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INTRODUCTION

The process of computational protein design can be split into two coupled

problems. The first problem is selecting or generating a backbone scaffold that

is ‘‘designable.’’ The second problem is to find sequences that are able to fold

into the desired backbone structure. The two problems are coupled in the sense

that it is unlikely that sequences exist that are able to fold an arbitrary back-

bone structure.1 The first problem can be solved most simply by taking the

backbone from an experimentally solved protein as at least one sequence is

known to fold into that structure. Sequence design for a fixed backbone can be

approached by finding low energy sequences by a stochastic method such as

Monte Carlo search2,3 or with the deterministic algorithm Dead-end elimina-

tion.4,5 The two problems can be partially recoupled by allowing some back-

bone flexibility during the sequence redesign step.6,7 It seems that minimizing

the potential energy of a sequence for a given backbone is sufficient to produce

experimentally foldable designs without considering alternative conformational

states,8,9 but negative design methods have been successfully experimentally

verified and may prove to be important for more complex systems.10,11

Over the past several years, the progress of computational protein design has

been such that it has even been possible to engineer new functionality onto preex-

isting backbone scaffolds,12–15 and, in some cases, this has involved loop remod-

eling.16 Although there has also been progress in constructing novel scaffolds for

de novo design,7,17 this remains an open problem, and ultimately one would not

want to be restricted to a limited set of possible backbones.1 In relation to this, it

is interesting to note that the experimental observation of novel protein folds is

becoming rare,18,19 but the number of possible single domain topologies that

have not yet been seen is proposed to be an order of magnitude greater.20

The two successful de novo backbone construction strategies have been to

construct backbones from fragments of known proteins with imposed distance

restraints7 or to take a hierarchical approach and build up from idealized seg-

ments of secondary structure.17,21 In this article, we present a novel method to

construct de novo backbone scaffolds using a hierarchical strategy with simple

geometric rules together with a coarse grained potential energy function.

A hierarchical scheme to classify protein topology in a ‘‘Periodic Table’’22

has previously been applied to protein structure prediction with particular em-

phasis on larger folds that are difficult to solve with existing de novo meth-

ods.23 The ‘‘Periodic Table’’ classifies compact globular protein domains into
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ABSTRACT

In recent years, there have been sig-

nificant advances in the field of com-

putational protein design including

the successful computational design

of enzymes based on backbone scaf-

folds from experimentally solved

structures. It is likely that large-scale

sampling of protein backbone con-

formations will become necessary as

further progress is made on more

complicated systems. Removing the

constraint of having to use scaffolds

based on known protein backbones

is a potential method of solving the

problem. With this application in

mind, we describe a method to sys-

tematically construct a large number

of de novo backbone structures from

idealized topological forms in a top–

down hierarchical approach. The

structural properties of these novel

backbone scaffolds were analyzed

and compared with a set of high-re-

solution experimental structures

from the protein data bank (PDB). It

was found that the Ramachandran

plot distribution and relative c- and

b-turn frequencies were similar to

those found in the PDB. The de novo

scaffolds were sequence designed

with RosettaDesign, and the energy

distributions and amino acid compo-

sitions were comparable with the

results for redesigned experimentally

solved backbones.
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layers of secondary structure imposed by b-sheets. Ideal

forms, in which each secondary structure element is rep-

resented as a line segment, are generated with simple

packing rules.22 The axes of two packing a-helices or an

a-helix packing on a b-sheet are placed 10 Å apart,

whereas adjacent strands in a b-sheet are placed 5 Å

apart. The b-sheets have a predefined ‘‘twist,’’ ‘‘curl,’’ and

‘‘stagger,’’ which the packing a-helices follow. Connec-

tions between the secondary structure elements in the

layers then define a topology resulting in a ‘‘stick’’

model.24 It is then possible to construct rough a-carbon

structures using the sticks as axes for placing idealized a-

carbon secondary structure elements.25

With an emphasis on providing possible novel scaf-

folds for protein design, we present a method to con-

struct protein backbone structures directly from these

ideal forms and assess their quality with an analysis of

their local backbone conformations. Sequences for these

decoy backbones were designed and relaxed with

Rosetta26 together with a set of real protein backbones

and a set of compact random walk backbones as controls.

The Rosetta and dDFIRE27 potential energy functions

were used as heuristics to assess the ‘‘designability’’ of the

decoy backbones in comparison with real backbone con-

trols. As part of the method to produce protein-like

backbones, we also present a novel structural alphabet-

based a-carbon homopolymer potential energy function

that was mainly parameterized to provide protein-like

local structural properties and good hydrogen bonding.

METHODS

See Figure 1 for an overview of the method.

The method extends and refines methods previously

developed within the group.22,23,25 Given a predefined

secondary structure and a set of ideal forms (i.e. second-

ary structure elements arranged into layers),22 all possi-

ble topologies were enumerated excluding ‘‘forbidden’’

arrangements such as left-handed b-a-b connections and

internal parallel connections. This produced ‘‘stick’’ mod-

els of the possible topologies where each ‘‘stick’’ repre-

sented the axis of a secondary structure element. An ini-

tial a-carbon model was constructed on the ‘‘sticks’’

using a previously described method.25

The backbone structure of a protein is largely defined

by the positions of the a-carbons. As it is possible to

quickly explore conformational space at the a-carbon

level, it was decided to construct a coarse-grained homo-

polymer potential energy function to relax the initial a-

carbon model before adding on the other main chain

atoms. This potential energy function consisted of terms

that represent the a-carbon-a-carbon pseudobond, pseu-

dohydrogen bonding, a soft steric repulsive term, a ra-

dius of gyration-based term for compactness, and terms

to restrict the local structure to protein-like conforma-

tions. This potential energy function differed from other

previously developed coarse-grained potential energy

functions in that it was designed to be used solely to

provide protein-like local main-chain conformations and

hydrogen bonding without any consideration given to

sequence dependent properties. In contrast, other coarse

potential energy functions are optimized for structure

prediction or other similar applications where it is more

important to get good overall tertiary structure.28–31

The a-carbon Monte Carlo move set was composed of

local crankshaft moves, torsion angle rotations, bond

angle rotations, bond length moves, and single atoms

moves in Cartesian space. After each move, the Metropo-

lis criterion was applied.

Having refined the initial a-carbon model, main-chain

atoms (C0, O, N, and Cb) were added using a method

derived from Milik et al.32 with an additional conjugate

gradient descent minimization step and 2000 steps of

main-chain Monte Carlo to make small adjustments to the

main-chain structure. Because no sequence is yet associ-

ated with the structure, the main chain is modeled as a

simple polyalanine homopolymer at the main-chain stage.

The main-chain potential energy function consisted of

a reimplementation of the Rosetta hydrogen bond poten-

tial,33,34 bonded and nonbonded interactions between

atom pairs up to 1–6 from the OPLS-UA35 force field,

the same radius of gyration term as used for the a-car-

bon potential energy function, and soft steric repulsion

term for atom pairs over 1–6.

Main-chain Monte Carlo moves were back-rub

moves,36 small torsion angle rotations, and bond angle

rotations.

The main-chain models were idealized as poly-alanine

with Rosetta11 and put through 20 cycles of design and

relaxation using the miniRosetta applications fixbb and

relax.

The a-Carbon Potential Energy Function

The a-carbon potential energy function is composed

of eight terms.

Etot ¼ Elocal þ Ebond þ Evdw þ Eradgyr

þ Ehbond þ ESSE þ Ess bias þ Eb pair ð1Þ

Elocal is a local conformational energy and is composed

of pseudobond angle and dihedral terms. Ebond is a pseu-

dobonding term between a-carbons. Evdw is a soft steric

repulsive term. Eradgyr is a radius of gyration term to

ensure the chain remains compact. Ehbond is a pseudohy-

drogen bonding term. The last three terms (ESSE, ESS_bias,

and Eb_pair) are designed to keep the secondary structure

elements close to the ideal tertiary structure as defined in

the ideal forms.

The core of the potential energy function was based

on a 4-mer structural alphabet with 27 ‘‘letters’’ with
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each letter being associated with one torsion angle (s)

and two bond angles (y1 and y2) [Fig. 1(a)]. Each of

these letters represented high-density states observed in

the protein data bank (PDB) determined using a cluster-

ing algorithm (Pandini A, Kleinjung J. Structural alpha-

bets derived from attractors in conformational space.

2009; submitted). Using best local RMSD fit to a letter,

each 4-mer in a high-resolution training set was

classified. Each 4-mer was also classified into three

binned a-carbon-a-carbon distances [di,i12, di,i13, and

di11,i13, where di,i13 is also given a sign depending on

whether the fourth a-carbon is above or below the plane

defined by the first three a-carbons; Fig. 1(a)] and for

each combination of these bins, bcombined, the frequency

of each ‘‘letter’’ A as classified by best local RMSD fit

was calculated. From this information, a lookup table

was created where each bin, bcombined, was assigned to

the letter A where (2) was at a maximum as a function

of A. Bins with no counts were classified as belonging to

the same letter as the nearest classified neighbor. This

faster distance-based classification scheme was created to

avoid more computationally costly RMSD fits.

PðAjbcombinedÞ
PðAÞ ð2Þ

Each residue in each classified letter in the high-resolu-

tion training set had associated with it a secondary struc-

ture resulting in a 3-class secondary structure strings

such as HHHH, EEEE, --EE, HH--, and ---. If the pep-

tide bond between residues 2 and 3 in the 4-mer was in

a cis conformation, this was classified as a ‘‘cis’’ 4-mer. If

the secondary structure string was of the form HHXX or

XXHH, it was classified as ‘‘helical,’’ and similarly if the

string was of the form EEXX or XXEE, then it was classi-

fied as ‘‘strand.’’ All other conformations were classed as

‘‘other.’’ For each letter, the frequencies of each secondary

structure class in the training set were recorded. The let-

ters were then further classified as belonging to the ‘‘heli-

cal,’’ ‘‘strand,’’ ‘‘cis,’’ or ‘‘other,’’ where (3) was at a maxi-

mum as a function of secondary structure class.

PðSS classjAÞ
PðSS classÞ ð3Þ

The functional form for each of the three angles in a

4-mer [Fig. 1(a)] was assumed to be a harmonic poten-

tial:

Elocal ¼
X

4�mers

�
kn�termkAi

u1
u1 � u1;0

� �2þkAi
s s� s0ð Þ2

þ kc�termkAi

u2
u2 � u2;0

� �2þkAi

ref

�
þ

X
4�mer�pairs

k
AiAiþ1

ref ð4Þ

where kn-term was set to 1 when the 4-mer was the N-ter-

minal letter but was otherwise set to 0.5, and kc-term was

set to 1 when the 4-mer was the C-terminal letter but

was otherwise set to 0.5 in order to account for overlap-

ping 4-mers.

Figure 1
Scaffold construction and design protocol.

De Novo Scaffolds

PROTEINS 1313



The equilibrium angle terms in Elocal were set to the

corresponding value in the structural alphabet letter, and

spring constant terms for each angle/letter were related

to the observed variance of the angle/letter in the train-

ing set by:

kangle ¼
kBT

2r2
angle

ð5Þ

For each letter, A, a correctional term, kref, was defined

to ensure the same equilibrium distributions of A were

observed as in the PDB. These reference energies were set

by relaxing each of the structures in the high-resolution

training set in the potential energy function for 2 million

steps of Monte Carlo and setting the reference energy to:

kA
ref ¼ �kBT ln

PPDBðAÞ
PsimðAÞ

� �
ð6Þ

where PPDB is the observed probability distribution in

the training set and Psim is the probability distribution

after relaxation in the potential energy function.

This procedure was run iteratively as more terms were

added to the potential energy function. The final 4-mer

pair reference energy term was introduced to reproduce

the same consecutive pair frequencies as observed in the

PDB and parameterized in a similar way:

k
Ai Aj

ref ¼ �kBT ln

$ PPDBðAiAjÞ
PPDBðAiÞPPDBðAjÞ

� �
PsimðAiAjÞ

PsimðAiÞPsimðAjÞ

� �
%

ð7Þ

The a-carbon-a-carbon pseudobond term was simi-

larly approximated as a harmonic potential and parame-

terized in the same way as the bond angle terms. Two

sets of a-carbon-a-carbon pseudobond terms were

defined—one for trans peptide bonds and one for cis

peptide bonds.

Ebond ¼
X

trans bonds

ktransðd � d0Þ2 þ
X

cis bonds

kcisðd � d0Þ2 ð8Þ

kbond ¼
kBT

2r2
bond

ð9Þ

The soft a-carbon-a-carbon steric repulsive term was

of the form

Evdw ¼ kvdw

X
Ca pairs

ðd2
vdw
�d2

ij
Þ

dvdw
; dij < dvdw

0; dij � dvdw

( )
ð10Þ

where kvdw was set to an arbitrarily high value (10 kBT)

and dvdw was set to 4 Å.

Each structure in the training set was randomized (set-

ting dihedrals and bond angles to random values) and

relaxed in the potential energy functions defined above

by running Monte Carlo simulations for 1 million steps

producing a set of noncompact random walk chains. The

functions

lrgrandom
¼ a þ bn

3
5 ð11Þ

and

rrgrandom
¼ a þ bn

3
5 ð12Þ

where n is the number of residues]were found to very

roughly fit the resulting distribution in this size range.

Similarly for the compact domains in the training set the

functions

lrgPDB
¼ a þ bn

2
5 ð13Þ

and

rrgPDB
¼ a þ bn

2
5 ð14Þ

were found to roughly fit the observed distribution.

Using these fitted parameters and using a Gaussian prob-

ability density function as an approximation, the final

energy function takes the form

Eradgyr ¼ �kBT ln
ulrg PDB

;r rg PDB
ðrgÞ

ulrgrandom
;r rgrandom

ðrgÞ

" #
ð15Þ

which can be simplified to

Eradgyr ¼ kradgyrðnÞðrg � rg ;0ðnÞÞ2 ð16Þ

Given the large approximations involved, small

changes to these parameters had to be made by hand in

order to get folds of a compact globular nature.

A set of knowledge-based directional and distance-de-

pendent hydrogen bonding terms were also defined. This

utilized pseudoatoms N0 and O0 as defined by Levitt37

[Fig. 1(b)]. Each 3-mer defined a set of N0 and O0

atoms. Each N0i was defined as being midway between

Cai and Cai11. O0i was defined as 1 Å from N0i in the

direction perpendicular to the plane defined by Cai,

Cai11, and Cai12. A pair of N0 and O0 atoms was

defined to be hydrogen bonded if they were less than 4.5

Å and more than 3.0 Å apart. Four classes of hydrogen

bond types were defined—(i) the hydrogen bonding

‘‘letters’’ were both of the helical class and with a

sequence separation of 3 (not 4 due to the numbering

scheme), (ii) the hydrogen bonding letters were both of

the strand class and with a sequence separation of

J.T. MacDonald et al.
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between 4 and 5, (iii) the hydrogen bonding letters were

both of the strand class the sequence separation was more

than 5, and (iv) all other cases with a sequence separation

of more than 3.

The training set of PDB structures were randomized

(setting dihedrals and bond angles to random values)

then relaxed in the potentials defined above to provide

background distributions of distances and angles. As the

potential energy function now includes the term Eradgyr,

the resulting structures resemble random walks of globu-

lar domain compactness. The distance dependent term

for each hydrogen bonding class was defined as:

Ehb dist ¼
X

hbonds
�kBT ln

PPDBðdijÞ
PcompactðdijÞ

� �
ð17Þ

As the angular distributions were clearly distance-de-

pendent (especially in the short range hydrogen bonding

classes), the angular frequency counts of the background

distribution, Pcompact, were weighted by the Boltzmann

factor:

e
�

Ehb distðdij Þ
kBT ð18Þ

to correct for the effects of distance on the angular distri-

butions resulting in the modified distribution P0compact.

As a simplifying assumption, we considered the angular

distributions to be independent of each other. The angle

terms were defined as:

Ehb vi
¼
X

hbonds
�kBT ln

PPDB við Þ
P0compactðviÞ

 !
ð19Þ

Ehb vj
¼
X

hbonds
�kBT ln

PPDB vj

� �
P0compactðvjÞ

0
@

1
A ð20Þ

Ehb shb
¼
X

hbonds

�kBT ln
PPDB shbð Þ

P0compactðshbÞ

 !
ð21Þ

In addition to the distance and angular terms, there

was also a reference energy related to how probable a

hydrogen bond was to form in the training set compared

to the random compact globular background set. This

term was also calculated separately for each of the four

classes and defined as:

Ehb ref ¼
X

hbonds
�kBT ln

PPDB hbondð Þ
PcompactðhbondÞ

� �
ð22Þ

Finally, because there were no explicit terms to account

for secondary structure element packing and to restrict

refinement to explore only the region around the desired

tertiary fold, three extra terms were added to the poten-

tial energy function.

Line segments corresponding to each defined second-

ary structure element were calculated by finding the least

squares fit to the a-carbon atoms in the element. To

maintain good secondary structure packing, these ele-

ments were restrained to the positions in the ideal forms

by restraining the closest distances to the ideal line seg-

ments and the angles to the ideal line segments:

ESSE ¼
X
SSEs

ðkSSE
dist di þ kSSE

u uiÞ ð23Þ

To restrain the residues predefined as part of a helix or

strand to compatible conformations, a term to restrain

a-carbon pseudotorsion and bond angles to ideal helical

or strand values was defined:

Ess bias

¼
X

4�mers

kss bias
u1

ðu1 � uidealÞ2 þ kss bias
s cosðs� sideal � pÞ

� �
ð24Þ

where the ideal angles were determined by finding the

medians from secondary structure elements in the train-

ing set and the force constants set by a trial and error

process.

To keep the strands of the b-sheets in close proximity

during the initial stages of refinement and to prevent the

structure from ‘‘blowing up’’ a further restraint was

added:

Eb pair ¼ kb pair

X
b pairs

ðjp*i � p
*

j j � 5:3Þ2; jp*i � p
*

j j > 5:3

ðjp*i � p
*

j j � 4:6Þ2; jp*i � p
*

j j < 4:6

ð25Þ

Main-Chain Potential Energy Function

The main-chain potential energy function was

designed solely to ensure good local backbone stereo-

chemistry and is therefore a very simple hybrid of terms

derived from the OPLS-UA force field,35 the Rosetta

force field, and the a-carbon radius of gyration term

described above.

All bonded parameters (bond, torsion, improper tor-

sion, 1-4 Lennard-Jones, and 1-4 electrostatic) were taken

directly from the OPLS-UA force field. In addition to

these bonded terms, the Lennard-Jones and electrostatic

terms were also evaluated for 1-5 and 1-6 atom pairs.

For atom pairs separated by more than five bonds, a sim-

ple soft steric repulsive term was evaluated:

De Novo Scaffolds
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Evdw ¼
X

pairs

kvdw
ðd2

vdw
�d2

ij
Þ

dvdw
; dij < dvdw

0 ; dij � dvdw

( )
ð26Þ

where the diameters, dvdw, for each atom pair type were

taken from the Lennard-Jones parameters in the OPLS-

UA force field. It was found that some atom pair types

clashed frequently in high-resolution PDB structures.

These diameters were reduced to ameliorate this prob-

lem.

The hydrogen-bonding potential was a direct reimple-

mentation of the Rosetta hydrogen bonding potential

with linear interpolation between the distance and angu-

lar bins to allow gradient calculations for minimiza-

tion.33,34

The High-Resolution Training Set

The training set of high resolution experimentally

determined structures was taken from SCOP 40 v1.73

using only X-ray structures with SPACI scores of more

than 0.4, with complete resolved backbones and of chain

lengths between 50 and 200 residues.38 This resulted in a

training set of 2285 structures.

RESULTS

The methods described earlier were used to produce a

set of 9000 main-chain decoy backbones (referred to as

‘‘decoys’’) of 72 residues long and setting the predefined

secondary structure from the Atx1 metallochaperone

(PDB code: 1CC8):

The secondary structure and length were chosen to be

long enough to produce a number of nontrivially differ-

ent topologies but short enough to make sequence design

of a large number of backbones to be computationally

tractable. This resulted in 26 unique topologies (Table

III). As controls, 17 real protein backbone domains

(referred to as ‘‘real’’) of the same residue length from

the PDB (Table I) and 2000 compact random walk struc-

tures (referred to as ‘‘random’’) were put through the

same Rosetta design/relaxation protocol. Each of the 17

real backbone scaffolds was redesigned 100 times generat-

ing a total of 1700 sequences and structures. The com-

pact random walk structures were generated by relaxing

random walks in the a-carbon potential energy function

with all hydrogen bonding terms turned off to prevent

secondary structure formation then adding main-chain

atoms with the usual protocol. This procedure produced

compact random coil structures with radii of gyration

similar to single compact domains. The real backbone

scaffold set was produced to determine the redesigned

energy distributions of backbones that were known to be

‘‘designable,’’ whereas the compact random set would

give the energy distributions of structures with arbitrarily

bad tertiary folds of globular domain compactness and

good dihedral angles and were therefore assumed to be

‘‘undesignable.’’

A second set of decoys (referred to as ‘‘decoys2’’) and

real (referred to as ‘‘real2’’) redesigned backbones were

produced using a slightly modified protocol. The new

‘‘decoys2’’ set differed from the original ‘‘decoys’’ set by

applying two sets of filters before the more computation-

ally intensive Rosetta design/relax cycles. The first filter

was applied at the initial a-carbon model stage. Using

the N0 and O0 atoms as defined in Figure 2(b) and

crudely defining a pseudohydrogen bond where the dis-

tance between these atoms is less than 5 Å, the propor-

tion of predefined sheet and helix residues involved in

hydrogen bonding was counted. If either of these counts

was below 18%, the model was filtered out. A similar fil-

ter was put in place after the main-chain reconstruction

step. In this case, if the percentage of either helical or

strand secondary structure fell below 25%, the sum of

the two fell below 60% or if more than one of the resi-

dues was in the disallowed region [defined as the region

in Fig. 3(c) where the negative log likelihood is above a

threshold of 4] of the Ramachandran plot, then the

model was filtered out. The Rosetta design/relax stage

was also modified by running a reduced number of cycles

(10 instead of the original twenty cycles) and by con-

straining the top 10% of buried residues to be hydropho-

bic and bottom 10% to be hydrophilic with the extra

condition that the residue is in either an a-helix or a b-

strand where burial was defined as the number of Cb

atoms in a 9 Å sphere around each Cb atom. Constrain-

ing the most solvent exposed and least solvent exposed

residues was found to significantly decrease the solvation

energy term. The ‘‘decoys2’’ set consisted of 1000 struc-

tures, whereas the ‘‘real2’’ set consisted of 1700 structures

(the same as the original ‘‘real’’ set).

Local main-chain conformations for all the resulting

structures were found to be similar to real proteins (Figs.

3 and 4 and Supporting Information Fig. S1). The distri-

bution of dihedral angles showed a clear preference

for the most favorable regions of the Ramachandran plot

after the initial main-chain construction protocol

[Fig. 3(a)] with most outliers removed after Rosetta

design/relaxation [Fig. 3(b)]. The distribution of turns

(as determined by STRIDE39) was also found to be simi-

lar to the real PDB [Fig. 4(a)]. This is likely a direct

result of the use of the structural alphabet in a-carbon

J.T. MacDonald et al.
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potential energy function and the parameterization pro-

cedure.

In the absence of any other metric, it was decided to

use the Rosetta energy function to evaluate the ‘‘designa-

bility’’ of the novel scaffolds. Real protein main chains

were assumed to have evolved, such that good side-chain

packing could occur in the core of the protein and the

number of buried unsatisfied hydrogen bonds minimized.

In contrast, it was assumed that compact random coils

do not have these properties and therefore have minimal

‘‘designability.’’

Overall, the Rosetta energies of the ‘‘decoys’’ scaffolds

lie in between the real main chains and the random coils

[Fig. 5(a)] but with greater overlap with the ‘‘real’’ main-

chain designs than with the ‘‘random’’ coil designs. The

dDFIRE energy distribution was also calculated as an in-

dependent potential energy function [Fig. 5(b)]. This

confirmed a high degree of overlap between the decoys

and the real backbone design energy distributions. The

filtered ‘‘decoys2’’ energies show a much greater overlap

with the ‘‘real2’’ backbone design energies [Fig. 5(c,d)]

with the high-energy tails eliminated and the peaks

Figure 2
a-Carbon 4-mer and pseudohydrogen bond geometry. (a) 4-mer letter angles and distance bins. (b) Pseudohydrogen bonding where shb is the

dihedral angle defined by Cai 2 N0i 2 N0 j 2 Caj. O0 is defined to be 1 Å from N0 in the direction (Cai11 2 Cai) 3 (Cai12 2 Cai11).

Table I
Real Protein Controls

PDB code Residues Chain Radius of gyration/� Experimental method Resolution/� Rosetta energy after relaxation

2jdi 10–81 D 10.39 XTAL 1.90 2150.74
2bwf 2–73 A 10.49 XTAL 1.15 2154.59
2as0 1–72 A 10.50 XTAL 1.80 2164.50
1osd 1–72 A 10.70 XTAL 2.00 2152.30
1ubq 1–72 A 10.71 XTAL 1.80 2166.36
1wm3 17–88 A 10.87 XTAL 1.20 2154.52
1hyp 6–77 A 10.88 XTAL 1.80 2115.45
1cc8 2–73 A 10.91 XTAL 1.02 2151.57
4ait 3–74 A 10.91 NMR n/a 2122.73
1o8b 127–198 A 10.92 XTAL 1.25 2146.61
1lea 1–72 A 10.96 NMR n/a 2153.41
1zyb 149–220 A 11.12 XTAL 2.00 2156.17
1v97 94–165 A 11.17 XTAL 1.94 2109.02
1vcc 1–72 A 11.30 XTAL 1.60 2161.37
1iyu 1–72 A 11.31 NMR n/a 2139.04
1i27 445–516 A 11.81 XTAL 1.02 2150.68
1dzf 144–215 A 12.05 XTAL 1.90 2146.29

Rosetta energies of the wild-type sequences are given after idealization and one round of Rosetta relaxation.
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shifted substantially to the left. The dDFIRE histogram

appears to show that the ‘‘real2’’ set has more of a high-

energy tail than the ‘‘decoys2’’ set.

Comparing the distributions of the Rosetta energy

function components of real main chains and the ran-

dom coils, it was seen that the terms related to side-chain

packing (i.e. fa_atr (Lennard-Jones attractive term)) and

hydrogen bonding (i.e., the hbond_sr_bb, hbond_lr_bb,

hbond_bb_sr, and hbond_sc terms) were indeed signifi-

cantly different as expected (Supporting Information Ta-

ble S1). Interestingly, although backbone-backbone

hydrogen bonding was worse, backbone-side-chain and

side-chain-side-chain hydrogen bonding was better. This

could be due to the increased number of buried unsatis-

fied backbone donors and acceptors in the random coil

structures.

Breaking down the contributions of the different terms

in the potential energy function, it was seen that the dif-

ference between the ‘‘real’’ backbones and the ‘‘decoys’’ is

mainly due to higher long-range backbone-backbone

hydrogen bonding energy and higher solvation energy

(Supporting Information Table S1). This suggests that on

an average, the ‘‘decoys’’ scaffolds have fewer and/or

worse hydrogen bonding in the b-sheets than in real

main-chain structures; however, it should be noted that

the novel scaffolds include topologies that are not neces-

sarily favorable with the predefined secondary structure.

Indeed, a large degree of variation in mean long-range

Figure 3
Log likelihood Ramachandran distributions of (a) the novel scaffold decoys (‘‘decoys2’’) before Rosetta design/relax, (b) the novel scaffold decoys

(‘‘decoys2’’) after Rosetta design/relax, (c) the high-resolution PDB training set, and (d) the compact random coil controls (‘‘random’’) after Rosetta

design/relax. For the log likelihood distributions for ‘‘decoys’’ see Supporting Information Figure S1.
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backbone-backbone hydrogen bonding energies was

observed when divided by topology (Table III). The

higher solvation energy suggests that some of the decoys

do not have as well defined hydrophobic cores. To a

lesser extent, the terms ‘‘fa_atr’’ and ‘‘rama’’ were also on

average worse perhaps reflecting slightly less favorable

side-chain packing and backbone torsion angles. The sec-

ond set of filtered decoys, ‘‘decoys2,’’ was found to have

solved the problem of higher long-range hydrogen bond-

ing energies. Overall, the difference in mean total ener-

gies between the ‘‘decoys2’’ and ‘‘real2’’ sets was found to

have reduced to 27.49. This difference was not attribut-

able to any one dominant term but is the result of many

small differences in the individual terms (Table II). This

suggests that the ‘‘decoys2’’ set are of a high quality

across a broad range of measures.

Mean amino acid compositions for the ‘‘real,’’ ‘‘real2’’

(1700 sequences, 124,100 residues), ‘‘random’’ (2,000

sequences, 146,000 residues), ‘‘decoys’’ (9000 sequences,

648,000 residues), and ‘‘decoys2’’ (1000 sequences, 72,000

residues) structures were compared with the mean com-

position for ASTRAL SCOP40 (9536 sequences,

1,716,774 residues) using the nonparametric Spearman

correlation coefficient with cysteine excluded (because

RosettaDesign never produced this residue). Residue

compositions for the ‘‘real’’ structures were significantly

correlated with the ASTRAL compositions (q 5 0.70,

t 5 4.08, p < 0.001, 17 d.f.) as were the compositions

for the ‘‘decoys’’ (q 5 0.55, t 5 2.72, p < 0.01, 17 d.f.),

the compositions for ‘‘real2’’ (q 5 0.66, t 5 3.59, p <
0.01, 17 d.f.), and the compositions for ‘‘decoys2’’ (q 5

0.53, t 5 2.61, p < 0.05, 17 d.f.). Sequences for the ran-

dom designs were not significantly correlated (q 5 0.35,

t 5 1.54, p > 0.05, 17 d.f.). The t values were calculated

using the formula:

t ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

1� q2

s
ð27Þ

All three groups of the original protocol set (‘‘real,’’

‘‘decoys,’’ and ‘‘random’’) were observed to be depleted in

Met, Phe, Pro, and Trp (Supporting Information Table

S2, Fig. S2). The compact ‘‘random’’ structures were

highly enriched in small and polar amino acids (Asp,

Gly, and Ser) and depleted in certain hydrophobic resi-

dues (Val and Ile), suggesting a lack of good core packing

and excessive solvent exposure. The sequences of the

novel ‘‘decoys’’ showed some of these features but were

overall most similar to the sequences designed for real

structures.

We also examined the compositions for the modified

protocol set (‘‘real2’’ and ‘‘decoys2’’). In these cases, the

compositions must be assumed to be less informative of

the overall quality of the structures because the composi-

tional identity was constrained for 20% of the residues

per iteration. Overall, we found that Pro, Ser, Thr, and

Figure 4
Relative b- and g-turn frequencies in the novel scaffold decoys, compact random controls, and the high resolution PDB training set as assigned by

STRIDE.39
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Figure 5
Overall (a, c) Rosetta and (b, d) dDFIRE energy histograms for the real protein controls (black), novel decoy scaffolds (light gray), and the

compact random coil controls (dark gray). (a, b) Show the energies for the ‘‘real,’’ ‘‘decoys,’’ and ‘‘random’’ original design protocol sets, whereas

(c, d) show the energies for the ‘‘real2’’ and ‘‘decoys2’’ design protocol sets.
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Val were strongly disfavored, with both the decoys and

the real structures substantially depleted in these residues

and the decoys especially depleted in Pro (Supporting

Information Table S3, Fig. S3). A bias toward Trp, Tyr,

Lys, and Arg was also apparent for both sets with little

difference between the two.

A few residues differed in composition between the

‘‘real2’’ and ‘‘decoys2’’ sets. Ala and Asp were in excess in

‘‘decoys2’’ but not in the ‘‘real2’’ set. Phe was in excess in

both sets but to a much greater extent in ‘‘decoys2.’’ Gly

was somewhat depleted in both but much more strongly

in the decoys. Leu was depleted in the decoys but in

excess in the designs based on real structures. Most of

the differences are minor, the most significant being Pro,

Gly, and Phe. The differences in Gly content may be

explained by the filtering of disallowed dihedral angles.

However, the increase in Phe content is more difficult to

explain.

The compositions of the ‘‘real2’’ and ‘‘decoys2’’ were

further broken down by secondary structure type (Sup-

porting Information Figs. S4 and S5). The b-strand com-

positions were roughly similar between the two sets with

the ‘‘decoys2’’ enriched in Phe, Ile, and Ala. More sub-

stantial differences were observed in the a-helical compo-

sitions with both sets greatly enriched in Glu, Lys, Arg,

and Trp. The ‘‘decoys2’’ set was found to be enriched in

Ala but depleted in Ile, Leu, and Val. This could suggest

that the novel scaffold helices have a tendency to be too

tightly packed to allow room for the larger hydrophobic

residues.

BLAST searching of all designed sequences against the

nonredundant protein sequence database (nr, July 2009)

filtered for low-complexity regions detected no significant

similarities between the nonreal backbone designed

sequences and real protein sequences, but some of the

Table II
Rosetta Energy Constituents of ‘‘Real2’’ and ‘‘Decoys2’’

Rosetta energy term Physical meaning lreal2 ldecoys2 Dreal2-decoys2 p-value

fa_atr Lennard-Jones attractive 2285.29 2283.05 22.24 2.96E-04
fa_rep Lennard-Jones repulsive 27.01 25.76 1.24 <2.20E-16
fa_sol solvation energy 126.78 124.80 1.98 1.28E-06
fa_intra_rep Intraresidue LJ repulsive 0.70 0.75 20.04 <2.20E-16
pro_close Proline ring closure 0.05 0.02 0.02 <2.20E-16
fa_pair Statistical pair energy 210.27 29.86 20.41 2.88E-03
hbond_sr_bb Backbone-backbone hbonds close in primary sequence 215.27 215.26 20.01 0.94
hbond_lr_bb Backbone-backbone hbonds distant in primary sequence 227.09 228.05 0.96 6.15E-03
hbond_bb_sc Side chain-backbone hydrogen bond energy 27.88 25.49 22.39 <2.20E-16
hbond_sc Side chain-side chain hydrogen bond energy 27.52 27.60 0.08 0.54
Rama Ramachandran energy 27.50 26.09 21.41 <2.20E-16
Omega Omega dihedral energy 4.80 5.79 20.99 <2.20E-16
fa_dun Internal energy of sidechain rotamers 38.03 39.37 21.33 3.97E-12
p_aa_pp Amino acid Phi-Psi statistical energy 210.24 29.11 21.13 <2.20E-16
ref Amino acid reference energy 214.59 212.77 21.81 1.65E-14
Total Sum of all terms 2188.29 2180.80 27.49 <2.20E-16

For the energy constituents of ‘‘real,’’ ‘‘decoys,’’ and ‘‘random,’’ see Supporting Information Table S1.

Figure 6
Top 5 median Rosetta energy topologies where (a) corresponds to

topology index 9 from Table III, (b) topology index 2, (c) topology

index 8, (d) topology index 1, and (e) topology index 15.
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real backbone redesigns did have significant similarities to

protein sequences from corresponding folds.

The ‘‘decoys’’ set was found to have a range of between

2179.89 and 2160.77 median Rosetta design energies

when split by topology was observed (Table III), and it is

striking that the topologies with the lowest Rosetta ener-

gies (top half of Table III) also tend to have the greatest

number of topology matches in SCOP 40. As one would

expect the Ferredoxin-like fold of the metallochaperone

that provided the initial secondary structure was found

among the top ranking topologies, and surprisingly, top-

ologies with the two helices separated on opposite sides

of the b-sheet do not seem to have been penalized de-

spite having less opportunity to make a compact hydro-

phobic core (Fig. 6).

To further probe the core side-chain packing, the

structures were scored with RosettaHoles, a method to

assess and visualize protein core packing by generating

groups of cavity-filling balls.40 The overall Rosetta-

Holes score is the sum of the predicted RMSD and 3

3 the predicted probability of the model not being

from a high-resolution crystal structure. The ‘‘real’’

(4.56 � 0.54) and ‘‘real2’’ (4.56 � 0.64) backbone

designs had better overall mean scores than both the

‘‘decoys’’ (4.74 � 0.53), ‘‘decoys2’’ (4.8 � 0.39), and

the ‘‘random’’ controls (4.88 � 0.54). These results are

not statistically significant, but the RosettaHoles score

may prove to be useful to pick candidates for experi-

mental study.

As a final test of the method’s overall ability to repro-

duce protein-like tertiary folds, structural alignments

with known protein structures were carried out. All

structures from the ‘‘decoys’’ set were structurally aligned

using SAP41 with all matching topology hits found in

SCOP 40. For each unique topology, the best aligned

SCOP 40 domains were recorded (Table III; Fig. 7).

Given the vast size of structure space, it is surprising that

from just 9000 decoy structures, a number of very close

structural alignments were found across a number of dif-

ferent folds. The best result is an alignment of 1.79 Å

Table III
Topology Hits and Top SAP Matches to SCOP 40 with the ‘‘Decoys’’ Set

Topology
index Topology string

Median
Rosetta
energy

Mean
hbond_lr_bb

Rosetta energy
term

No. of
topology

hits in
SCOP 40

Top matching SCOP domain by SAP structural
alignment

SCOP ID RMSD/�

No. of
aligned

residues/72
possible

Rosetta
energy of best
aligned decoy

9 1B10.-A10.1B-1.-B-2.1C10.-B-3. 2179.89 226.63 96 d1u0ka1 3.26 65 2182.87
2 1B10.-A10.1B-1.-B11.1A11.-B12. 2178.58 222.63 45 d1mwwa_ 2.49 68 2182.59
8 1B10.-A10.1B-1.-B11.1C10.-B-2. 2178.36 224.67 0 n/a n/a n/a n/a
1 1B10.-A10.1B-2.-B-1.1A11.-B11. 2177.17 224.13 302 d1ukua_ 1.79 65 2189.45
15 1B10.-A10.1B-1.-B-2.1A-1. 2176.98 218.72 133 d1q0pa_ 3.19 68 2181.52
4 1B10.-A10.1B-2.-B-1.1A11. 2176.73 217.33 464 d1nm2a2 2.06 61 2185.28
5 1B10.-A10.1B-1.-B11.1A11. 2174.14 214.92 118 d1us5a_ 2.82 69 2185.23
16 1B10.-A10.1B-1.-B-2.-A-1. 2173.18 215.14 87 d1d6aa_ 2.69 58 2186.66
11 1B10.1A10.-B-1.1B-2.-A-1. 2170.51 213.64 46 d1hr6b2_ 3.01 66 2172.04
24 1B10.-A10.-B11.1B-1.1C10.-B12. 2168.82 218.16 0 n/a n/a n/a n/a
21 1B10.1A10.-B-2.1B-1.-A11. 2168.60 213.43 0 n/a n/a n/a n/a
36 1B10.1A10.-B-2.1B-1.-A11. 2167.63 210.33 0 n/a n/a n/a n/a
27 1B10.-A10.-B-1.1B-2.1C10.-B11. 2167.54 219.43 0 n/a n/a n/a n/a
35 1B10.1A10.-B-1.1B-2.1C10. 2167.41 213.32 66 d1cjwa_ 5.36 64 2168.08
17 1B10.-A10.-B11.1B12.1C10.-B-1. 2167.37 219.91 0 n/a n/a n/a n/a
12 1B10.-A10.-B-1.1B-2.-A-1. 2167.36 214.65 42 d1kfsa1 3.43 57 2160.37
20 1B10.-A10.-B11.1B-1.1C10.-B-2. 2166.95 216.65 0 n/a n/a n/a n/a
26 1B10.-A10.-B11.1B12.1A11. 2166.62 213.79 0 n/a n/a n/a n/a
13 1B10.1A10.-B11.1B-1.-A-1. 2166.36 28.85 0 n/a n/a n/a n/a
23 1B10.-A10.-B-2.1B-1.1C10.-B11. 2166.35 219.25 5 d1cjxa1 3.69 61 2176.03
18 1B10.-A10.-B12.1B11.1C10.-B-1. 2165.87 213.64 0 n/a n/a n/a n/a
31 1B10.-A10.-B11.1B-1.1C10. 2165.33 213.70 0 n/a n/a n/a n/a
25 1B10.-A10.-B-1.1B-2.1A-1. 2165.12 213.72 0 n/a n/a n/a n/a
30 1B10.-A10.-B11.1B-1.1A-1. 2163.43 210.55 0 n/a n/a n/a n/a
34 1B10.-A10.-B12.1B11.1A-1.-B-1. 2163.12 218.54 0 n/a n/a n/a n/a
28 1B10.-B11.1B12.1A-1.-B-1. 2160.77 223.00 0 n/a n/a n/a n/a

The ‘‘topology string’’ encodes a given backbone topology as a unique string. Each structure can be matched to an ‘‘ideal form’’ and the path the secondary structure

elements (SSEs) take over this ‘‘ideal form’’ then describes the topology. For a three layer, a-b-a protein, a simple coordinate system, was used where each SSE was

assigned to a layer (‘‘A,’’ ‘‘B,’’ or ‘‘C’’) with a relative orientation (‘‘1’’ or ‘‘2’’) and a relative position within the layer (‘‘21,’’ ‘‘10,’’ ‘‘11,’’ ‘‘12,’’ etc.). By convention,

the first SSE to enter a layer was assigned the relative position ‘‘10’’ with all other SSE in that layer numbered relative to that. The first strand in a sheet was given a

positive orientation, so that the first strand in the string was always ‘‘1B10.’’ The first helix was assigned to layer ‘‘A.’’ The full topology matching procedure is described

by Taylor et al.20
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RMSD covering 90% of the residues for the Ferredoxin-

like fold, and there are also a number of other sub-3 Å

alignments. It can be seen by visual inspection of the

structural super-positions that the b-sheets of the decoys

align well with b-sheets from the experimental structures

(Fig. 7).

DISCUSSION

The coarse-grained hierarchical backbone construction

method we have presented has been demonstrated to

produce realistic backbone models in terms of the Rama-

chandran plot (Fig. 3), relative turn frequencies (Fig. 4),

overall tertiary structure (Fig. 7), and amino acid compo-

sition after RosettaDesign.

We have assessed the ‘‘designability’’ of the backbones

by comparing the potential energy distributions of the

decoy structures with real protein backbone structures af-

ter 20 rounds of design and relaxation using Rosetta

(Figs. 5 and 6; Tables II and III). Although this is not

strictly theoretically justified, we believe this is a useful

heuristic within the paradigm of positive design methods

where sequence and structure are simultaneously opti-

mized in a potential energy function. A significant pro-

portion of the designed decoys were within the range of

the redesigned real backbones. Within this set, it is hoped

that at least a proportion are experimentally foldable.

The difference between the decoy and real backbone

Figure 7
Top four SAP alignments from Table III where (a) corresponds to topology index 9, (b) topology index 2, (c) topology index 1, and (d) topology

index 15. This figure was produced using VMD.42
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energy distributions was found to be mainly due to

worse long-range backbone-backbone hydrogen bonding

energies on average and was found to be easily solvable

by filtering out bad models at earlier stages. The long-

range hydrogen bonding energies were found to be highly

dependent on topology and most of the top ranking top-

ologies showed good b-sheet formation (Table III).

A method to sample rapidly a wide variety of designa-

ble backbone conformations could help provide solutions

to the large number of remaining problems in computa-

tional protein design. In the first instance, this method

could generate a large library of backbone scaffolds that

could then be scanned for potential catalytic sites using

existing methods such as RosettaMatch.43 Although pre-

vious work has shown it is possible to design de novo

protein dimer interfaces,44 large-scale backbone sampling

may also be necessary for the design of novel protein-

protein and protein-DNA interfaces with naturally occur-

ring targets.45,46

In the near-term progress in computational enzyme

design is likely to come from the local remodeling of

backbone regions near the active site. However, we pro-

pose that as the target functions of designed proteins

become more ambitious, the less likely it is that existing

scaffolds are able to satisfy all the backbone constraints

without remodeling large parts of the scaffold. A method

of systematically generating a large number of de novo

backbone scaffolds may eventually prove to be an effi-

cient way of solving this problem. If one could annotate

the dynamical propensities (e.g. by an analysis of normal

modes or some other method) of a given backbone loop

conformation in a training set of known proteins, it may

be possible to search for possible backbone scaffolds that

are more likely to be compatible with particular desired

conformational changes. The method could find applica-

tions in synthetic biology (e.g. it could be used to design

linkers between functional subunits) and in the design of

novel materials.

The question of whether certain protein topologies

that have not been experimentally observed do not exist

for some physical reason rather than an evolutionary rea-

son could be addressed using computational protein

design.20 If Nature has only explored a limited region of

fold space due to limited need or not having had enough

time, then it should be possible to design and experimen-

tally fold these novel structures given an appropriate

method in addition to vastly expanding the range of pos-

sible scaffolds for enzyme design.
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