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Abstract: Falls are seriously threatening the health of elderly. In order to reduce the potential danger
caused by falls, this paper proposes a two-stage fall recognition algorithm based on human posture
features. For preprocessing, we construct the new key features: deflection angles and spine ratio
to describe the changes of human posture based on the human skeleton extracted by OpenPose.
In the first stage, based on the variables: tendency symbol and steady symbol integrated by the
scattered key features, we divide the human body state into three states: stable state, fluctuating
state, and disordered state. By analyzing whether the body is in a stable state, the ADL (activities of
daily living) actions with high stability can be preliminarily excluded. In the second stage: to further
identify the confusing ADL actions and the fall actions, we innovatively design a time-continuous
recognition algorithm. When human body is constantly in an unstable state, the human posture
features: compare value γ, energy value ε, state score τ are proposed to form a feature vector,
and support vector machine (SVM), K nearest neighbors (KNN), decision tree (DT), random forest
(RF) are utilized for classification. Experiment results demonstrate that SVM with linear kernel
function can distinguish falling actions best and our approach achieved a detection accuracy of
97.34%, precision of 98.50%, and the recall, F1 score are 97.33%, 97.91% respectively. Compared with
previous state-of-art algorithms, our algorithm can achieve the highest recognition accuracy. It proves
that our fall detection method is effective.

Keywords: fall detection; OpenPose; deflection angles; spine ratio; human posture
features; classification

1. Introduction

Falls are the primary threat to the health and safety of the elderly [1]. According to The WHO
Global Report on Falls Prevention in Older Age [2], about 30% of the elderly over 60 years old experience
at least one fall accident each year. The “Old People’s Anti-Dumping Joint Tips” issued by The China
Association of Gerontology and Geriatrics pointed out that falls are the major cause of death for people
over the age of 65, and 50% of the elderly’s injuries are caused by falls. The US Preventive Medicine
Working Group (USPSTF) [3] indicated that in 2014, 28.7% of community-dwelling adults 65 years or
older had been reported falling, resulting in 29 million falls and an estimated 33,000 deaths in 2015.

The trend of population aging further expands the adverse effects of falls. According to the 2019
revised World Population Prospects: by 2050, the number of persons aged 80 years or over is expected
to triple, from 143 million in 2019 to 426 million; the proportion of world’s population over 65 will
increase from 9% in 2019 to 16%; one in four persons living in Europe or North America could be aged
65 or over.

Getting timely assistance after a fall can reduce the risk of hospitalization by 26% and death by over
80% [4]. As most elderly fallers cannot return to standing position and seek help immediately on their
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own, a reliable fall detection method can help the elderly to get timely medical treatment and reduce
physical damage. The mainstream fall detection methods can be classified into three categories [5]:
wearable sensors-based method, ambient device-based method, and computer vision-based method.

Wearable sensors-based method generally relies on sensor devices, such as gyroscopes and
accelerometers, to collect data like acceleration and deflection angles [6–10]. This method has obvious
drawbacks for the need to wear out the sensors: wearing the equipment for a long time can be
uncomfortable, and seniors with poor memory may forget to wear the equipment. These defects limit
the practicality and generalizability of the method.

Ambient device-based method [11–14] deploys external sensors in the surveillance area to obtain
environmental data such as pressure, vibration, and infrared arrays. This type of method is limited to
the place where the monitoring equipment is installed. Furthermore, monitoring implementation is
hard for the high cost of professional external sensors. Recent years, Wi-Fi devices-based fall detection
methods had received widespread attention due to the advantages of low cost and wide availability.
However, similar to other ambient device-based methods, susceptibility to environmental interference
will affect detection accuracy and robustness.

The computer vision-based methods extract human features from images to recognize falls.
Benefiting from the development of computer vision technology, plenty of research [15,16] has been
done to develop systems for highly-accurate, user-friendliness automatic fall detection. This type of
method also requires the installation of additional equipment, but it is high-precision, easy to use,
and minimally restricting user’s activities. With the development of computing power of edge devices,
video information analysis can be directly pre-processed locally. After the privacy-related content is
removed, the data will be uploaded to the server for further analysis, which can solve the privacy
disputes of video data. Therefore, we believe that vision-based methods have significant advantages
and will have great feasibility and universality in future promotion.

For the computer vision-based methods, the most critical part is how to design features based on
image information. The current methods are quite feasible for distinguishing fall actions from walking,
standing, and other high-stability actions, but still challenging for ambiguity actions, like bending and
lying down. To solve this problem, under the premise of considering economics and universality, this
paper proposes a two-stage fall recognition method based on a single RGB camera. The contributions
of this work can be summarized as follows:

• In the preprocessing stage, based on the key-points extracted by OpenPose, we designed new key
features named spine deflection angle, thigh deflection angles, calf deflection angles, and spine
ratio to characterize human posture.

• In the first stage, we propose a novel human body state division algorithm based on the tendency
symbol and steady symbol integrate by these scattered key features. The stable activities of daily
living (ADL) movements such as walking and standing can be preliminary identified by judging
whether human body is in a stable state.

• In the second stage, to accurately eliminate confusing actions, we innovatively proposed a
time-continuous recognition algorithm, and further proposed the compare value, energy value,
and state score three-dimensional features to train a classifier to determine whether a fall occurred.

Overall, our tracker achieves remarkable performance on the public dataset. Due to the design of
machine learning, our method is real-time and easy to transplant to the hardware platform.

The rest of this paper is arranged as follows. Section 2, we give a brief description of vision-based
fall detection method. Section 3, the proposed approach for fall detection and classification are outlined
in two stages. Section 4, the performance of the proposed method is assessed. Lastly, Section 5 concludes
this work.



Sensors 2020, 20, 6966 3 of 21

2. Related Work Based on Computer Vision Systems

The computer vision-based methods can provide rich and intuitive scene information to realize
accurate and real-time fall detection. This type of method improves the universality and popularization
of human fall detection technology. It can be divided into two types according to images: RGB image
and depth image based on Kinect camera.

In the field of computer vision, RGB images [17] are the most widely used, including a wide range
of information such as color, texture, and shape. Researchers often use geometric representations
and statistical methods to extract human features. Rougier et al. [18] proposed a three-dimensional
head positioning fall detection algorithm that represented the head as a three-dimensional ellipsoid.
The hierarchical particle filter performed tracking judgment using color histograms and shape
information. Feng et al. [19] focused on dynamic features, exploiting ellipse fitting to represent the
image of pedestrians. They extracted the direction angle, velocity, integral normalized motion energy
map, and blending motion features to discriminate falls. Min et al. [20] used a minimum outer rectangle
to represent the shape of the pedestrian, and the change in the aspect ratio of the frame represented the
change in the shape ratio of the pedestrian to determine the fall. These rough estimation methods did
not need to detect the global posture features, and the calculation was more portable, but it had defects
such as poor accuracy, high misjudgment rate, and poor implementation in the realization of human
fall detection.

Depth images [21] are widely used in the field of motion recognition and classification for they
can reflect spatial information of scenes. Lei Yang et al. [22] proposed a fall detection method based on
spatio-temporal context (STC) tracking over three-dimensional (3D) depth images captured by the
Kinect sensor. The STC algorithm was used to track the position of head and the distance calculated
each frame from head to floor. Xue Bingxia et al. [23] obtained the skeletal points coordinates from
depth images, and the curvature scale space feature, the morphological characteristics, the trajectories
of skeleton points were extracted to compensate that a single feature cannot fully characterize human
motion. A multi-model feature selection and fusion algorithm was proposed for fall detection. Based
on the depth information from Kinect sensor, Gasparrini et al. [24] proposed an automatic fall detection
method for indoor environment. It performed fall detection by evaluating the Euclidean distance
between pixel coordinates of the position. To address the problem that human body extraction based
on depth sensor performed very poor when occlusion happened, Zhao et al. [25] proposed a human
upper body detection approach to extract human head and upper body center to characterize human
activities well. However, the depth camera recognition range is limited, and the application scene
is constrained.

The current use of RGB images for human fall recognition is a rough estimation of human pose,
which is inferior to the methods of using depth images in the accuracy and precision. However,
the depth camera has a distance limitation, and authentic depth information cannot be obtained under
strong lighting conditions. In recent years, deep learning methods based on convolutional neural
networks had shown great capabilities in the field of computer vision, and great progress had been
made in realizing accurate estimation of human posture based on RGB images. Cao Z [26] used CPM as
a component, constructed the OpenPose network, which had won the first of human posture estimation
competition on the COCO in that year. Therefore, this paper introduces a deep convolutional neural
network to achieve accurate estimation of human posture based on RGB images. On this basis, effective
and accurate body posture features are obtained for identifying fall behavior. With these features, a
reasonable human fall recognition method is proposed to achieve accurate human fall identification
work and minimize the false detection and false alarm situation.
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3. Materials and Methods

In the presented approach, we model fall as a state transition process with time continuity, from a
stable state to a disordered state, and this transition process can be characterized by several geometric
features. For this trait, we divide the fall detection task into two stages to distinguish the fall action
from the highly stable ADL actions, and the confusing ADL behaviors step by step.

For preprocessing, key features: deflection angles (spine deflection angle, thigh deflection angles,
and calf deflection angles) and spine ratio are imported to characterize human body posture based
on the human skeleton model extracted by OpenPose. Then in the first stage, the key features are
integrated into two new variables: tendency symbol and steady symbol. Based on the tendency symbol
and steady symbol, human movement can be divided into three states: stable state, fluctuating state,
and disordered state to distinguish the fall actions from the highly stable ADL actions.

In the second stage, to further exclude the confusing ADL behaviors, we design an algorithm
with time continuity. When the human body continues to be in an unstable state, the human posture
features: compare value γ, energy value ε, state score τ are proposed to form a feature vector, and an
excellent classifier is trained to complete the fall recognition.

3.1. Huamn Key Points & Posture Vectors

We use OpenPose based on the COCO dataset [27] to extract human body key points, which is the
best comprehensive pose extraction method in recent years. OpenPose can obtain 25 key points of
human body from 2D image as shown in Figure 1. It not only performs well on RGB images, grayscale
images, but also applies to infrared images acquired under weak light conditions. Compared with
the methods based on Kinect sensors to obtain key points for fall recognition, the OpenPose-based
methods break through the limitation on recognition distance.
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Figure 1. Skeleton extraction based on OpenPose: (a) Multi-person skeleton extraction; (b) Diagram of
the human skeleton key points.

Based on OpenPose, we merged the human skeletons of 60 consecutive images corresponding to
fall actions (Figure 2) into one image coordinate system. As shown in the Figure 3, removing the arms,
wrists, and feet, we can still see an obvious tendency to fall from the main torso composed of the torso,
thigh, and calf. In the case of a fall recognition task, the body weight concentrates on the main torso,
and the arm, wrist have little influence on its changes. We believe that only focusing on the key points
of main torso, an excellent description of human body posture can be obtained, which greatly reduces
the calculation of feature extraction.



Sensors 2020, 20, 6966 5 of 21

Sensors 2020, 20, x FOR PEER REVIEW 4 of 21 

 

For preprocessing, key features: deflection angles (spine deflection angle, thigh deflection angles, 
and calf deflection angles) and spine ratio are imported to characterize human body posture based 
on the human skeleton model extracted by OpenPose. Then in the first stage, the key features are 
integrated into two new variables: tendency symbol and steady symbol. Based on the tendency 
symbol and steady symbol, human movement can be divided into three states: stable state, 
fluctuating state, and disordered state to distinguish the fall actions from the highly stable ADL 
actions. 

In the second stage, to further exclude the confusing ADL behaviors, we design an algorithm 
with time continuity. When the human body continues to be in an unstable state, the human posture 
features: compare value , energy value , state score  are proposed to form a feature vector, and 
an excellent classifier is trained to complete the fall recognition. 

3.1. Huamn Key Points & Posture Vectors 

We use OpenPose based on the COCO dataset [27] to extract human body key points, which is 
the best comprehensive pose extraction method in recent years. OpenPose can obtain 25 key points 
of human body from 2D image as shown in Figure 1. It not only performs well on RGB images, 
grayscale images, but also applies to infrared images acquired under weak light conditions. 
Compared with the methods based on Kinect sensors to obtain key points for fall recognition, the 
OpenPose-based methods break through the limitation on recognition distance. 

  
(a) (b) 

Figure 1. Skeleton extraction based on OpenPose: (a) Multi-person skeleton extraction; (b) Diagram 
of the human skeleton key points. 

Based on OpenPose, we merged the human skeletons of 60 consecutive images corresponding 
to fall actions (Figure 2) into one image coordinate system. As shown in the Figure 3, removing the 
arms, wrists, and feet, we can still see an obvious tendency to fall from the main torso composed of 
the torso, thigh, and calf. In the case of a fall recognition task, the body weight concentrates on the 
main torso, and the arm, wrist have little influence on its changes. We believe that only focusing on 
the key points of main torso, an excellent description of human body posture can be obtained, which 
greatly reduces the calculation of feature extraction. 

 
Figure 2. Sequences of falling in the fall-06 video. Figure 2. Sequences of falling in the fall-06 video.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 21 

 

  
(a) (b) 

Figure 3. Diagram of human skeleton posture change during the fall processing: (a) Complete 
skeleton extraction; (b) Main torso extraction. 

Based on the human skeleton model obtained by OpenPose, the coordinates of human body’s 
neck, torso, hip, knee, ankle, etc. in the image coordinate system can be obtained. Then we can 
calculate the following posture vectors: spine vector 1 → 8 , left thigh vector 9 → 10 , right thigh 
vector 12 → 13 , left calf vector 10 → 11 , right calf vector 13 → 14 , and waist width vector 9 → 12 . The acquisition method is as follows, and the rest of the vectors can be calculated similarly: 

 vector = −−  (1) 

3.2. Key Features 

As the fall has a consistent and significant tendency, we proposed the deflection angles and spine 
ratio as key features to describe the change of human posture during the fall behavior and set up 
experiments to test their performance. 

3.2.1. Deflection Angles 

We defined the vector parallel to the y axis of the image coordinate system as the gravity vector, 
and the deflection angles are the angles between the posture vectors and the gravity vector, including 
the spine deflection angle, the thigh deflection angles, and the calf deflection angles. They can directly 
reflect the deviation of the human torso from the vertical line on the ground [28]. 

Spine deflection angle is the angle between the spine vector and the gravity vector as presented 
in Figure 4, which indicates the deviation degree between the human torso and the vertical line of 
the ground. According to the cosine law, the angle can be calculated by: cos 	 	 = cos  vector, 	  vector	 ==  vector ∗  vector

 vector  vector
	 (2) 

  

Figure 3. Diagram of human skeleton posture change during the fall processing: (a) Complete skeleton
extraction; (b) Main torso extraction.

Based on the human skeleton model obtained by OpenPose, the coordinates of human body’s
neck, torso, hip, knee, ankle, etc. in the image coordinate system can be obtained. Then we can calculate
the following posture vectors: spine vector (1→ 8), left thigh vector (9→ 10), right thigh vector
(12→ 13), left calf vector (10→ 11), right calf vector (13→ 14), and waist width vector (9→ 12).
The acquisition method is as follows, and the rest of the vectors can be calculated similarly:

−−−−−−−−−−−−→
Spine vector =

[
X1 −X8

Y1 −Y8

]
(1)

3.2. Key Features

As the fall has a consistent and significant tendency, we proposed the deflection angles and spine
ratio as key features to describe the change of human posture during the fall behavior and set up
experiments to test their performance.

3.2.1. Deflection Angles

We defined the vector parallel to the y axis of the image coordinate system as the gravity vector,
and the deflection angles are the angles between the posture vectors and the gravity vector, including
the spine deflection angle, the thigh deflection angles, and the calf deflection angles. They can directly
reflect the deviation of the human torso from the vertical line on the ground [28].
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Spine deflection angle is the angle between the spine vector and the gravity vector as presented in
Figure 4, which indicates the deviation degree between the human torso and the vertical line of the
ground. According to the cosine law, the angle can be calculated by:

cos(spine de f lection angle) = cos (
−−−−−−−−−−−→
Spine vector ,

−−−−−−−−−−−−−→
Gravity vector ) =

=
−−−−−−−−→
Spine vector ∗

−−−−−−−−−−→
Gravity vector

|
−−−−−−−−−−→
Gravity vector | × |

−−−−−−−−−−→
Gravity vector |

(2)
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Similarly, the (Left, Right) thigh deflection angle and the (Left, Right) calf deflection angle can be
obtained, which are used to represent the deviation degree of the thigh and calf relative to the vertical
line of the ground.

We collect different actions videos taken in multiple scenes (Figure 5) and count the distribution
of spine deflection angles in 893 frames. Figure 6 shows the frame-by-frame variation of the spine
deflection angles corresponding to typical actions. Figure 7 shows the probability density distribution
of the spine deflection angle values in ADL movements and lateral fall movements.
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From Figure 6, we can see that when human body in a stable state like walking, the value is
small and the fluctuation is gentle; when there is a high possibility of falling, the value is large and
fluctuating. The NeuroCom EquiTest [29,30] believes that the stability limit of human body swing tilt
angle is 12.5◦. It can be observed from Figure 7 that the spine deflection angle values corresponding
to the ADL actions is mostly located in the densely area less than 30◦ and concentrated in the area
less than 18◦, which meets the NeuroCom EquiTest conclusion. In contrast, the spine deflection angle
values of fall actions are mostly distributed in the area greater than 50◦. In the Cross Area: 30–50◦,
there are a few ADL movements and fall movements at the same time. The results mean that the
deflection angles can effectively characterize different actions.

3.2.2. Spine Ratio

When human body tends to fall directly in the direction of the camera, it is difficult for the
monocular RGB camera to judge the inclination of the human body through the spine deflection angle,
we designed the spine ratio as supplement. The spine ratio is the ratio of the spine vector to the waist
width vector. It can be calculated by:

spine ratio =
|
−−−−−−−−−−→
Spine vector|

|
−−−−−−−−−−−−−−−−−−→
Waist Width vector |

(3)
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We collected the camera-oriented action sequences (Figure 8) and tested the distribution of spine
ratio. The experimental statistics are shown in Figure 9. As shown in the Figure 9, when the human
body is in a stable state such as walking, the spine ratio value is large and the fluctuation is gentle; when
the human body falls sideways to the camera with his body leaning forward or backward, the value
drops rapidly and has severe fluctuations.

Figure 10 shows the probability density distribution of spine ratio in common ADL movements
and forward fall movements. There is a significant difference between these two kinds of actions in the
probability density distribution of the spine ratio. The spine ratio corresponding to the fall actions are
intensive in the densely area with a value less than 1.2, while the value of ADL actions is intensive in
the densely area with a value greater than 1.2. The cross area with ADL behavior and fall behavior is
relatively small and negligible.Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 

 

  
(a) (b) 

Figure 8. The variation of spine ratio. (a) Walk. (b) Forward fall. 

 
Figure 9. Statistics of spine ratio for walking and a forward fall. 

 
Figure 10. The probability density distribution of the Spine Ratio for walking and a forward fall. 

3.3. Primary Fall Recognition: Division of Human Status 

The key features are scattered, and a single feature cannot fully characterize the posture of 
human body. To comprehensively describe the human body posture changes, we integrate multiple 
key features into the tendency symbol and steady symbol. For fall actions recognition, we classify the 
human body into three categories: the stable state with a very low possibility of falling, the disordered 
state with a high possibility of falling and the fluctuating state in between. By distinguishing whether 
it is in a stable state, stability ADL actions can be recognized initially. 

3.3.1. Tendency Symbol 

Tendency symbol is used to characterize the body tendency relative to the vertical line of 
ground. It is integrated from the spine deflection angle and the spine ratio. According to probability 
density distribution of these two key features, the tendency symbol with three-steps is set. T1 
indicates that the human body has a very small inclination angle, such as walking; T2 indicates that 
the human body has a large inclination angle, such as sits down, leaning over, and the initial stage of 

Figure 8. The variation of spine ratio. (a) Walk. (b) Forward fall.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 

 

  
(a) (b) 

Figure 8. The variation of spine ratio. (a) Walk. (b) Forward fall. 

 
Figure 9. Statistics of spine ratio for walking and a forward fall. 

 
Figure 10. The probability density distribution of the Spine Ratio for walking and a forward fall. 

3.3. Primary Fall Recognition: Division of Human Status 

The key features are scattered, and a single feature cannot fully characterize the posture of 
human body. To comprehensively describe the human body posture changes, we integrate multiple 
key features into the tendency symbol and steady symbol. For fall actions recognition, we classify the 
human body into three categories: the stable state with a very low possibility of falling, the disordered 
state with a high possibility of falling and the fluctuating state in between. By distinguishing whether 
it is in a stable state, stability ADL actions can be recognized initially. 

3.3.1. Tendency Symbol 

Tendency symbol is used to characterize the body tendency relative to the vertical line of 
ground. It is integrated from the spine deflection angle and the spine ratio. According to probability 
density distribution of these two key features, the tendency symbol with three-steps is set. T1 
indicates that the human body has a very small inclination angle, such as walking; T2 indicates that 
the human body has a large inclination angle, such as sits down, leaning over, and the initial stage of 

Figure 9. Statistics of spine ratio for walking and a forward fall.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 

 

  
(a) (b) 

Figure 8. The variation of spine ratio. (a) Walk. (b) Forward fall. 

 
Figure 9. Statistics of spine ratio for walking and a forward fall. 

 
Figure 10. The probability density distribution of the Spine Ratio for walking and a forward fall. 

3.3. Primary Fall Recognition: Division of Human Status 

The key features are scattered, and a single feature cannot fully characterize the posture of 
human body. To comprehensively describe the human body posture changes, we integrate multiple 
key features into the tendency symbol and steady symbol. For fall actions recognition, we classify the 
human body into three categories: the stable state with a very low possibility of falling, the disordered 
state with a high possibility of falling and the fluctuating state in between. By distinguishing whether 
it is in a stable state, stability ADL actions can be recognized initially. 

3.3.1. Tendency Symbol 

Tendency symbol is used to characterize the body tendency relative to the vertical line of 
ground. It is integrated from the spine deflection angle and the spine ratio. According to probability 
density distribution of these two key features, the tendency symbol with three-steps is set. T1 
indicates that the human body has a very small inclination angle, such as walking; T2 indicates that 
the human body has a large inclination angle, such as sits down, leaning over, and the initial stage of 

Figure 10. The probability density distribution of the Spine Ratio for walking and a forward fall.



Sensors 2020, 20, 6966 9 of 21

3.3. Primary Fall Recognition: Division of Human Status

The key features are scattered, and a single feature cannot fully characterize the posture of human
body. To comprehensively describe the human body posture changes, we integrate multiple key
features into the tendency symbol and steady symbol. For fall actions recognition, we classify the
human body into three categories: the stable state with a very low possibility of falling, the disordered
state with a high possibility of falling and the fluctuating state in between. By distinguishing whether
it is in a stable state, stability ADL actions can be recognized initially.

3.3.1. Tendency Symbol

Tendency symbol is used to characterize the body tendency relative to the vertical line of ground.
It is integrated from the spine deflection angle and the spine ratio. According to probability density
distribution of these two key features, the tendency symbol with three-steps is set. T1 indicates that
the human body has a very small inclination angle, such as walking; T2 indicates that the human body
has a large inclination angle, such as sits down, leaning over, and the initial stage of falling behavior;
T3 indicates that the human body has a significant tendency, and the possibility of falling is extremely
high. Algorithm 1 shows the level determination method: ALL (angle lower limit), AUL (angle upper
limit) are decided by the probability density threshold of ADL actions and fall actions in Figure 7,
and the RB (ratio boundary) depends on the significantly distinguish domains between ADL actions
and fall actions in Figure 10.

Algorithm 1: the level judgment method of tendency symbol

Input: spine deflection angle, spine ratio (ALL = 30◦, AUL = 50◦; R = 1.0)
Output: Tendency Symbol (T1, T2, T3)

If spine deflection angle <ALL and RB> spine ratio:
Tendency Symbol = T1

Else If spine deflection angle >AUL or RB< spine ratio:
Tendency Symbol = T3

Else:
Tendency Symbol = T2

3.3.2. Steady Symbol

Steady symbol is used as a supplement to prove whether the body is stable. It is integrated from
the deflection angles. When the human body is in a strong stable state, the steady symbol is marked
as S1, and when a fall may occur, it is marked as S2. Algorithm 2 shows the level judgment criteria:
the AL (angle limit) depends on the probability density distribution of ADL behaviors in Figure 7.

Algorithm 2: the level judgment method of stedy symbol

Input: spine deflection angle, thigh deflection angles, calf deflection angles, AL = 30◦

Output: Steady Symbol
Case1: spine Angle < AL && left Thigh deflection angle < AL
Case2: spine Angle < AL && right Thigh deflection angle < AL
Case3: left Calf deflection angle < AL && left Thigh deflection angle < AL
Case4: right Calf deflection angle < AL && right Thigh deflection angle < AL

If Case1 or Case2 or Case3 or Case4:
Steady Symbol = S1

Else:
Steady Symbol = S2

We use Pair to describe the case in Algorithm 2, if one of the case1, case2, case3, or case4 is true,
we can say that there is a Pair. Based on the collected human action videos, we counted the number
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of Pairs in 402 frames of ADL movements (upright, walking, squatting, etc.) with strong stability.
From Figure 11, it can be observed that the proportion of no-Pair is only 0.73%, and there is at least
one Pair in most frames, which means that the corresponding steady symbol will be marked as S1,
and human body is stable. The experiment result proves that steady symbol can effectively judge
whether the human body is in a relatively stable state.Sensors 2020, 20, x FOR PEER REVIEW 10 of 21 
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3.3.3. Division of Human Status

Tendency symbol and steady symbol are the effective integration of scattered independent key
features. Based on the symbols, the current state of the human body in the image can be divided into three
categories: stable state, fluctuating state, and disorder state, the calculation is shown in Algorithm 3:

Algorithm 3: division algorithm of human state

Input: Tendency Symbol, Steady Symbol
Output: Human State

If Steady Symbol = S1 && Tendency Symbol = T1:
Human State = stable state

Else If Steady Symbol = S2 && Tendency Symbol = T3:
Human State = disorder state

Else:
Human State = fluctuating state

Input the tendency symbol, steady symbol extracted from images into Algorithm 3, If the output
is stable state, it can be judged that there is a highly stable ADL action and no fall occurred. Otherwise,
we need to perform the second stage of recognition to distinguish the confusing ADL actions and
fall actions.

3.4. The Second Stage: Recognition of Falling Actions Based on Continuous Human Stage

The human body postures of confusing ADL actions are similar to the pre-fall movements.
Judging only by human state based on single image would cause misjudgment. We believe that the
unstable state corresponding to fall actions will continue for a certain period time, and we defined it
as Non-stationary residence period (NSPR). During the NSRP, there are obvious differences between
falls and ADL actions in terms of centroid movement, lower limb stability, and continuous human
body status. Therefore, to achieve more accurate fall recognition, we designed a time-continuous fall



Sensors 2020, 20, 6966 11 of 21

recognition method, and further proposed the compare-value, energy-value, and state-score to train a
classifier to determine whether a fall occurred.

3.4.1. The Update Reference Template Vector and Compare Value

We proposed the vector ξ =


Px

Py

H

 as a reference template. Where Px and Py are the horizontal

and vertical coordinate values of key points 8 in the Figure 1, which are close to pelvis region [31].
H is the length of the human torso in the image frame. The H is calculated as follows:

H =

√
‖
−−−−−−−−−−−−−→
Point1 − Point8‖2 (4)

where Point1 and Point8 indicate the coordinates of the key points 1, 8 in Figure 1.
The compare value γ is used to depict the cumulative change of the human center of mass during

the NSPR. When the human body is in steady state, it is marked as 0. It is calculated based on the
positions of human centroid and the reference template vector ξ:

µ = so f tsign
(
Py − Pointi8y

)
∗ ‖
−−−−−−−−−→
P− Point8 ‖2 ∗H−1 (5)

γ =
∑

µ (6)

where Pointi8 refers to the coordinates of the key point 8, and P is the position of the stable centroid

(
[

Px

Py

]
) in ξ. The so f tsign function shows vertical movement direction of human centroid during

the NSRP.
Figure 12 shows the frame-by-frame changes of typical human daily activities including ADL

movements like sitting on the sofa-standing-walking-sitting and falling movements. Figure 13 shows
the change of µ corresponding to Figure 12. In the first 600 frames, most of the value is 0 corresponding
to the steady state, and two fluctuations correspond to confusing actions. After the 600 frames, a fall
occurs, the value rapidly decreases in the negative direction. As a result, the γ corresponding to ADL
actions is significantly different from the fall actions.
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3.4.2. Energy Value and State Score

Fall actions are often accompanied by large knee and lumbosacral motions, and the position of the
lower limbs will change significantly during the NSRP, which is different from the ADL movements.
In order to further eliminate the interference of ADL behaviors, the energy value ε is calculated based
on the lower limbs’ energy function to present the stability of the lower limbs as follows:

ε =
∑
‖

−−−−−−−−−−−−−−−→

Pointity − Pointty ‖2
∗H−1 (7)

where Pointit is the vertical coordinate of the key point t at the i-th frame, and Pointty is the ordinate
mean value of key point t during the NSRP. t contains the key points 10, 11, 13, and 14. A larger ε
represents a higher energy value of the lower limbs, that is, the lower extremities of the human body
are more active and less stable, and the probability of a fall is greater.

State score τ refers to the cumulative value corresponding to the human state during the NSRP,
as shown in the following formula. The steady state, fluctuating state, and disorder state are assigned
as 0, 1, and 2, respectively. τ preserves the distribution of human states during the NSRP. The larger τ,
the greater possibility of falling.

τ =
∑

Human State Scorei (8)

Figure 14 shows the typical changes of ε and τ corresponding to Figure 12. We can find that the
values of ε and τ are relatively smaller for standing actions, but larger for fall actions. There is a big
difference between falling actions and ADL actions, which means that the ε and τ can be used for
fall detection.
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3.4.3. Recognition Algorithm Based on Continuous Human Stage

On the basis of obtaining human state through the first-stage detection, we designed a
time-continuous algorithm shown in Algorithm 4 based on the variables: ξ, γ, ε, and τ to identify fall
actions and confusing ADL behaviors.

After obtaining the state of human body, we perform statistics on the state every frame. If there is
an unsteady state (fluctuating state, disorder state) in three consecutive frames, we assume that the
human body enters NSPR. During NSPR, we record the human body state within 10 frames, similarly,
if there is a stable state for three consecutive frames, it is considered that no fall action occurred, we can

jump out of NSPR, and restart the statistics. Otherwise, we will form the feature vector
→

D by the
variables: γ, ε, and τ in 10 frames and input it into the classifier to determine whether the fall behavior
occurs. In addition, the reference template ξ needs to be updated in stable state to record the current
human posture.

Algorithm 4: time-continuous fall recognition algorithm

InPut: HumanStateFrames[i]
OutPut: bool IsFall
While UnstableCount < 3:

If HumanStateFrames[i] = Stable State:
Update Reference Template Vector ξ;
UnstableCount = 0;
IsFall = False;
Next i;

Else:
UnstableCount = UnstableCount+1;
UnstableStateFrames.append(HumanStateFrames[i])
Next i;

For t in [i, i + 10]:
If HumanStateFrames[i: i + 3] == Stable State

Update Reference Template Vector ξ;
IsFall = False;

IsFall = SVM(
→

D),
→

D =


γ

ε

τ


3.4.4. Classification Based on Machine Learning Methods

We construct a feature vector
→

D based on γ, ε and τ during NSRP, and use machine learning
methods to implement fall recognition to distinguish the confusing ADL actions from the fall actions.
We hope to break the cameras limitations of fall detection. However, the training samples are insufficient
for RGB cameras and the real-time requirements are high for the fall recognition task. Compared with
the deep learning method, machine learning methods are more suitable and portable for hardware
devices. In this paper, four typical classification algorithms: support vector machine (SVM), decision
tree (DT), K-nearest neighbors (KNN), and random forest (RF) will be compared and tested, and the
optimal method will be selected to realize the fall recognition.

SVM is a supervised machine learning model based on statistical learning theory and structural
risk minimization principle. It uses internal kernel functions to project input feature vectors in
high-dimensional space, make the features relatively linear, and classify them. It can help to achieve
effective classification and determine the best hyperplane in the transformed space to distinguish the
input observations. SVM was originally proposed for binary classification and has advantages in small
sample pattern recognition [32,33].
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SVM has a variety of commonly used kernel functions like linear, poly (polynomial) and RBF
(radial basis function).

Linear:
k(x, z) = x ∗ z

Poly:
k(x, z) = (px ∗ z + r)u

RBF:
k(x, z) = exp(−p‖x− z‖)2

The DT algorithm is a tree structure, where each non-leaf node represents a test on a feature
attribute, each branch represents the output of this feature attribute in a certain value range, and each
leaf node stores a category. The classification process in decision tree is equivalent to the traversal from
the root node to a certain leaf node in the tree. How to traverse each step is determined by the specific
attributes of each feature of the data. This article will select the most classic C4.5 [34] algorithm for fall
classification and recognition.

KNN is one of the simplest algorithms in data mining classification technology. The core idea
of KNN algorithm is that if most of the K nearest neighbor samples of a sample belong to a certain
category, the sample also belongs to this category. It achieves classification by measuring the distance
between different feature values.

RF is an algorithm based on the DT, which realizes classification by assembling multiple trees.
For an input sample, N trees will have N classification results. The RF ensembles all the classification
voting results and specifies the category with the most votes as the final output.

4. Experiments and Discussion

4.1. Dataset

FDD (fall detection dataset) [35] is a public dataset for vision-based fall recognition. It contains
191 videos with a rate of 25 FPS and a resolution of 320 × 240 pixels. The 191 videos of different lengths
include various fall actions and ADL actions of different people and multiple camera perspectives in
multiple scenes, such as walking, squatting, leaning down, siting and standing, lying down, and falling
on the side.

4.2. Experimenst on the Frist Stage Algorithm

To verify the effectiveness of the first stage algorithm, we collected multiple scenes, different
individuals, multiple types of ADL action and fall action sequences, and statisticsed the distribution of
human states. ADL actions were classified in categories such as walk, crouch, sit and stand, bend, etc.
The statistical results are shown in Table 1 and Figure 15.

From the statistical results, we can see that the human states corresponding to actions such as
walk and crouch were intensive in stable state, and only a small part of them located in fluctuating or
disorder state. While the human states corresponding to the falls were denser in the disorder state,
and part of it lied in the fluctuating state, it is quite different from the distribution of stable ADL
actions. The results show that the first-stage algorithm can distinguish highly stable actions from
falling actions well.

In contrast, most of the human states corresponding to actions such as sit and stand were
concentrated in fluctuating state. It was difficult to distinguish them from falling actions only by
dividing the human state. This kind of confusing ADL action is very similar to the early posture of the
fall action, and the second stage of judgment is required.
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Table 1. Statistics of human status in various actions.

Actions Walk Croch Sit & Stand Bend FALL

Stable State 317 248 142 7 2
Fluctuating

State 4 16 237 151 194
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4.3. Experiments on the Second Stage Algorithm

4.3.1. Analysis of the Feature Vector

The classifier in the second stage algorithm uses the γ, ε, and τ during the NSRP as the input
feature vector, which is mainly designed for distinguishing falls and highly confusing ADL movements
in unstable state. Therefore, ADL movements with high stability such as walking are not used as
training samples.

We selected 302 action fragments including 154 fall actions and 148 ADL actions from the FDD
dataset. Figure 16 shows the distribution of the training samples’ feature vectors, and the correlation
of the variables in the feature vector is represented by a set of two-dimensional matrices.

It can be observed from the Figure 16 that the energy values ε and score scores τ are generally
smaller for ADL movements and larger for fall movements. In addition, when falling, the comparison
value τ tends to be a large negative value, and the sample point has a higher degree of divergence
relative to the ADL action. In general, the attribute overlap of the feature vector is not significant,
which is suitable for classification task.
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4.3.2. The Classification Results of the Second Stage

We use Sklearn package to compare the classification effects of seven classifiers: SVM (linear,
RBF, poly kernal), KNN, RF, and DT. Where the p values of the RBF and poly kernels are set to 1/features
(1/3), and the γ value and α value are set to 0, 3. In order to obtain fairer classification evaluation
results, we carried out K-fold cross validation. The test results are shown in Figure 17 and Table 2.
The evaluation index is the average value of threefold cross validation of each kernel function.

As shown in the Table 2, the performance of SVM with linear kernel is superior to other classifiers,
it obtained the highest accuracy, recall, and F1 (0.9668, 0.9622, and 0.9676). The RF achieved the highest
precision (0.9671), but it is not outstanding on other evaluation indicators. Figure 17 shows the ROC
(receiver operating characteristic) curve of top four classifiers, which can reflect the sensitivity and
specificity. From this figure, we can see that the SVM classifier based on the linear kernel achieves best
results, all the value of AUC (area under curve) is 1.0. In addition, considering that the non-linear
function will take up more computing resources and run time when performing classification prediction
tasks, a linear kernel-based SVM classifier is a better choice to compete the classification of falls and
confusing ADL action during NSRP.

Table 2. The preference of several classifiers using the fall detection dataset (FDD) dataset.

Kernel Accuracy Precision Recall F1 Score

SVM(Linear) 0.9668 0.9636 0.9622 0.9676
RF 0.9381 0.9671 0.8981 0.9339

SVM(Poly) 0.9415 0.9503 0.9112 0.9301
KNN 0.9236 0.9513 0.8886 0.9207

SVM(RBF) 0.8915 0.8556 0.9211 0.9011
DT 0.8805 0.8957 0.8796 0.8715
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Figure 18 shows the visual classification effect of the SVM based on the linear kernel. We can find
that the classification plane has well divided the feature vector points corresponding to the fall actions
and the confusing ADL actions. It can be considered that the SVM can perform the classification work
excellently, and the fall motion recognition method based on the continuous human state is effective.
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4.4. Test Results of the Overall Human Fall Recognition Method

The above experiments respectively verified the performance of the first and second stages
algorithm. In order to test the performance of the overall algorithm, we conducted experiments on
the complete FDD dataset. Table 3 shows the number of different actions identified as non-falling
and falling. As can be seen from Table 3, the fall recognition algorithm studied in this paper can well
distinguish the fall movement from stable daily activities such as walking and squatting, as well as
highly confusing actions such as standing up and bending over. It explains that the proposed method
has high fall recognition accuracy and low false detection rate.

Based on Table 3, the overall performance of the algorithm is evaluated in this paper. As shown in
Figure 19, he fall recognition method achieves 97.34% accuracy and 98.50% precision, indicating that
the method described in this paper can effectively identify the human body’s fall behavior, and the rate
of missed detection is low; At the same time, it guarantees a recall rate of 97.33% and a F1 score of
97.91%, indicating that this method has a good distinction between fall behavior and daily activity
behavior, and fewer false detections.

Table 3. Fall recognition test results of the fall dataset.

Actions Walking Squat Stand Up & Sit Down Bend Over Falling

Non-Falling 92 23 76 65 4
Falling 0 0 3 4 147
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Table 4 shows the comparison result with previous state-of-art works [36–38] on the same dataset.
Since most of the existing fall recognition algorithms only use the accuracy as evaluation indicator,
we only conducted a comparative analysis of accuracy. It can be seen from the Table 4 that our method
had achieved a higher accuracy rate than previous algorithms. Experiments show that our algorithm
has practical value for fall recognition.

Table 4. Performance comparison of several algorithms on the fall dataset.

Approach Accuracy

L. Alhimale et al. [36] Bounding box feature 94.27%
Fouzi Harrou et al. [37] Fall index area ratios 96.84%

X. Ma e al. [38] Silhouette, lighting and flow feature 92.17%
Ours Human posture features Two-stage 97.34%
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5. Conclusions

In this paper, we have developed a two-stage fall recognition algorithm based on human posture
features. This method based on RGB images can be divided into two parts. In the first part, the highly
stable ADL actions is excluded by judging whether the human body is in a stable state with proposed
key features; In the second part, when human body is constantly in a fluctuating state or disordered
state, the human posture features: compare value, energy value, and state score are introduced
characterize the human body’s posture, and SVM is used to realize the classification of confusing ADL
actions and fall actions to achieve fall recognition. We have carried out sufficient experiments to verify
the effectiveness of the proposed features and algorithms. The performance of the designed mechanism
was tested on the publicly available dataset. The results demonstrated that our algorithm not only able
to distinguish falls from stable ADL actions but also can separate fall actions and confusing movements
like lying and bending over. Compared with other state-of-art fall detection methods, the proposed
method has advantage of accuracy.

Our approach mainly considers daily actions in the home environment, and there will still be
false detections when dealing with workout motions, like push-ups and burpees. For future work,
we will collect more video data to cover as many human actions as possible for algorithm designing
and training. Deep learning methods will be incorporated to further improve the recognition accuracy.

Author Contributions: Conceptualization, K.H., Q.Y. and Z.H.; methodology, Z.H. and Q.Y.; validation, K.H. and
Z.H.; formal analysis, Q.Y. and Z.H.; data curation, K.H. and Z.H.; writing—original draft preparation, K.H. and
Q.Y.; writing—review and editing, Q.Y. and K.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities of Central
South University.

Acknowledgments: Thanks for the support provided by the Fundamental Research Funds for the Central
Universities of Central South University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ren, L.; Peng, Y. Research of Fall Detection and Fall Prevention Technologies: A Systematic Review. IEEE
Access 2019, 7, 77702–77722. [CrossRef]

2. World Health Organization. WHO Global Report on Falls Prevention in Older Age; World Health Organization:
Geneva, Switzerland, 2008.

3. Grossman, D.C.; Curry, S.J.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.;
Epling, J.W.; Kemper, A.R.; Krist, A.H.; et al. Interventions to Prevent Falls in Community-Dwelling
Older Adults: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 319, 1696–1704.
[CrossRef] [PubMed]

4. Noury, N.; Rumeau, P.; Bourke, A.; Ólaighin, G.; Lundy, J. A proposal for the classification and evaluation of
fall detectors. IRBM 2008, 29, 340–349. [CrossRef]

5. Xu, T.; Zhou, Y.; Zhu, J. New Advances and Challenges of Fall Detection Systems: A Survey. Appl. Sci. 2018,
8, 418. [CrossRef]

6. Sixsmith, A.; Johnson, N. A smart sensor to detect the falls of the elderly. IEEE Pervasive Comput. 2004, 3,
42–47. [CrossRef]

7. Pierleoni, P.; Belli, A.; Maurizi, L.; Palma, L.; Pernini, L.; Paniccia, M.; Valenti, S. A wearable fall detector for
elderly people based on ahrs and barometric sensor. IEEE Sens. J. 2016, 16, 6733–6744. [CrossRef]

8. Nguyen, T.T.; Cho, M.C.; Lee, T.S. Automatic fall detection using wearable biomedical signal measurement
terminal. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), Cheongju, Korea, 3–6 September 2009; pp. 5203–5206.

9. Delahoz, Y.S.; Labrador, M.A. Survey on Fall Detection and Fall Prevention Using Wearable and External
Sensors. Sensors 2014, 14, 19806–19842. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2922708
http://dx.doi.org/10.1001/jama.2018.3097
http://www.ncbi.nlm.nih.gov/pubmed/29710141
http://dx.doi.org/10.1016/j.irbm.2008.08.002
http://dx.doi.org/10.3390/app8030418
http://dx.doi.org/10.1109/MPRV.2004.1316817
http://dx.doi.org/10.1109/JSEN.2016.2585667
http://dx.doi.org/10.3390/s141019806


Sensors 2020, 20, 6966 20 of 21

10. Kwolek, B.; Kepski, M. Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing
2015, 168, 637–645. [CrossRef]

11. Taniguchi, Y.; Nakajima, H.; Tsuchiya, N.; Tanaka, J.; Aita, F.; Hata, Y. A falling detection system with plural
thermal array sensors. In Proceedings of the 2014 Joint 7th International Conference on Soft Computing
and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS),
Kitakyushu, Japan, 3–6 December 2014; pp. 673–678.

12. Taramasco, C.; Rodenas, T.; Martinez, F.; Fuentes, P.; Munoz, R.; Olivares, R.; De Albuquerque, V.H.C.;
Demongeot, J. A Novel Monitoring System for Fall Detection in Older People. IEEE Access 2018, 6,
43563–43574. [CrossRef]

13. Nasution, A.H.; Emmanuel, S. Intelligent Video Surveillance for Monitoring Elderly in Home Environments.
In Proceedings of the 2007 IEEE 9th Workshop on Multimedia Signal Processing, Chania, Crete, Greece,
1–3 October 2007; pp. 203–206.

14. Fan, X.; Zhang, H.; Leung, C.; Shen, Z. Robust unobtrusive fall detection using infrared array sensors.
In Proceedings of the 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent
Systems (MFI), Daegu, Korea, 16–18 November 2017; pp. 194–199.

15. Chelli, A.; Patzold, M. A Machine Learning Approach for Fall Detection and Daily Living Activity Recognition.
IEEE Access 2019, 7, 38670–38687. [CrossRef]

16. Yao, L.; Min, W.; Lu, K. A New Approach to Fall Detection Based on the Human Torso Motion Model. Appl.
Sci. 2017, 7, 993. [CrossRef]

17. Huang, Z.; Liu, Y.; Fang, Y.; Horn, B.K.P. Video-based Fall Detection for Seniors with Human Pose Estimation.
In Proceedings of the 2018 4th International Conference on Universal Village (UV), Boston, MA, USA,
23–24 October 2018; pp. 1–4.

18. Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J. 3D head tracking for fall detection using a single
calibrated camera. Image Vis. Comput. 2013, 31, 246–254. [CrossRef]

19. Feng, W.; Liu, R.; Zhu, M. Fall detection for elderly person care in a vision-based home surveillance
environment using a monocular camera. Signal Image Video Process. 2014, 8, 1129–1138. [CrossRef]

20. Min, W.; Cui, H.; Rao, H.; Li, Z.; Yao, L. Detection of Human Falls on Furniture Using Scene Analysis Based
on Deep Learning and Activity Characteristics. IEEE Access 2018, 6, 9324–9335. [CrossRef]

21. Lu, N.; Wu, Y.; Feng, L.; Song, J. Deep Learning for Fall Detection: Three-Dimensional CNN Combined With
LSTM on Video Kinematic Data. IEEE J. Biomed. Health Inform. 2019, 23, 314–323. [CrossRef] [PubMed]

22. Yang, L.; Ren, Y.; Hu, H.; Tian, B. New Fast Fall Detection Method Based on Spatio-Temporal Context
Tracking of Head by Using Depth Images. Sensors 2015, 15, 23004–23019. [CrossRef] [PubMed]

23. Xue, B. Research on Multimodal Feature Fusion for Human Fall Detection. Master’s Thesis, Shandong
University, Shangdong, China, 2015.

24. Gasparrini, S.; Cippitelli, E.; Spinsante, S.; Gambi, E. A Depth-Based Fall Detection System Using a Kinect
Sensor. Sensors 2014, 14, 2756–2775. [CrossRef] [PubMed]

25. Zhao, F.; Lu, H.; Xiao, Y.; Mao, J.; Yuan, J. Real-Time Detection of Fall from Bed Using a Single Depth Camera.
IEEE Trans. Autom. Sci. Eng. 2018, 16, 1018–1032. [CrossRef]

26. Cao, Z.; Simon, T.; Wei, S.-E.; Sheikh, Y. Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 1302–1310.

27. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO:
Common Objects in Context. In Proceedings of the European Conference on Computer Vision (ECCV),
Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

28. Bosch-Jorge, M.; Sánchez-Salmerón, A.J.; Valera, Á.; Ricolfe-Viala, C. Fall detection based on the gravity
vector using a wide-angle camera. Expert Syst. Appl. 2014, 41, 7980–7986. [CrossRef]

29. Comicoli, R.; Panzer, V.P.; Kaye, J. Balance in the healthy elderly: Posturography and clinical assessment.
Arch. Neurol. 1997, 54, 926–981.

30. Guskiewicz, K.M. Postural Stability Assessment Following Concussion: One Piece of the Puzzle. Clin.
J. Sport Med. 2001, 11, 182–189. [CrossRef] [PubMed]

31. Kangas, M.; Konttila, A.; Lindgren, P.; Winblad, I.; Jämsä, T. Comparison of low-complexity fall detection
algorithms for body attached accelerometers. Gait Posture 2008, 28, 285–291. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.neucom.2015.05.061
http://dx.doi.org/10.1109/ACCESS.2018.2861331
http://dx.doi.org/10.1109/ACCESS.2019.2906693
http://dx.doi.org/10.3390/app7100993
http://dx.doi.org/10.1016/j.imavis.2012.11.003
http://dx.doi.org/10.1007/s11760-014-0645-4
http://dx.doi.org/10.1109/ACCESS.2018.2795239
http://dx.doi.org/10.1109/JBHI.2018.2808281
http://www.ncbi.nlm.nih.gov/pubmed/29994460
http://dx.doi.org/10.3390/s150923004
http://www.ncbi.nlm.nih.gov/pubmed/26378540
http://dx.doi.org/10.3390/s140202756
http://www.ncbi.nlm.nih.gov/pubmed/24521943
http://dx.doi.org/10.1109/TASE.2018.2861382
http://dx.doi.org/10.1016/j.eswa.2014.06.045
http://dx.doi.org/10.1097/00042752-200107000-00009
http://www.ncbi.nlm.nih.gov/pubmed/11495323
http://dx.doi.org/10.1016/j.gaitpost.2008.01.003
http://www.ncbi.nlm.nih.gov/pubmed/18294851


Sensors 2020, 20, 6966 21 of 21

32. Gao, X.; Hou, J. An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman
process. Neurocomputing 2016, 174, 906–911. [CrossRef]

33. Yin, Z.; Hou, J. Recent advances on SVM based fault diagnosis and process monitoring in complicated
industrial processes. Neurocomputing 2016, 174, 643–650. [CrossRef]

34. Quinlan, J.R. C4.5: Programs for Machine Learning[M]// C4.5: Programs for Machine Learning; Morgan Kaufmann
Publishers Inc.: San Francisco, CA, USA, 1992.

35. Charfi, I.; Miteran, J.; Dubois, J.; Atri, M.; Tourki, R. Definition and Performance Evaluation of a Robust SVM
Based Fall Detection Solution. In Proceedings of the 2012 Eighth International Conference on Signal Image
Technology and Internet Based Systems, Naples, Italy, 25–29 November 2012; pp. 218–224.

36. Alhimale, L.; Zedan, H.; Al-Bayatti, A. The implementation of an intelligent and video-based fall detection
system using a neural network. Appl. Soft Comput. 2014, 18, 59–69. [CrossRef]

37. Harrou, F.; Zerrouki, N.; Sun, Y.; Houacine, A. An intergrated vision-based approach for efficient human fall
detection in a home environment. IEEE Access 2019, 7, 114966–114974. [CrossRef]

38. Ma, X.; Wang, H.; Xue, B.; Zhou, M.; Ji, B.; Li, Y. Depth-Based Human Fall Detection via Shape Features and
Improved Extreme Learning Machine. IEEE J. Biomed. Health Inform. 2014, 18, 1915–1922. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2015.10.018
http://dx.doi.org/10.1016/j.neucom.2015.09.081
http://dx.doi.org/10.1016/j.asoc.2014.01.024
http://dx.doi.org/10.1109/ACCESS.2019.2936320
http://dx.doi.org/10.1109/JBHI.2014.2304357
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work Based on Computer Vision Systems 
	Materials and Methods 
	Huamn Key Points & Posture Vectors 
	Key Features 
	Deflection Angles 
	Spine Ratio 

	Primary Fall Recognition: Division of Human Status 
	Tendency Symbol 
	Steady Symbol 
	Division of Human Status 

	The Second Stage: Recognition of Falling Actions Based on Continuous Human Stage 
	The Update Reference Template Vector and Compare Value 
	Energy Value and State Score 
	Recognition Algorithm Based on Continuous Human Stage 
	Classification Based on Machine Learning Methods 


	Experiments and Discussion 
	Dataset 
	Experimenst on the Frist Stage Algorithm 
	Experiments on the Second Stage Algorithm 
	Analysis of the Feature Vector 
	The Classification Results of the Second Stage 

	Test Results of the Overall Human Fall Recognition Method 

	Conclusions 
	References

