symmetric telechelic
polymers. These polymers have associative end-blocks, while
the middle block is soluble. This combination leads to the
formation of micelles in which the end-blocks associate in the
core and the middle blocks form the corona. Such micelles are
called flower-like micelles, with the core as the heart and the
polymer loops as petals. At a sufficiently high concentration of
micelles, the micellar cores are so close to each other that the
ends of the polymers can be in different micelles, thus forming
a bridge. Because the polymers can now form both loops and
bridges, the number of possible conformations and thus the
entropy increases. This increase in entropy gives an attractive
contribution to the interaction between the micelles. If there
are enough bridges to form a percolating network, a gel
network is formed with the micellar cores as the nodes, as
shown in Figure 1.
Some researchers have reported that the attraction can

become so strong that phase separation occurs;1−3 others
however did not observe phase separation.4 One reason why
these experiments show different outcomes is that it is difficult
to synthesize these polymers. Often the middle blocks show
considerable polydispersity and not all polymer ends are
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Figure 1. A network formed by triblock copolymers. The circles are
the nodes, formed by the micellar cores with the associated end-
blocks (indicated by gray lines), connected by the soluble middle
blocks (black lines). The telechelics can form loops (both ends in the
same node) or bridges (each end in a different node). An isolated
flower-like micelle is shown in the lower right corner. Reproduced
with permission from ref 9. Copyright PCCP Owner Societies, 2015.

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 6532−6543

© 2018 American Chemical Society 6532 DOI: 10.1021/acs.jctc.7b01264
J. Chem. Theory Comput. 2018, 14, 6532−6543

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.7b01264
http://dx.doi.org/10.1021/acs.jctc.7b01264
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


functionalized. The latter will increase steric repulsion between
the micelles and thus prevent phase separation. In computer
simulations, these problems can be avoided.
We assume that the binding energy of end-blocks to the

micellar cores is so high that the concentration of free ends is
negligible but still low enough that the ends can exchange
between the cores. This allows the polymers to redistribute
themselves over the micelles and form new bridges. This
enables these gel networks to heal themselves when
damaged.5,6

Because of these properties, telechelic polymers are applied
in the paint industry to improve the rheological behavior of
paints. They can also be used as a gel material for gel
electrophoresis. Furthermore, they are studied as a drug carrier
for slow drug release. A hydrophobic drug can be dissolved in
the core of the micelles. When a gel made of telechelic
polymers is placed in the body, it will slowly release individual
micelles and thus the drug over time. An additional advantage
in chemotherapy is that, due to the increased permeability of
blood vessels in tumors, the micelles can accumulate in tumor
tissue, which then receives a higher dose of the drug.7

There have been many experimental studies on gels made of
telechelic polymers.1−6 The number of theoretical studies and
simulations is, however, limited.8 The length of the polymers
makes it time-consuming to study these networks with
molecular dynamics simulations even when coarse-grained
bead and spring models are used for the chains. This is because
a representative fraction of all the possible states of the system
has to be sampled. As the polymers are large and can easily
entangle, they diffuse slowly and it therefore takes a long time
to reach and sample the equilibrium structure. One could
choose to use even more coarse-grained models, for example,
by simulating an entire micelle as a single particle.8 It is,
however, difficult to describe the proper interaction potentials
between the micelles, as the interactions are not necessarily
pairwise additive. That is, the strength of the interaction
between two micelles depends on the surroundings of the
micelles.9

A solution to this problem is to employ a hybrid simulation
technique which combines the benefits of particle simulations
with the computational efficiency of self-consistent field
calculations. Here, we combine the SF-SCF (Scheutjens−
Fleer self-consistent field) method with a Monte Carlo
algorithm. With the SF-SCF model, the free energy of a
particular configuration of the nodes is calculated based on an
average over all possible freely jointed chain conformations.
This reduces the simulation time because the polymer
configurations no longer need to be sampled individually.
The positions of the nodes are sampled using a Monte Carlo
algorithm that uses the free energy determined by the SF-SCF
model to accept or reject the moves of the cores. In our model,
we focus on the interactions between the nodes caused by
polymers. The binding of the polymers to the nodes is done in
a simplistic manner because the interactions between the
nodes are not influenced by the specific mechanism through
which the polymer ends bind. Hence the results can be applied
to a variety of gels with polymers with associative end groups
regardless of the exact binding mechanism.
The goals of this article are to demonstrate this hybrid

Monte Carlo SF-SCF approach and to apply it to a system of
polymer micelles in solution to gain insight in the structure of
such systems. We compare the results to Monte Carlo
simulations where the nodes, with polymers, have been

coarse-grained to particles, with effective pair potentials as
calculated in our previous article.9 To further validate the
method, the structure factors of the systems simulated by the
Monte Carlo SF-SCF method are compared to experimental
data found in literature.
It should be noted that this is not the first time that the SF-

SCF theory is combined with a Monte Carlo algorithm.
Previously, we showed some preliminary results for a charged
polymer gel adsorbed on a wall, obtained with a model very
similar to the one described in the present article.10

Furthermore, Charlaganov et al.11 used a combination of SF-
SCF with Monte Carlo to study the depletion interaction of
polymers near walls. They used approximate pair potentials to
do a Monte Carlo simulation and subsequently used the self-
consistent field theory to calculate a more accurate free energy
and correct for the wrong weighing of the states. Potentially
their method is more efficient, as the SF-SCF equations do not
need to be solved for the rejected states. The rate at which the
states of the system are visited is, however, determined by the
free energy of the Monte Carlo simulation. If this free energy is
not accurate, more steps are needed to reduce the noise level.
This method is therefore only effective if a good approximation
for the free energy can be determined. The more particles are
present, the more accurate the interaction potential needs to
be as the error would scale with the root of the number of
particles. With our method, we do not need approximate
potentials and the number of particles we could simulate is
thus not limited in this way.

■ METHOD
First, we will explain the SF-SCF theory, specifically for the 3D
simple cubic lattice that was used in the present study. It is
based on the method used in our previous paper on the
interactions between nodes with telechelic polymers, and some
more details can be found there.9 Descriptions of the SF-SCF
theory for other types of lattices can be found in
literature.9,12−15 Next, we will show how we modeled the
physical gel with the SF-SCF theory. Subsequently, the details
of the Monte Carlo method will be described, and finally the
methods for analyzing the data will be discussed.

SF-SCF Theory. With the SF-SCF method, space is divided
into lattice sites, which in the present study have a simple cubic
ordering. Small molecules, such as solvent molecules, are
represented by a single segment that has the size of one lattice
site. Larger molecules, such as the polymers considered here,
are represented by multiple segments. We assume that the
segments of a polymer are connected like a freely jointed chain.
Because we use a simple cubic lattice, the angle between
subsequent segments can only be 180°, 90°, or 0°. For 0°, the
polymer is thus allowed to fold back onto itself. Segments
adjacent to each other in the molecule of course still have to be
next to each other on the lattice. The short-range part of the
interaction between different types of segments is quantified by
the Flory−Huggins parameter χ, which is half of the change in
free energy when two segments are exchanged between
homogeneous phases of each segment type.
It would be far too much work to generate all the ways in

which the polymers can distribute themselves over the system
one by one. So instead, we determine the average distribution
of the polymers over the system, i.e., we try to find the volume
fractions for each segment type at each lattice site. These
volume fractions can also be regarded as an average over time.
This is done by generating all the possible polymer
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conformations, which are all the possible paths of the polymer
chain on the lattice. Subsequently, the polymers are distributed
over these conformations according to their Boltzmann
weights. Because many of the conformations are nearly
identical, this saves computation time. A disadvantage is that
the interactions between the segments are calculated based on
the average surroundings rather than on a specific config-
uration of the polymers, where with a configuration we mean a
particular distribution of the polymers over the conformations.
The polymers will distribute themselves over the polymer

conformations according to the Boltzmann weight e−Uc of these
conformations. Uc is the energy in units kBT of a particular
polymer conformation c, given the average surroundings of this
conformation. Uc is the sum of the energy contributions of
each segment. We call these contributions the segment
potentials uX(r), where X is the segment type and r is its
location. These segment potentials u are calculated from the
volume fractions φ of the various segment types in the
neighboring lattice sites, which in turn are calculated from the
segment potentials. We repeat this iterative process until we
find a self-consistent solution, in other words, until the
segment potentials derived from the volume fractions are the
same as those that were used to calculate these volume
fractions. The segment potential of a segment of type X is
given by

∑ χ φ α= ⟨ ⟩ +u r r r( ) ( ) ( )X
Y

XY Y
(1)

Here, the first term ∑YχXY⟨φY(r)⟩ describes the average
interaction energy of a segment of type X, at position r, with
segments of types Y in sites adjacent to position r, χXY is the
Flory−Huggins parameter for the interaction between seg-
ments of type X and Y, and ⟨φY(r)⟩ is the average volume
fraction of segment type Y in all neighboring lattice sites r′.
The latter is given by

∑φ φ⟨ ⟩ = ′
′Z

r r( )
1

( )Y Y
r (2)

where Z is the number of neighboring lattice sites. In our case,
we have a simple cubic lattice and Z = 6. We do not need to
consider the interaction energy between segments of the same
type as the Flory−Huggins parameter χXX = 0 by definition.
The second term in eq 1, α(r), is used to ensure that the

sum of the volume fractions at each lattice site is unity. It has
to increase when the sum of the volume fractions is larger than
one and decrease when the sum is less than one. We chose to
update α(r) with each iteration step as
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The factor η = 0.3, which is small enough to prevent
divergence. For the first iteration αold(r) = 0.
The volume fraction of a segment s of the polymer chain at

lattice site r is given by the sum of the Boltzmann weights of all
chain conformations c that pass through r with segment s,
multiplied with a normalization constant C:

∑φ = −C er( )s
c

Uc s r( , )

(4)

The normalization constant C is the number of polymers n
divided by the partition function q, which is the sum of the

Boltzmann weights of all polymer conformations of the
polymer:

=C
n
q (5)

An efficient way to calculate q and φs is to use the propagator
formalism.
The end point distribution function G(r,N + 1) is the

average Boltzmann weight of all chain conformations ending
with segment s = N+ 1 on lattice site r. In this study, we only
allowed the polymers to start at coordinates that lie within the
nodes. We therefore write the end point distribution function
as G(r,N + 1|{rn},0) indicating that only the conformations
starting with segment 0 within {rn} contribute to the end point
distribution function, as we have set the Boltzmann weight of
all other polymer conformations to zero. Because the position
of the last segment is the same for all conformations, we can
move the contribution of the last segment e−uX(r) outside this
summation:

∑+ |{ } = ′ |{ }−

′

G N e
Z

G Nr r r r( , 1 , 0)
1

( , , 0)n
u

n
r

r

( )X

(6)

where X is the segment type of segment N + 1. The second
part is the summation of the end point distribution functions
of the chain without the last segment over all sites r′ that are
adjacent to r. Because only a fraction

Z
1 of the conformations

goes from site r′ to r, we have to multiply the propagator in r′
with

Z
1 . We can repeat this process until the first segment is

reached. For this (starting) segment, the end point distribution
function is simply e−uX(r). In this way, we can calculate the
entire end point distribution function.
With these end point distribution functions, we can calculate

the volume fraction of each segment s of the polymer
according to
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As the Boltzmann weight of segment s is in both propagators,
we need to divide by e−uX(r). Because the polymers in our
system are symmetric, we can save computation time by
rewriting the first line of eq 7 as the second line so that only
the propagators starting with segment 0 have to be calculated.
The overall volume fraction distribution of polymers is

found by summing over all the polymer segments:

∑φ φ=
=

= +

r r( ) ( )
s

s N

s
0

1

(8)

The distribution of the monomeric solvent S simply follows
from the Boltzmann weight:

φ = −C er( )S S
u r( )S (9)

When the segment potentials are normalized to zero in the
pure solvent phase, which is in equilibrium with our system, CS
= 1.
The Helmholtz energy, which is needed for the Monte Carlo

moves, is given by
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∑ ∑ ∑ ∑α χ φ
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where Q is the partition function of the system. We calculate Q
by using the ideal gas approximation:
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The first term is the contribution from the polymers, while the
second term comes from the solvent. Here nS is the number of
solvent molecules. The single molecule partition function of
the polymers qP is calculated by summing the end point
distribution function, over all positions r.

∑= + |{ }q G Nr r( , 1 , 0)P
r

n
(12)

For the solvent, the single molecule partition function is given
by qS = ∑r e

−uS(r).
In the second term of eq 10, we correct for the use of the

Lagrange parameter. We have previously made two potentially
conflicting assumptions. We have assumed that the system is
incompressible, and by defining CS = 1 we assume that the
system is in equilibrium with a pure solvent phase. If, for
example, we would place a solvophobic wall in our system, the
volume fraction of the solvent would be lower near the wall
than in the pure solvent. To make sure that the volume fraction
next to the wall is the same as that in the pure solvent, which is
required for an incompressible system, we introduced the extra
potential α(r). There is of course no physical origin for this
potential, and to get the correct Helmholtz energy for the
given volume fractions, α(r) has to be subtracted from the
Helmholtz energy.
Gel Description within SF-SCF Theory. Here and below

we will express the Helmholtz energy in units kBT and measure
the distances in lattice units. The polymers are represented by
a chain of N = 50 segments B, which represents the middle
block, and one segment A at each end, representing the end
groups. We forced the end groups of these polymers to stay
together, like in the micelles, by defining small volumes, called
nodes, with a size of 3 by 3 by 3 lattice sites. By setting the
Boltzmann weights for segments A to zero outside the nodes,
the end groups are forced to stay within the nodes. The set
{rn} thus encompasses all lattice sites that lie within the nodes.
These nodes will be moved using a Monte Carlo scheme.
Because the number of nodes that we can model is limited, we
use periodic boundary conditions, so there is no interface in
the system.
The following values for the various parameters were used as

defaults in these experiments. The Flory−Huggins parameter χ
was 0.4, and the polymer volume fraction φ was 0.25. The
number of nodes M was 125 with f = 5 polymers per node,
thus 625 polymers in total. We investigated the effect of
changing several of these parameters on the structure of the
gel. The volume fraction of the polymer φ was varied from 0.5
to 0.031. The effect of the Flory−Huggins parameter was
studied by doing additional calculations for χ = 0.0 and χ = 0.5.
Calculations were also done for 2.5 and 10 polymers per node.
The number of polymer ends in each node is not fixed but can
fluctuate around the average value depending on the statistical
weights of the conformations starting and ending at this node.

In practice, these fluctuations in the number of polymer ends
in each node are limited due to the steric hindrance between
the polymers. This is similar to real systems in which the
number of polymers per node can also fluctuate. It also allows
for slightly different compositions of the dilute and
concentrated phases when phase separation occurs. In Figure
2, we show a few examples of the probability density function

f(Ne) of the number of end groups per node Ne. This
distribution clearly becomes wider as the concentration
increases. At high density, the steric hindrance between the
polymers is less because the density around the nodes quickly
drops to the bulk density and the polymers from the same
node repel each other only over a short distance. It is therefore
not so disadvantageous to put more than the average number
of polymers on a node.
To see to which extent the outcome of the simulation was

affected by the limited number of nodes, we also did some
simulations with 8, 27, and 64 nodes. For some systems, the
radial distribution function had not flattened out at a distance
of half the box size. We therefore also did simulations with 512
nodes. A more detailed overview of the calculations performed
can be found in the Supporting Information.

Monte Carlo Protocol. A basic Monte Carlo simulation
consists of doing a Monte Carlo step, which is a trial move in
the parameter space, and an acceptance rule which determines
whether or not to accept the move based on the change in
(free) energy. In our case, the trial moves consisted of picking
a number of nodes at random and moving them by one lattice
site in a random direction. A node could be selected multiple
times during a single Monte Carlo step and can thus also move
multiple sites. The number of nodes that are moved is adjusted
during the equilibration part of the simulation, such that the
acceptance ratio is about 25%. After the nodes have been
moved, the distribution of the polymers is calculated again and
the new Helmholtz energy Fnew is compared to the old
Helmholtz energy Fold. The reason for using the Helmholtz
free energy is that when a node is moved, not only the
interaction energy changes but the conformational entropy of
the polymers is changed as well. If the new Helmholtz energy
Fnew is lower than the old Helmholtz energy Fold, the move is
accepted. If it is higher, it is accepted with the probability:

= Δ = −−Δp e F F FF
accept new old (13)

At the start of the simulation, the nodes were ordered in a
simple cubic ordering filling the whole cubic simulation
volume. We aimed to do m = 40 000 Monte Carlo steps in
each simulation. This is long enough for the system to
equilibrate provided that the density remains homogeneous.

Figure 2. Probability density function f(Ne) of the number of end
groups per node Ne for N = 125, χ = 0.4, and f = 5. ϕ = 0.25 (dashed
line), ϕ = 0.125 (dotted line), and ϕ = 0.063 (solid line).
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To demonstrate that the system is equilibrated well within
40 000 steps, we show the SF-SCF Helmholtz energy as a
function of the number of Monte Carlo steps in Figure 3.

At first sight it may seem puzzling that the Helmholtz energy
increases as the system relaxes. The entropy of the nodes is,
however, not included in the Helmholtz energy presented in
Figure 3. At the start, the nodes are in a highly ordered state.
By distributing themselves more randomly over the volume,
the entropy of the nodes is increased. This results in a lower
Helmholtz energy for the system as a whole even though the
Helmholtz energy of the polymer chains has increased. In
principle, the entropy of the nodes can be calculated from the
radial distribution function and higher-order particle correla-
tion functions using Green’s entropy expansion.16 In our case,
the three-particle correlation function was still rather noisy and
it was therefore not possible to accurately determine the
entropy of the nodes.
Coarse Grained Simulation. To show that the hybrid

Monte Carlo SF-SCF method describes the system better than
Monte Carlo simulations with coarse grained nodes, we
performed Monte Carlo simulations with M = 125, f = 5, and χ
= 0.4. In these simulations, the nodes with their polymers have
been coarse-grained to a single particle. We used an effective
interaction potential, calculated as described in our previous
article,9 as the interaction potential between these particles. To
determine this effective pair potential, we first calculated the
free energy per node for a simple cubic arrangement for
different distances between the nodes. Subsequently, we
calculated the effective pair potential so that it gives the
correct free energy for all distances. The resulting potential is
shown in Figure 4. The depth of the well is 0.33kBT.
Data Analysis. We calculated the radial distribution

function of the nodes to see how much ordering there is in
the system. This was done by splitting the range of possible

interparticle distances in a number of subranges called bins.
The width of these bins is dr. Next, we loop over all particle
pairs and Monte Carlo steps m and count how many particle
pairs have an interparticle distance that would fall in each bin
b. ”nint” indicates that number is rounded to the nearest
integer.
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In this equation, V is the volume in the number of lattice sites,
Vr is the number of lattice sites that fall within the bin b(r) at
radius r, and m is the number of Monte Carlo steps over which
the radial distribution function is averaged. M is the number of
nodes, and rn is the position of the node.
To be able to compare the results of these simulations to

experiments, we also calculated a structure factor S(ξ) based
on the radial distribution function using

∫ξ πρ
ξ

ξ= + −S r g r r r( ) 1
4

( ( ) 1)sin( ) d
(16)

In this equation, g(r) is the radial distribution function, r the
distance, ρ the number density of the nodes, and ξ the spatial
frequency.
Because of the finite size of our system, the radial

distribution function does not go to exactly unity for large
distances. This can, for example, be seen in Figure 5, where the

dotted curve for M = 125 stays just above unity. The
explanation is that if a particle has an excluded volume, the
volume remaining for the other M − 1 particles is a bit smaller
and the radial distribution function will be a little bit higher
than unity far away from the particle. Similarly, if the
interaction between the nodes is attractive, the concentration
close to the node will be higher and far away and it will be a bit
lower. In that case, the radial distribution far away will be a bit
less than unity. As a result, a peak shows up around ξ = 0 in the
structure factor. As the osmotic compressibility is effectively
determined by extrapolating the structure factor to zero, we
need a way to suppress this peak at ξ = 0.
Recently, Dawass et. al17 wrote an article comparing several

methods for correcting some of these finite size effects. The

Figure 3. Helmholtz energy per polymer as a function of the number
of Monte Carlo steps m. χ = 0.4, ϕ = 0.25, f = 5, and M = 125.

Figure 4. Effective pair potential used in the Monte Carlo simulations.
The distance r is measured in lattice sites.

Figure 5. Effect of the number of nodes used in the simulation on the
radial distribution function. The numbers of nodes in the system are 8
(bold solid line), 27 (dashed line), 64 (solid line), and 125 (dotted
line). χ = 0.4, ϕ = 0.25, and f = 5.
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best method according to them was the method of Ganguly
and van der Veght.18 They adjusted the radial distribution
function at distance r based on the excess amount within
distance r. To us this did not seem optimal, as the excess
amount fluctuates considerably as a function of the distance. As
a first-order approximation, the value of the entire radial
distribution function will be increased due to the local
excluded volume of a particle. We therefore think that a
correction that is more uniform would be better at
approximating the real radial distribution function. The most
logical thing to do would thus be to multiply the radial
distribution with a small factor such that the radial distribution
function goes to exactly 1 at long distances. For small
simulation volumes, the radial distribution function is however
not yet entirely flat at a distance of half the box size. It is thus
not so easy to determine what the right correction factor is.
Ideally, we get a smooth curve near a spatial frequency ξ = 0. If
we, however, get it wrong, there is a significant spike in the
structure factor close to ξ = 0. It therefore seemed reasonable
to choose this correction factor such that the magnitude of the
second derivative near ξ = 0 is minimal, although a different
derivative may work as well. To determine whether our
method works, we simulated two systems, one with hard
spheres and one with the effective interactions we use in the
coarse grained simulation. We compared the corrected radial
distribution function and compressibility of boxes with 512
particles to those of a simulation box with 13824 particles to
see if our method would give a useful correction of the radial
distribution function. The corrected radial distribution
functions for the systems with 512 particles give Kirkwood−
Buff integrals that deviate less than 15% from the value of the
large system, while the uncorrected values deviated as much as
60%. For the hard sphere system with 512 particles, the value
differs by about 5% from the theoretical value obtained with
the K-equation of state,19 and for the system with 13824
particles, our correction reduced the deviation from 5% to
1.5%. To our knowledge, this method has not been described
in the literature and we hope to soon write a short
communication in which we compare this method to other
methods for correcting finite size effects. The values of the
correction factors ranged from 0.987 to 1.008. With this
corrected radial distribution function, we calculated the
osmotic compressibility κ according to

∫
κ

ρ π

ρ
=

+ −r g r r

k T

1 4 ( ( ) 1) d2

B (17)

■ RESULTS AND DISCUSSION
In Figure 6, an example of the simulation volume is shown.
The nodes are clearly visible as dark-red cubes with a slightly
lighter core. Because of the steric repulsion between them, the
polymers push each other away from the node and so drag
their anchoring groups to the outside of the node. This results
in a relatively low density within the core of the node.
In Figure 5, we show the radial distribution function for

systems with different numbers of nodes M and thus also
different volumes. All other parameters have their default
values. For M = 8 and M = 27, the radial distribution functions
deviate significantly from the ones for M = 64 and M = 125,
which are very similar. It thus seems that our default
conditions using 125 nodes gives results that do not deviate
too much from an infinite system, although there is still some

effect of the limited size of the simulation volume. The system
should not be much smaller, as the peak of the second
coordination shell has barely ended at a distance equal to half
the box size. With ϕ = 0.5 and f = 10, the radial distribution
function shows peaks well beyond half the box size, and for this
system as well as several others, we performed simulations with
M = 512 nodes. This still is not optimal, but the computational
costs are too high to simulate even larger systems.
The dependence of the radial distribution function on the

overall polymer volume fraction is shown in Figure 7. As the

polymer volume fraction is increased from ϕ = 0.125 to ϕ =
0.5, the peak of the radial distribution function shifts inward.
Hence, at high concentrations, the polymers are pressed into
each other as there is not enough space to place all nodes at
their optimal distances. As the volume fraction is reduced, the
distances between the nodes increase until the optimal distance
is reached at a volume fraction of about ϕ = 0.125. There is no
strong ordering in the sample, and only two relatively weak
coordination shells are visible in the radial distribution
function. The system is thus expected to behave in a liquid-
like manner on time scales that are long compared to the
relaxation time of an individual bridge.
At first sight, it may be surprising that the level of ordering of

the nodes does not increase with increasing node concen-
tration. One would expect that due to the strong steric
repulsion the nodes would order themselves. Similar to
polymeric solutions, however, the environment starts to look
more like a polymer melt, as the polymer concentration is
increased. The polymers are therefore distributed more
homogeneously over the volume. As a result, the steric

Figure 6. 3D view of the default system. The nodes are colored red.
The polymer concentration decreases as the color goes from red via
white to blue.

Figure 7. Effect of the polymer volume fraction on the radial
distribution function. The tested volume fractions are ϕ = 0.50 (bold
solid line), ϕ = 0.25 (bold dashed line), ϕ = 0.125 (bold dotted line),
ϕ = 0.063 (solid line), ϕ = 0.031 (dashed line), and ϕ = 0.0078
(dotted line). χ = 0.4, M = 125, f = 5.
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hindrance experienced by the nodes will depend less on their
position and the system can thus remain unordered.
As the polymer volume fraction is decreased from ϕ = 0.125,

the peak of the first coordination shell rises, suggesting that the
strength of the attraction increases. This is in line with our
earlier finding that the interaction between two nodes depends
on their surroundings.9 As the system is diluted, the number of
neighboring nodes decreases and the attraction with the
remaining neighbors increases. For dilute systems, the binding
energy can be estimated by taking the logarithm of the peak
height of the radial distribution function. In this case, the
height is about 2.7 for ϕ = 0.0078, which corresponds to a
binding energy of roughly 1 kBT. This binding energy and the
position of the peak are the same as we found before.9

Let us next consider the effect of solvent quality. In Figure 8,
radial distribution functions are shown for different values of χ.

At a volume fraction of ϕ = 0.50, shown in Figure 8a, there is
practically no difference between the different solvent qualities.
At such a high polymer volume fraction, the swelling of the
polymer corona does not significantly decrease the number of
unfavorable interactions between the polymer segments
because they would swell into the corona of the next micelle.
The size of the micelles in a good solvent is therefore the same
as that in a theta solvent, and the radial distribution function is
therefore also practically the same.
This is illustrated in Figure 9, where the interaction potential

ΔF between two isolated nodes is plotted for different
background polymer concentrations. At a background polymer
volume fraction of ϕb = 0.5, the curves for χ = 0.0 and χ = 0.5
are practically the same.
As the polymer volume fraction is decreased to ϕ = 0.25, the

radial distribution functions for the different solvent qualities
start to differ. The peaks of the radial distribution functions
shift outward, most strongly for the good solvent. For the theta
solvent, the radial distribution function is otherwise similar to
that at ϕ = 0.50. For a good solvent, the height of the peaks

increases, as the steric repulsion is strongest in a good solvent
and it thus gives the most ordered structure.
When the volume fraction is lowered further to ϕ = 0.125,

we observe that for χ = 0.5 the radial distribution function no
longer goes to unity at large distances. This is most likely
because phase separation occurs: the cross section of the gel in
Figure 10 clearly shows a dilute and a concentrated region.

In addition, the first peak for χ = 0.5 is higher than the peak
for χ = 0.0. For χ = 0.5, the interactions are now attractive and
they become stronger as the gel becomes more dilute, while for
χ = 0.0 there is still a net repulsion between the nodes which
decreases as the gel becomes more dilute.
Finally, in Figure 8d, the polymer concentration has been

lowered to ϕ = 0.0625 and now the radial distribution function
does go to 1 for χ = 0.5. This, however, does not mean that the
system is already below the lower binodal. At the start of the
simulation, the nodes are distributed homogeneously over the
volume. They will initially clump together in small clusters.
These clusters, however, diffuse much slower than individual
nodes. It will thus take a long time before all the clusters and
nodes have aggregated by diffusion and Ostwald ripening and
formed a dense phase. The simulation was therefore too short
to fully equilibrate the system. The radial distribution function
does show a slight dip at a distance of about 45 lattice sites,
which is also visible for χ = 0.4. As the individual nodes and
clusters diffuse around, they stick to other clusters. The
concentration of micelles and other clusters near this cluster

Figure 8. Effect of the solvent quality χ on the radial distribution
function for different volume fractions: (a) ϕ = 0.50, (b) ϕ = 0.25, (c)
ϕ = 0.125, and (d) ϕ = 0.0625. χ = 0.5 (bold solid line), χ = 0.4 (bold
dashed line), and χ = 0.0 (dotted line). M = 125, f = 5. In parts c and
d, part of the radial distribution lies beyond half the box size. The
values in this range are displayed to show that phase separation
occurs, although they are probably still be affected by the limited box
size.

Figure 9. Effect of background polymers on the interaction potential
between two nodes: χ = 0.0 black and χ = 0.5 gray. ϕb = 0 (dotted
line), ϕb = 0.1 (bold dashed line), and ϕb = 0.5 (bold solid line). f = 5.

Figure 10. A cross section of the gel at χ = 0.5, ϕ = 0.125, f = 5. The
darker the color, the higher the polymer density. The maximum
polymer volume fraction is about 0.75. The nodes have clearly
clumped together forming a dense region, which coexists with a dilute
region with just a few micelles.
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therefore decreases, leading to a zone with a relatively low
concentration. This process may not only happen for complete
phase separation but also in the case that the clusters have not
yet reached their equilibrium size distribution. This is
illustrated by the change in the radial distribution functions
as the number of Monte Carlo steps is increased. The more
Monte Carlo steps have been taken the further out the dip lies
and the deeper it becomes. The system is thus not equilibrated
within the simulated number of Monte Carlo steps. At the end
of the simulation, there is also a clear void visible within the
gel.
It is possible to improve the rate at which the system

equilibrates by occasionally making Monte Carlo moves that
displace micelles over large distances. We, however, intended
to study the homogeneous phases of these micellar solutions
and therefore did not implement such large Monte Carlo
moves.
At a volume fraction of ϕ = 0.0625, the distance between the

nodes is so large that, for all χ, the interactions are no longer
repulsive at the average intermicelle distance. The peak for χ =
0.4 is therefore higher than that at χ = 0.0 because the height of
the peaks is now determined by the strength of the attraction
between the micelles.
Now we turn to the effect of the number of polymers per

node f, as shown in Figure 11. For f = 2.5, the radial

distribution function has just one peak just like a gas. In
contrast, there are many peaks visible for f = 10. For the
highest concentration ϕ = 0.5, these peaks occur beyond half
the box size. It is therefore likely that in this case the radial
distribution function is still influenced by the size of the
simulation volume. A striking difference between f = 10 and
the lower functionalities is that the height of the peaks
increases as the concentration is increased from ϕ = 0.25 to ϕ
= 0.50. This suggests that as the number of polymers increases,
the micelles will behave more like hard particles and
crystallization may be possible for nodes with even more
polymers.

Figure 11d shows that, for f = 10, the radial distribution
function drops a bit below unity at large distances, although
the deviation is not as large as in Figure 8c. There are some
interconnected cavities visible within the gel. It is therefore
possible that this gel will also undergo phase separation even
though this is not yet clearly visible. The number of Monte
Carlo steps taken is relatively small, and the gel may not have
had enough “time” to phase separate.
Now that we have discussed the radial distribution functions

for different parameters, we can compare them with the radial
distribution functions calculated with Monte Carlo simulations
in which we coarse-grained the nodes as single particles. In
Figure 12, radial distribution functions from the MC-SCF
simulations and the Monte Carlo simulations with effective
pair potentials are shown.

At high densities (see Figure 12a), the MC simulation with
effective pair potential gives much sharper peaks than the MC-
SCF model. This is probably caused by an overestimation of
the repulsive force between the particles. When two nodes
approach each other closely, the polymers can move out of the
way if there are no other particles nearby. However, if the
nodes have many close-by neighbors, the polymers can not
move out of the way and the repulsion is thus stronger. The
MC-SCF model can distinguish between these cases. A
pairwise interaction, however, cannot, and instead an
assumption has to be made about the surroundings of the
nodes. In the way we determined the effective pair potential, it
is assumed that the other nodes are at the same distance from
the interacting nodes as the interacting nodes are from each
other. When a particle is closer than the typical distance
between a particle and its nearest neighbors, the average
distance to the other nodes is underestimated and the repulsive
force is too strong. Because of this, the nodes cannot approach
each other as closely as in the MC-SCF model and therefore
appear as harder particles, resulting in the sharper peaks.
At low concentrations, as seen in Figure 12c, the opposite

problem arises. Here the peak of the first coordination shell is
much higher for the MC-SCF model. Not only does the

Figure 11. Effect of the number of polymers per node f on the radial
distribution function for different volume fractions: (a) ϕ = 0.50, (b)
ϕ = 0.25, (c) ϕ = 0.125, and (d) ϕ = 0.0625. f = 2.5 (bold solid line),
f = 5 (bold dashed line), and f = 10 (bold dotted line). χ = 0.4, M =
125, except for f = 5 with ϕ = 0.5 and f = 10 with ϕ = 0.5 or ϕ = 0.25,
where M = 512.

Figure 12. Comparison of the radial distribution functions for the
MC-SCF (bold solid line) and the normal MC simulation with
effective pair potentials (dotted line). The different volume fractions
of the polymer are (a) ϕ = 0.50, (b) ϕ = 0.125, and (c) ϕ = 0.031. In
all simulations, f = 5; in (a), 512 particles were used, and in (b) and
(c), 125.
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effective pair model overestimate the repulsion between the
particles, it also underestimates the attraction. When a node
already has many neighbors, adding another one increases the
number of polymer conformations relatively little compared to
the total number of potential conformations. If instead a node
has no neighbors, the relative increase in the number of
polymer conformations is much larger. The change in free
energy when a neighbor is added will therefore be larger when
a node has fewer neighbors. The attraction at low
concentration will therefore be stronger. With the effective
pair potential, it is assumed that there are neighboring nodes at
the same distance as the interacting nodes. This results in an
underestimation of the attraction at low concentration.
At intermediate concentrations (Figure 12b), the effective

pair interaction gives roughly the same radial distribution
function as the MC-SCF model, although the repulsion
between the micelles is still overestimated at short ranges.
On the basis of these calculations, it is clear that a Monte

Carlo simulation with a single pair potential does not correctly
describe the behavior of the nodes at a wide range of
concentrations, although some improvement should be
possible as the short-range repulsion appears too strong at all
concentrations. An option would be to use a custom potential
for each density. For systems in which the density remains
homogeneous, this would be an improvement. If the density is,
however, not homogeneous, the result would be even worse
than with the effective pair potential we have used here.
To validate our MC-SCF simulations, we need to make

predictions that can be compared to experimentally obtained
results. We therefore determined the structure factor and the
osmotic compressibility κ according to eqs 16 and 17.
The structure factors are shown in Figure 13 and the

compressibility is plotted in Figure 14. Close to spatial

frequency ξ = 0, the uncertainty in the structure factor is
relatively large. As the structure factor near ξ = 0 is closely
related to the compressibility, the accuracy with which the
compressibility can be calculated is also limited.

In two of the presented cases, the structure factors are
negative at ξ = 0. For systems in equilibrium, this is physically
unrealistic and it most likely results from the limited size of our
simulation volume. In several other cases, increasing the
number of nodes from 125 to 512 caused the structure factor
to become positive. This would probably also be the case for
these two systems if we could run the simulations with more
Monte Carlo steps and nodes.
The effect of the number of polymers per node f on the

osmotic compressibility (eq 17) is shown in Figure 14a. The
values shown are relative to the compressibility of an ideal gas
with a particle concentration that is the same as the
concentration of nodes in our simulations. At high polymer
volume fractions, the steric repulsion of the polymer coronas
prevents the nodes from coming close to each other and the
osmotic compressibility is therefore much smaller than that of
an ideal gas. At low concentration, the attraction causes the
nodes to form clusters and the osmotic compressibility is
therefore higher than that of an ideal gas because the number
of freely moving particles is reduced. The relative compressi-
bility gives a lower limit for the number of nodes that form a
cluster. For χ = 0.4, f = 5, and ϕ = 0.03, the average cluster size
should be, for example, at least 3.
For ϕ = 0.5, the nodes with the fewest polymers per node

seem to have the highest relative compressibility. The
confidence intervals, however, still overlap so the difference
is not significant. If we had instead looked at the real
compressibility, the order would probably be reversed. The
higher the number of polymers per node, the higher the
concentration of polymers close to the nodes, while the
polymer concentration halfway between the micelles is lower
and thus the steric repulsion will be lower as well.
As the concentration is lowered, the order quickly changes.

Because the nodes with more polymers have more attraction
between them and thus form larger clusters, these systems are
more compressible at low volume fractions.
In Figure 14b, the compressibility as a function of the

Flory−Huggins parameter χ is shown. As expected, the system
with χ = 0 is the least compressible; as the corona swells the
most, the steric repulsion is the strongest for this case. Above,
we concluded, on the basis of the radial distribution function,
that phase separation occurs for the combination of f = 5 and χ
= 0.5. According to theory, the compressibility should
therefore go to infinity. Our system, however, has a limited
number of particles and therefore the value the compressibility
can reach is limited. Furthermore, we used the entire radial
distribution function to calculate the compressibilities. This,
however, includes the part of the radial distribution function

Figure 13. Structure factors calculated from the radial distribution
functions for: (a) χ = 0f = 5, (b) χ = 0.4, f = 5, (c) χ = 0.5, f = 5, and
(d) χ = 0.4, f = 10. ϕ = 0.50 (bold solid line), ϕ = 0.25 (bold long-
dashed line), ϕ = 0.125 (bold dashed line), ϕ = 0.06 (bold short-
dashed line), and ϕ = 0.03 (dashed line). The gray areas under the
graphs indicate the 99% confidence interval.

Figure 14. Osmotic compressibility relative to that of an ideal gas. (a)
For different numbers of polymers per node: f = 2.5 (bold solid line), f
= 5 (bold dashed line), and f = 10 (bold dotted line). (b) As a
function of χ: χ = 0 (bold solid line) and χ = 0.4 (bold dashed line).
The error bars indicate the 99% confidence interval.
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far away from the particle where it is below unity. This lowers
the calculated value of the compressibility even further. The
values obtained for χ = 0.5 and ϕ = 0.13−0.03 are thus
incorrect and therefore not shown in Figure 14b.
One of the experimental studies in literature to which we can

compare our results is by Filali et al.1 They investigated a
system of swollen surfactant micelles to which they added PEO
polymers with hydrophobic end groups. Under the conditions
used, the Flory−Huggins parameter for PEO is between χ =
0.4 and χ = 0.5.20,21 Although the polymers had about 120
Kuhn segments and were thus longer than the polymers we
simulated, our results should show a fairly good match, as the
effective pair potential is almost identical for 50 and 100
segments when the distance from the core is rescaled.9 In
addition, the core of the micelles is larger than our nodes.
However, compared to the volume of the coronas, the cores
are still relatively small. The experimental results should
therefore be in between our results for χ = 0.4 and χ = 0.5.
Filali et al.1 observed phase separation for f ⩾ 6, which is not

much higher than the f = 5 for which we observed phase
separation with χ = 0.5. In this respect, their results fit nicely
with our findings.
The authors did not report the structure factor separately

but did show the total scattering intensity. As the form factor
goes to unity for small ξ, we should be able to make a
qualitative comparison between our structure factor and their
scattering intensities at small ξ. To get realistic values for our
spatial frequency, we need to choose a value for the lattice size.
We chose a value of 7.4 Å because this coincides with the
Kuhn length of PEG.22

On the basis of the Daoud Cotton model,23 the system of
Filali et al. with an oil droplet volume fraction of 7% should
best match our simulations with a polymer volume fraction of
ϕ = 0.03. When going from large ξ to small ξ, there is a dip
after the peak, indicating the average distance between the
nearest neighbors followed by a steep increase in both cases.
These features are less pronounced than in our simulations.
This is probaly because we used f = 5, while the experimental
system had on average four polymers per micelle. For higher
concentrations, the structure factors do not match because the
surfactant micelles in the experimental system are charged and
repel each other at these concentrations.
Franco̧is et al. published several experimental articles on

telechelic polymers with PEO middle blocks.24,25 In contrast to
us, they found cubic phases at high concentrations using X-ray
scattering.24 Because the number of polymers per micelle was
not reported, a one-on-one comparison with our simulations is
difficult. Probably the number of polymers per micelle is higher
than in our simulations. This may explain why they observed a
cubic phase and is corroborated by the fact that for longer
middle blocks, for which the number of polymers per micelle is
lower, crystallization was not found.
Another factor that may have contributed is that at least 10%

of their polymers had only one functionalized end, which
increases the repulsion between the micelles. They also
observed phase separation for systems with relatively short
middle blocks (PEO Mw ⩽6000 g/mol) but not for polymers
with long middle blocks (Mw ⩾10000 g/mol). As explained
before, systems with longer polymers have fewer polymers per
micelle and therefore less entropic attraction due to bridge
formation.
Sprakel et al. studied the rheological and phase behavior of

solutions of the same type of telechelic polymers, both

experimentally4 and with computer simulations.8,26 In contrast
to our simulation, they did not observe phase separation in
their experimental study.4 Although the number of polymers
per micelle was not reported, it was probably larger than 6,
which was estimated by Filali et al. to be the lower boundary
for phase separation. A possible explanation for not observing
phase separation is that about 10% of the polymers had only
one associative end group. This increases the steric repulsion
between the micelles, and the net attraction, which causes the
phase separation, is thus reduced.
In a second paper, Sprakel et al.26 addressed the phase

behavior of the system with a SF-SCF model in which the
micelle is modeled in a 1D spherically symmetric system with a
reflecting boundary condition. The number of polymers per
micelle was not fixed, but instead the grand potential was
optimized to determine f. Phase separation was predicted for
all the combinations of middle block and end-block lengths
they used in their study. The minimum number of polymers
per micelle they found was about eight, but their polymers
were much longer than those in our study. As they used χ =
0.5, all their systems lie above the line from f = 10 with χ = 0.4
to f = 5 with χ = 0.5. Their predictions are thus in line with
what we found here.
In a third study,8 they coarse-grained the micelles to single

particles. In this case, no phase separation was found. They do
not mention the Flory−Huggins parameter, but they wanted to
reproduce the above-described experimental system4 and the
value of χ should thus be between 0.4 and 0.5. Given that the
simulated micelles have f = 25 polymers each, phase separation
would be expected based on our results. However, the
interaction potentials in the coarse-grained model do not
take into account that the attraction will increase with a
decreasing number of neighbors.9 Moreover, a relatively small
well depth of 0.38 kBT was used, comparable to the well depth
we found for f = 5 and χ = 0.4 (about 0.34 kBT). Considering
that the well depth for an isolated pair of micelles roughly
scales with f 0.5,9 the well depth expected for this system with f
= 25 would be about twice as large. These combined factors
explain why they did not find phase separation from the
coarse-grained modeling.

■ CONCLUSION AND OUTLOOK
We successfully combined a Monte Carlo algorithm with the
Scheutjens−Fleer self-consistent field theory. With it, we were
able to calculate the radial distribution function, structure
factor, and compressibilities for solutions and gels of ABA
triblock copolymers with varying properties over a range of
densities. For f ≤ 5 polymers per node, we found, somewhat
counterintuitively, that as the polymer volume fraction ϕ
increases from ϕ = 0.25 to ϕ = 0.5 the amount of ordering in
the system is decreased. We argue that this is because at high
volume fractions the background concentration of the
polymers of the other nodes becomes more homogeneous.
The amount of steric repulsion therefore depends less on the
position of the node. We further discovered that for χ = 0.5
and f ≥ 5, phase separation occurs. We were, however, not able
to determine the compositions of the coexisting phases as the
number of simulated particles was small and there should thus
be a considerable effect due to the interface. Simulating such a
large volume that the effects of an interface would be negligible
would take far too much computation time. To avoid the effect
of the interface, the Gibbs ensemble27 can be used. Because we
used a lattice, we can, however, not change the volume by
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arbitrary small steps but only by one lattice layer at a time. The
larger the simulation volume, the larger the change in volume
and thus in free energy will be. The chance that an exchange in
volume would be accepted would therefore become smaller for
larger and larger systems. This limits the system size we can
use in combination with the Gibbs ensemble. Instead, it may
be possible to “simulate” a Gibbs ensemble by simulating two
volumes which would be representative for larger volumes of
the simulated Gibbs ensemble. By moving particles in and out
of the simulated volumes, the density could be adjusted to that
of the simulated volumes of the Gibbs ensemble. To our
knowledge, such an approach has not been described in
literature yet. Another approach would be to coarse-grain the
micelles while maintaining the dependence of the interacting
potential on the surroundings of the interacting micelles. This
method would also enable us to study dynamic properties of
the system.
The limited system size may have affected some of our

simulations at high polymer volume fractions where the radial
distribution function had not completely flattened out by half
the box size. The next generation of GPUs, however, promises
to have 10 times more computation power as those we used.
This allows larger simulation volumes and more Monte Carlo
steps, making a Monte Carlo SCF hybrid model a feasible tool
for future studies. By comparing the results of coarse-grained
Monte Carlo simulations with those of the hybrid MC-SCF
model, we have shown the shortcomings of using only one pair
potential to describe the interactions between the nodes. The
MC-SCF hybrid method is therefore a useful tool to model
systems of flower-like micelles and telechelic networks over a
wide range of concentrations.
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■ SYMBOLS

b(r) = bins used to determine the radial distribution
function
C = normalization constant
c = indicates a conformation
dr = The width of the bins used in the radial distribution
function
ΔF = interaction Helmholtz energy
F = Helmholtz energy
f = number of polymers per micelle
g(r) = radial distribution function
G = end point distribution function
kB = Boltzmann constant
M = number of nodes/micelles
m = number of Monte Carlo steps
N = number of polymer segments in the middle block
Ne = number of end groups in a node
n = number of polymers
nS = number of solvent molecules
p = probability
q = single molecule partition function
Q = partition function of the whole system
r = position/radius/distance
r′ = positions next to r on the lattice
s = segment number
S = solvent segment
S(ξ) = structure factor
T = temperature
U = energy
u = segment potential
V = volume
X,Y = example of segment types
Z = number of neighbors each lattice site has
α = Lagrange parameter
η = factor that determines how quickly α is updated
ξ = spatial frequency
ρ = number density
φ = volume fraction in a lattice site
ϕ = volume fraction in the entire volume
ϕb = background polymer concentration
χ = Flory−Huggins parameter
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