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Abstract 
Atopic dermatitis is a prevalent and persistent chronic inflammatory skin disorder that 

poses significant challenges when it comes to accurately assessing its severity. The aim of 

this study was to evaluate deep learning models for automated atopic dermatitis severity 

scoring using a dataset of Aceh ethnicity individuals in Indonesia. The dataset of clinical 

images was collected from 250 patients at Dr. Zainoel Abidin Hospital, Banda Aceh, 

Indonesia and labeled by dermatologists as mild, moderate, severe, or none. Five pre-

trained convolutional neural networks (CNN) architectures were evaluated: ResNet50, 

VGGNet19, MobileNetV3, MnasNet, and EfficientNetB0. The evaluation metrics, 

including accuracy, precision, sensitivity, specificity, and F1-score, were employed to 

assess the models. Among the models, ResNet50 emerged as the most proficient, 

demonstrating an accuracy of 89.8%, precision of 90.00%, sensitivity of 89.80%, 

specificity of 96.60%, and an F1-score of 89.85%. These results highlight the potential of 

incorporating advanced, data-driven models into the field of dermatology. These models 

can serve as invaluable tools to assist dermatologists in making early and precise 

assessments of atopic dermatitis severity and therefore improve patient care and 

outcomes. 

Keywords: Atopic dermatitis, severity scoring, deep learning, convolutional neural 

network, image classification 

Introduction 

Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disorder marked by persistent 

eczema and itching [1]. Patients often face a diminished quality of life, experiencing increased 

rates of sleep disturbances, anxiety, depression, and even suicidal thoughts [2]. It impacts all age 

groups, with approximately 15 million affected in the United States alone, of which 60% are 

children under 12 years-old [3]. Data from the Indonesian Pediatric Dermatology Research Group 

indicates that AD topped the list of pediatric dermatological diseases in 2022, with over 703,270 

reported cases in Indonesia [4]. 

In recent years, artificial intelligence (AI) has revolutionized various sectors [5-7]. Notably, 

the healthcare sector has seen a surge in AI-driven devices, leading to enhanced accuracy, 
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efficiency, and productivity [3,8-10]. Specifically in dermatology, the use of deep learning and 

convolutional neural networks (CNN) has enhanced image classification, object detection, and 

other analytical processes [11,12]. 

Traditional methods for diagnosing AD have predominantly relied on visual inspections by 

dermatologists. However, such approaches are susceptible to human error, making the diagnosis 

inherently subjective and potentially less optimal [13-15]. Recognizing this challenge, recent 

dermatological studies have harnessed machine learning and deep learning for enhanced skin 

disease diagnosis and severity assessment [15-18]. For instance, Medela et al. leveraged 604 

dermatological images and utilized the Deep Expectation technique to achieve an 84.6% 

diagnosis accuracy [16]. Wu et al. applying LASSO Regression and Random Forest on datasets 

from NCBI obtained an 84.4% accuracy in assessing AD severity [17]. Another study processed 

1,000 AD images via a CNN, achieving 94.44% accuracy [18]. Al-Masni et al. applied full-

resolution CNN on melanoma images and noted 77.11% testing accuracy [19]. However, a 

significant limitation of these studies is their predominant reliance on datasets primarily 

composed of Caucasian skin types. This presents potential biases, as the morphological 

presentation of skin conditions can vary across different ethnicities. Without representation of 

diverse skin tones, the models might not perform as effectively or accurately when diagnosing or 

assessing skin conditions in non-Caucasian populations [20]. 

Addressing this gap, this study sought to develop a deep learning model for scoring the 

severity of AD, with a focus on the Acehnese ethnicity. Dataset from Dr. Zainoel Abidin Hospital 

in Banda Aceh, Indonesia was collected. By using and modifying pre-trained models like 

ResNet50, VGGNet19, MobileNetV3, MnasNet, and EfficientNetB0, our aim was to achieve 

robust AD severity classification. Our approach promotes more inclusive skin disease diagnosis 

by focusing on an underrepresented population. Additionally, automating severity scoring could 

lead to faster and more consistent assessments, reducing the workload for dermatologists. 

Methods 

Dataset 

We utilized a dataset sourced from the dermatology division of Dr. Zainoel Abidin Hospital, 

Banda Aceh, Indonesia. This dataset contained images of Acehnese patients, captured with a 12-

megapixel smartphone camera under the supervision of a dermatologist. To create the dataset, 

skin lesion images were manually cropped from the original patient photos. In total, 3037 images 

were collected from 250 patients. The patients included in the dataset were diagnosed with atopic 

dermatitis and received treatment between 2021 and 2023. The age range of the patients was 

between 18 and 65 years. The severity of the atopic dermatitis was assessed using the objective 

SCORAD (SCORing Atopic Dermatitis) score, which considered criteria such as erythema, 

oedema, crusting, excoriation, lichenification, and skin dryness. These images were then 

categorized into four severity levels: none, mild, moderate, and severe. Visual examples of images 

representing each severity level are presented in Figure 1. The training dataset was comprised 

of 2126 labeled images across the four severity classes, while the testing dataset contained 911 

additional labeled images. Specifically, within the training data, there were 703 images classified 

as none, 401 classified as mild, 948 classified as moderate, and 985 classified as severe. 

Model architectures  

We utilize several CNN architectures as core components of the proposed methodology, including 

ResNet50 [21], VGGNet19 [22], MobileNetV3 [23], MnasNet [24], and EfficientNetB0 [25]. The 

rationale behind this selection was twofold. Firstly, deeper models were opted like ResNet50 and 

VGGNet19 to ensure that complex patterns and intricacies of the skin conditions could be 

captured. These models, with their comprehensive architectures, could discern nuanced features 

indicative of varying severity levels of AD. Secondly, efficient models such as MobileNetV3, 

MnasNet, and EfficientNetB0 were incorporated to ensure fast and resource-efficient predictions, 

making the proposed system practical for real-world clinical applications. Furthermore, these 

models have proven successful across a wide range of computer vision applications, as 

substantiated in previous works [26-32]. 
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All of our models were fine-tuned from ImageNet weights [33]. By initializing the models 

with pre-trained weights from the ImageNet dataset, we were not only leveraging their ability to 

capture general visual features foundational for our approach but also optimizing them for the 

specifics of our dataset and objective. The strengths inherent to each architecture, whether in 

terms of efficiency, scalability, or suitability for resource-constrained environments, make them 

particularly well-suited for our methodology. 

     

     

     

     

Figure 1. Representative of dataset used in this study based on severity: (A) none; (B) mild; (C) 
moderate; and (D) severe. 

Data preparation 

To prepare the data for modeling, several necessary preprocessing steps [34,35] were conducted. 

The first step was to manually crop the region of interest (ROI) with a 1:1 aspect ratio on the AD 

wound area. Next, data were labelled using SCORAD under the supervision of a dermatologist. 

Then, the labeled data were resized to 250×250 pixels and converted to the portable network 

graphics (PNG) format, with the aim of speeding up the training process. Subsequently, data 

underwent an augmentation process, which included flip, rotate, distortion, skew, and zoom. This 

enhanced the training process, making it more efficient and reliable [36]. The parameters and 

values of data augmentation are presented in Table 1. 

Table 1. Parameters and values of data augmentation 

Data augmentation  
method 

Parameter 
value 

Action 

Flip 0.5 Flip the image horizontal and vertical with a probability of 0.5 
Rotate 10 Rotate the image left and right rotation with a probability of 0.1 
Distortion 8 Distortion the image with magnitude and grid dimension with a 

probability 0.08 
Skew True Skew the image 
Zoom 1 Scaling the image 

 

A 

B 

C 

D 
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Proposed approach 

Each model was modified by adding a global average pooling 2D layer, a dense layer, and a 

dropout layer. To ensure that the pre-trained layers remained intact during training, they were 

set to non-trainable. The global average pooling 2D layer was used to condense the spatial 

information from the output of the modified model, reducing its spatial dimensions while 

retaining essential features [37]. Following this, a dense layer comprising 256 units was 

incorporated, tailored to the demands of AD classification. This layer captured higher-level 

features, enhancing the model's representational abilities. To mitigate the risk of overfitting, a 

dropout layer was introduced subsequent to the dense layer. By randomly deactivating certain 

input units during training, it ensured that the network did not overly depend on specific units, 

thereby fostering a more robust and generalizable data representation [38]. Finally, the severity 

scoring was made using a dense layer that contained a single unit with softmax activation.  

To begin training our modified models, the initial step was the setting up of the 

hyperparameters. Hyperparameters are predefined configurations external to the model, which 

significantly influence its learning process and effectiveness. The employed hyperparameter are 

presented in Table 2. The training was conducted over ten epochs with a batch size of 32, 

facilitating iterative refinement of the models. The Adam optimizer with a learning rate of 0.001 

was used for optimization, owing to its proven effectiveness in deep learning tasks [39]. The 

categorical cross-entropy loss function was chosen, being particularly suited for multi-class 

classification problems. 

Table 2. Hyperparameter used to train of all modified models  

Hyperparameter Value 
Optimizer Adam 
Epoch 10 
Learning rate 0.001 
Loss function Categorical cross-entropy 
Batch size 32 

Model evaluation 

In this study, we utilized various evaluation metrics to gauge the models’ performance. These 

metrics encompass accuracy, precision, sensitivity, specificity, and F1-score. Because the severity 

scoring of AD is a multiclass problem, the weighted average of these metrics was used to ensure 

that each class's contribution was proportional to its representation in the dataset. The formulas 

for calculating accuracy, precision, sensitivity, F1-score, and the weighted average of these 

metrics are presented in equations 1–9 [40]. 

 

Accuracy =  
TP + FN

FP + FN + TP + TN
 

(1) 

Precision =  
TP

TP + FP
 

(2) 

Sensitivity =  
TP

FN + TP
 

(3) 

Specificity =  
TN

TN + FP
 

(4) 

F1 − score =  
2 Precision ×  Sensitivity

Precision +  Sensitivity
 

(5) 

Weighted average precision =  
Σ(precisioni ∗  weighti)

Σ weighti

 
(6) 
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 Weighted average sensitivity =  
Σ(sensitivityi ∗  weighti)

Σ weighti

 
(7) 

Weighted average specificity =  
Σ(specificityi ∗  weighti)

Σ weighti

 
(8) 

Weighted average F1 − score =  
Σ(F1 − scorei ∗  weighti)

Σ weighti

 
(9) 

True positive (TP) is the count of positive cases that were correctly identified; false negative 

(FN) represents the number of cases erroneously classified as negative; false positive (FP) denotes 

the number of cases incorrectly labeled as positive; and true negative (TN) indicates the count of 

correctly identified negative cases.  

Results 
We successfully developed the models specifically trained to assess AD severity using exclusive 

dataset, which had not been employed previously. The training and validation accuracy, along 

with the training and validation loss throughout the model's training, are presented in Figure 2. 

Our data indicated that ResNet50, VGGNet19, MobileNetV3, and EfficientNetB0 learned 

effectively, with validation accuracy generally increased as epochs progress, despite occasional 

spikes. This indicates that these models are benefiting from extended training, optimizing their 

weights to better generalize and predict unseen data. Such a trend suggests that the models are 

converging and the algorithms behind them are appropriately adjusting based on the training 

data, which can lead to better performance on AD severity scoring. 

However, an interesting pattern emerged for the MNasNet model. The training accuracy was 

lower than the validation accuracy, and the validation loss diminished significantly after two 

epochs. This behavior suggested that the model might be underfitting the training data. 

Underfitting occurs when a model is too simplistic and fails to capture the underlying patterns of 

the data. The fact that the training accuracy is lower than the validation accuracy further supports 

this hypothesis, as it indicates the model struggled even with data it has seen before. The rapid 

decrease in validation loss might indicate that the model has found a general solution that works 

reasonably well for the validation data but may not be capturing all the intricacies of the training 

dataset. 

The evaluation of our trained models revealed varying levels of performance in assessing AD 

severity (Table 3). The deep architecture of ResNet50 produced the best results, with an accuracy 

of 89.80%. This likely stems from its ability to learn intricate patterns, yielding a high precision 

of 90.00%, sensitivity of 89.80%, specificity of 96.70% and F1-score of 89.95% (Table 3). 

EfficientNetB0 followed closely behind, with an accuracy of 85.20% and nearly equivalent 

precision and sensitivity. VGGNet19 and MobileNetV3 had the middle ground, with moderate 

outcomes. VGGNet19 had an accuracy of 83.88%, while MobileNetV3 had 81.09%. Their 

precision, sensitivity, and other metrics aligned with these moderate numbers. MnasNet, 

however, demonstrated the least favorable performance with an accuracy of just 63.16%. It can 

be attributed to the architecture design that trades some accuracy for reduced model size and 

faster inference, possibly restricting its ability to learn deeper dataset patterns. Despite a higher 

specificity of around 87.72%, its lowest F1-score indicated weaker balanced classification 

capabilities compared to the other models. 

Table 3. Weighted average performance of modified ResNet50, VGGNet, MobileNetV3, MnasNet, 

and EfficientNet models to determine the atopic dermatitis severity  

Model Accuracy  
(%) 

Precision  
(%) 

Sensitivity  
(%) 

Specificity  
(%) 

F1-score  
(%) 

ResNet50 89.80 90.00 89.80 96.60 89.85 
VGGNet 83.88 84.19 84.50 94.68 83.88 
MobileNetV3 81.09 80.99 81.09 93.70 80.76 
MnasNet 63.16 64.97 63.16 87.72 60.81 
EfficientNet 85.20 85.30 85.20 95.07 85.23 
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Figure 2. Training and validation results of modified (A) ResNet50; (B) VGGNet; (C) 
MobileNetV3; (D) MnasNet; and (E) EfficientNet.  

To obtain a deeper insight into the models’ severity scoring, the confusion matrix depicted 

in Figure 3 offers a comprehensive overview of its classifications. It compared the actual values 

with the values predicted by the model. The matrix helps in understanding not just the errors of 

a model, but more importantly, the types of errors that are being made.  

 

A 

E 

D 

C 

B 
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Figure 3. Confusion matrix on testing set of modified models: (A) ResNet50; (B) VGGNet; (C) 
MobileNetV3; (D) MnasNet; and (E) EfficientNet. Each cell represents the count of predictions, 
where one class was predicted as another. The diagonal cells (top-left to bottom-right) represent 
correct predictions, where the predicted class matches the actual class. The off-diagonal cells 
show the misclassifications. Cells with higher numbers are colored more intensely, and cells with 
lower numbers are lighter. The optimal number in the diagonal cells should be as high as possible, 
indicating correct predictions, while the off-diagonal cells should ideally contain low numbers, 
indicating fewer errors. 

The confusion matrix indicated that ResNet50 model demonstrated commendable accuracy, 

particularly for the none and moderate severities. Although there were instances of 

misclassification, they were relatively minimal, suggesting that the model has a strong capability 

in its predictions across the categories. The VGGNet19 model, while having strengths in 

identifying the none and severe severities, revealed areas of potential improvement, particularly 

between the mild and moderate categories (Figure 3). The misclassifications in these mid-range 

categories indicate room for refinement in the models’ performance. The MobileNetV3 model 

showcased impressive accuracy, especially for the none and severe classifications. However, 

A B 

C D 

E 
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similar to VGGNet19, it had challenges in differentiating between the mild and moderate 

severities, suggesting areas of potential enhancement (Figure 3). MnasNet performance was 

more varied. While it demonstrated strength in the severe category, there were vulnerabilities in 

differentiating between mild and moderate severities. Notably, the none to moderate predictions 

showed significant false positives, highlighting areas for improvement (Figure 3). Finally, the 

EfficientNetB0 model displayed a robust performance, particularly in the extreme categories 

none and severe (Figure 3). Misclassifications were present but relatively fewer, indicating a 

balanced prediction capability across all severity levels. 

Discussion 
The integration of AI in dermatology, specifically for assessing AD severity, represents a 

significant advancement in the field. Studies have demonstrated that AI models, particularly 

those with high accuracy, can be effectively integrated into diagnostic workflows [41,42]. This 

integration not only assists dermatologists in making more precise and consistent assessments 

but also minimizes the likelihood of human error and subjective judgments in severity evaluations 

[43]. Such advancements are important in tailoring treatment strategies and leading to improved 

patient outcomes. 

Beyond the immediate clinical setting, the adoption of AI in dermatology represents a 

broader shift in healthcare towards precision medicine, where treatments and interventions are 

customized for individual patients. With the ability to rapidly analyze and interpret vast amounts 

of data, AI could offer insights into patient-specific factors that may influence disease progression 

and treatment responses. Moreover, as AI models evolve to consider diverse datasets, they could 

help ensure equity in healthcare by ensuring all populations benefit from the latest advancements 

in medical technology. 

Overall, our models show significant promise in aiding dermatologists and general 

practitioners to more accurately classify AD severity levels, leading to more accurate diagnoses 

and improved patient care. However, challenges remain, such as potential bias due to the regional 

specificity of the dataset and the subjectivity in data labeling affecting the models' 

generalizability. For instance, studies have shown variations in AI model performance when 

applied to data sets predominantly composed of Caucasian patients compared to more diverse 

populations [43-46]. 

Future studies should focus on cross-regional validation, model refinement, clinical 

integration, and dataset diversification to further develop the potential of deep learning in 

dermatology. Expanding the dataset to better represent global population diversity can improve 

generalizability and access to quality dermatological care worldwide. Additional collaboration 

between computer scientists and clinical experts could fine-tune models for enhanced 

performance and applicability in real-world settings. Research into model interpretations and 

uncertainty quantification is also important to promote understanding, trust, and adoption 

among practitioners. While this study provides a promising first step, continued work is needed 

to address limitations and fully harness the potential of deep learning in dermatology in a 

responsible and equitable manner. 

Conclusion 
We have successfully explored the application of deep learning models in the assessment of AD 

severity using a dataset of Aceh ethnicity individuals in Indonesia. We evaluated a diverse range 

of CNN architectures, from deeper models like ResNet50 and VGGNet19 to more efficient models 

such as MobileNetV3, MnasNet, and EfficientNetB0. By benchmarking these models, we gained 

an important understanding of their comparative strengths for dermatological analysis. The 

results represent a significant advancement in the utilization of deep learning models as valuable 

tools in dermatological practice. The models offer the potential for more accurate and efficient 

assessments of AD severity, making them a crucial asset in advancing dermatological care, 

particularly in regions with limited specialty expertise. 
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