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Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs), such as cyclooxygenase (Cox)-1/2 in-
hibitor, have emerged as potent antipyretics and analgesics. However, few herbs with Cox-1/2 in-
hibitory activity are commonly used for heat-clearing in China. Although these are known to
have antipyretic activity, there is a lack of molecular data supporting their activity. Using the tra-
ditional Chinese medicine herb honeysuckle (Hon) as an example, we explored key antipyretic
active compounds and their mechanisms of action by assessing their metabolites and metabolomics.
Mitogen-activated protein kinase (MAPK) 3 and protein kinase B (AKT) 1 were suggested as key
targets regulated primarily by chlorogenic acid (CA) and swertiamarin (SWE). CA and SWE synergis-
tically inhibited the production of interleukin (IL)-1 and IL-6, alleviated generation of prostaglandin
E2, and played an antipyretic role equivalent to honeysuckle extract at the same dose contents within
3 h. Collectively, these findings indicated that lipopolysaccharide-induced fever can be countered
by CA with SWE synergistically, allowing the substitution of a crude extract of complex compo-
sition with active compounds. Our findings demonstrated that, unlike the traditional NSAIDs,
the Hon extract showed a remote and indirect mechanism for alleviating fever that depended on
the phosphatidylinositol-3-kinase–AKT and MAPK pathways by regulating the principal mediator
of inflammation.

Keywords: metabolites; metabolomics; chlorogenic acid; swertiamarin; antipyretic; anti-inflammatory

1. Introduction

Starting with aspirin, nonsteroidal anti-inflammatory drugs (NSAIDs), which tar-
get cyclooxygenase (COX)-1/2, have emerged as potent antipyretics and analgesics [1].
However, almost no heat-clearing herbal medicines containing COX-1/2 inhibitors based
on traditional Chinese medicine are being used for alleviating fever. One of the few ex-
amples of plants that are being used is honeysuckle (Hon), which refers to the flower
buds of Lonicera japonica Thunb., possessing as it does potential anti-pyretic and anti-
inflammatory activities, and which is widely used clinically after extraction [2]. So far, more
than 140 phytoconstituents have been identified from honeysuckle extracts. In addition to
essential oils, an abundance of flavones, organic acids, iridoids, and triterpenoid saponins
have also been found [3]. However, the key component responsible for its antipyretic activ-
ity and its corresponding target remain unknown. Therefore, it is important to investigate
the complex mechanism behind antipyretic activity exerted by these active compounds, as
this will provide the knowledge required to precisely tailor therapies for various conditions,
such as exopathogenic diseases, sores, carbuncles, and some infectious diseases.

Natural products (NPs) remain the most prolific source of inspiration for the devel-
opment of drugs [4]. The novel modes of action exhibited by NPs have always made
them a subject of great interest in medicine [5]. With the exploration of NPs has become
more common, increased access to biological and chemical data, and the development of
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data analysis algorithms, and integration of computational methods in NP drug discovery
pipelines may be expected to increase significantly [6]. Data pre-processing using convolu-
tional neural networks reportedly performed better in peak alignment and identification
from liquid chromatography–mass spectrometry (LC–MS), compound identification and
quantification, and integration and interpretation of multi-omics data [7]. Considering
the complex and elusive nature of botanical products and their metabolism in the human
body, metabolomic data generated for herbal drugs are large compared to those for single
compounds. Combining information from different sources, that is, chemical, biochemical,
biological, and in silico, with advanced computer algorithms and effectively handling
big data can open new possibilities for NP research [8]. Unfortunately, the integration of
multi-omics data—those for the structures/components and for their targets—remains
a challenge.

Here, we used honeysuckle as a model herb and its extract to screen the key bioactive
ingredients and potential protein targets in order to explore the antipyretic mechanism
based on metabolites and metabolomic data. LC–MS coupled with molecular networking
(MN) was adopted to analyze the prototype and metabolites in the blood and build a
chemomic profiled network consisting of precursor ions. Virtual docking and annotation
enrichment analyses were used to identify their structures and potential targets. Concur-
rently, a metabonomic assay was employed to detect the major reversal changes that were
regulated by honeysuckle extractive preparation (HEP) administration in a lipopolysac-
charide (LPS)-induced rat fever model. The interpretation of integrated data revealed
chlorogenic acid (CA) and swertiamarin (SWE) as key compounds acting on both the
phosphatidyl-inositol-3-kinase-protein kinase B (PI3K–AKT) and p38 mitogen-activated
protein kinase (MAPK) pathways that are associated with fever.

2. Results
2.1. Global Metabolic Profiling Coupled with MN Identifies the Key Metabolites

Global metabolite profiling based on negative and positive ion modes was performed
to identify key metabolites in plasma derived from HEP, a honeysuckle oral liquid freeze-
dried powder. The MS data of different groups were integrated into the Global Natural
Product Social Molecular Networking (GNPS) platform. As shown in Figure 1A, the MN
map contained 1371 precursor ions, including 297 clusters (node ≥ 2) and 313 single nodes.
Interestingly, compared with the overlapped metabolite distribution in HEP- and HEP-
treated plasma (Figure 1B), a total of eight main prototype components (P1-8) showed a
significant difference in dysregulated metabolites. Based on the exact mass measurements
and fragmentation patterns confirmed from references, as well as the Agilent natural
product MN database, these compounds were identified as CA, SWE, cryptochlorogenic
acid, rutin, secoxyloganin, 3,5-dicaffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, and
sweroside (detailed in Table 1), as shown in Figure 1C. The prototype-derived 37 metabolites
(M1-37) linked by molecular weight profiling are listed in Table S1. The results showed
that the potentially effective compounds were divided into three parts: polyphenol acids,
flavonoids, and iridoids. Based on the m/z intensity response (Figure 1B, bottom panel),
the eight potentially effective compounds were selected and used for the following target
prediction by the PharmMapper website.

Table 1. Related MS information of identified compound in HEP.

Name tR (min) m/z Formula MS/MS (m/z) Fit Score Identification

P1 3.487 355.1027 C16H18O9
115.0277
91.6649 99.7 Chlorogenic acid

P2 16.354 375.1284 C16H22O10
121.6451
137.7673 99.8 Swertiamarin

P3 4.372 355.1027 C16H18O9
84.399

154.1601 99.7 Cryptochlorogenic acid
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Table 1. Cont.

Name tR (min) m/z Formula MS/MS (m/z) Fit Score Identification

P4 14.265 611.1608 C27H30O16
63.9512

360.5813 99.8 Rutin

P5 10.242 405.1403 C17H24O11
68.8756
124.453 99.8 Secoxyloganin

P6 7.249 516.4517 C25H24O12
77.3744

248.0019 99.8 3,5-dicaffeoyl qunic acid

P7 8.225 355.1027 C16H18O9
82.6558

329.2093 99.7 4,5-Di-O-caffeoyl quinic
acid

P8 12.347 359.1334 C16H22O9
62.7029

242.1572 99.8 Sweroside
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olites. The minimum concentration was expressed as dark blue and the maximum concentration 
was expressed as dark red (bottom panel). (C) The structure of the key prototype compounds. 
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ferent metabolites out of the total 952 were found in the quantitation to have a fold-change 
of ≥1.29 or ≤0.91 and corrected p-value ≤ 0.05. The detailed differential metabolites are 
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identified in all the comparison groups (Figure 2C). A total of 23 pathways were annotated 
using KEGG pathway enrichment analysis (Figure 2D). Among these, eight key pathways 

Figure 1. The identification of absorbable ingredients in HEP based on the MN assay. (A) Whole MN
profiling of HEP, blank plasma sample, and administration plasma sample after oral HEP. (B) The
network association diagram showed a clustering of the absorbable ingredients and their metabolites
(top panel), as well as the relative contents of the absorbable ingredients and their metabolites. The
minimum concentration was expressed as dark blue and the maximum concentration was expressed
as dark red (bottom panel). (C) The structure of the key prototype compounds.

2.2. Integrated Analysis Reveals the Core Mechanism of Antipyretic Effects

To explore the underlying molecular mechanisms, the corresponding plasma samples
were subjected to metabolomic analysis by LC–MS. As shown in Figure 2A, 289 different
metabolites out of the total 952 were found in the quantitation to have a fold-change
of ≥1.29 or ≤0.91 and corrected p-value ≤ 0.05. The detailed differential metabolites
are shown in Figure 2B. According to the Venn diagram analysis, only 26 metabolites
were identified in all the comparison groups (Figure 2C). A total of 23 pathways were
annotated using KEGG pathway enrichment analysis (Figure 2D). Among these, eight key
pathways namely, HIF-1, PI3K–AKT, MAPK, TNF, NF-kappa B, FoXo signaling pathways,
inflammatory mediator regulation of TRP channels, and GABAergic synapse, were related
to fever and inflammation.
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2.3. The Antipyretic Effects of CA Combined with SWE 
To verify whether the combination of CA and SWE played an alternative antipyretic 

role with HEP, the same dose of phenolic acids (CA 20 mg/kg) and iridoid glycosides 
(SWE 10 mg/kg) in HEP, which was replaced by Hon oral liquid, was used to evaluate the 
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Figure 2. (A) Volcano plot of the quantitative metabolites in plasma after HEP administration
according to fold change and corrected p-value. Metabolites with significant variation in abundance
are shown as red (up) or blue (down) dots. (B) Heat map of cluster analysis illustrates the key related
metabolites. (C) Metabonomic analysis of plasma. Statistical analysis of differential metabolites
among experimental groups (top panel). Venn diagram analysis of the differential metabolites
(bottom panel). (D) The 23 significantly enriched KEGG pathways. The x-axis shows rich factor; the
y-axis corresponds to the KEGG pathway. The fever and inflammation pathways are shown in red.
(E) The systematic integrative analysis of all the proteins associated with fever based on metabolites
and metabolomics data. The x-axis represents the protein’s fit factor for fever from GeneCards; the
y-axis represents the protein’s rich factor on the key pathway from KEGG; the z-axis represents the
target protein’s docking score rich from PharmMapper. Adjusted p-values of different correlation
scores were used to enable robust statistical interpretation.

To understand the key action nodes of HEP in fever, all associated proteins were
used in the integrated analysis involved in the fever-pathway proteins (273) enriched from
the above metabonomics, target proteins (400) were predicted from the key chemicals via
PharmMapper, and fever-associated proteins (653) were obtained from GeneCards. A 3D
diagram was constructed based on the correlation scores. As shown in Figure 2E, based on
metabolites and metabolomics assays and system integration, only two distinct differential
targets were explored: MAPK3 (ERK1) and AKT1, regulated by CA and SWE, respectively
(detailed in the Supplementary Materials).

2.3. The Antipyretic Effects of CA Combined with SWE

To verify whether the combination of CA and SWE played an alternative antipyretic
role with HEP, the same dose of phenolic acids (CA 20 mg/kg) and iridoid glycosides
(SWE 10 mg/kg) in HEP, which was replaced by Hon oral liquid, was used to evaluate the
antipyretic effects in the LPS-induced rat fever model. As expected, LPS-induced fever can
be significantly suppressed by aspirin. Similarly, the HEP and CA+SWE groups showed
almost the same antipyretic effect within 3 h (Figure 3A, left panel). In the first half of the ob-
servation period, the effect of CA alone was better than that of SWE (Figure 3B, right panel).
For a detailed comparison, the anal temperature of each group was compared at two peak
times. Interestingly, there was no significant difference between the HEP and CA+SWE
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groups. Compared to the SWE group, CA had a better effect in the first 0.5 h (p < 0.001).
The effect of SWE was better than that of CA at 2.25 h (p < 0.05) (Figure 3C,D).
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Figure 3. (A,B) Anal temperature curve of Aspirin, HEP, CA+SWE (left panel) and CA,
SWE (right panel) in the first 3 h after intraperitoneal injection of LPS. Values are given as
means ± standard deviation (SD) (n = 10). (C,D) Anal temperature at 0.5 h and 2.25 h for each
group. ### p < 0.001, Aspirin vs. LPS; ** p < 0.01, *** p < 0.001, drug intervention group vs. LPS;
ˆ p < 0.05, ˆˆˆ p < 0.001, CA vs. SWE; ns, not significant (n = 10).

2.4. The Potential Mechanism of CA and SWE against Fever

To evaluate the effect of CA and SWE on the expression of downstream inflammatory
factors by regulating MAPK3 and AKT1 targets, the expression of interleukin (IL)-1, IL-6,
and prostaglandin E2 (PGE2) was also assessed. As shown in Figure 4A–C, compared
to the LPS group, all groups showed significantly reduced levels of PGE2, IL-1, and IL-6.
As expected, there was no significant difference between the HEP and CA+SWE groups
(p > 0.05). Moreover, the result indicated that CA is better at downregulating IL-1 level than
SWE, both at 0.5 and 2.25 h (p < 0.01). It was suggested to target MAPK3 (ERK1) signaling.
Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) are signal transducers
of IL-1β via the p38 MAPK pathway in inflammation processes [9]. SWE exhibited an
inhibitory effect on IL-6 at 0.5 h (p < 0.001), which was consistent with previous findings
indicating SWE inhibition of phosphorylation of AKT and alleviation of the PI3K–AKT
signaling pathway [10]. Collectively, these findings suggest that the resultant LPS-induced
fever can be rescued by the synergetic effect of CA with SWE and that the combined action
of the p38–MAPK and PI3K–AKT pathways leads to a better antipyretic effect.
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Figure 4. HEP, CA, and SWE downregulated the expression of pro-inflammatory cytokines in LPS-
induced fever rats. The protein expression levels of PGE2 (A), IL-1 (B), and IL-6 (C) in the plasma at
0.5 h and 2.25 h were tested with ELISA kits. ### p < 0.001, LPS vs. self-control; * p < 0.005,** p < 0.01,
*** p < 0.001, drug intervention group vs. LPS; ˆ p < 0.05, ˆˆ p < 0.01, ˆˆˆ p < 0.001, CA vs. SWE; ns, not
significant (n = 6).

3. Discussion

Fever is an acute-phase complex physiological response by a host immune system
against pathogens. The activation of peripheral immune cells by an infectious agent
increases the generation of several inflammatory mediators. The first cytokine induced
by immune challenge is TNF-α, followed by IL-1, IL-6, and other cytokines [11]. Systemic
inflammation is often modeled by administering bacterial LPS, which secretes several
agents, triggering autonomic and behavioral thermo-effector responses that cause either
fever or hypothermia [12]. In mammals, PGE2 is the principal mediator of fever. IL-1
and IL-6 in the blood activate the expression of COX2 and PGS through their receptors on
brain endothelial cells, evoking fever by eliciting PGE2 synthesis [13]. These PGE2 and
pro-inflammatory cytokines induce an increase in body temperature.

As is widely known, the Toll-like receptor (TLR)-mediated PI3K–AKT and p38–MAPK
pathways are involved in resisting pathogenic invasions. These pathways utilize tran-
scription factors, such as NF-kB and AP-1, and further regulate the production of IL-1
and IL-6 [14]. Evidence suggests that the PI3K–Akt, MAPK, and NF-κB pathways partici-
pate in the inflammation process [15]. The extracellular signal-regulated kinases ERK1/2
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and p38 play key roles in the MAPK pathway. The phosphorylation of ERK1/2 and p38
promotes the production of TNF-α, IL-6, and PGE2 [16]. Meanwhile, IL-1β induction of
IL-6 production by activation of the p38 MAPK–NF-κB signaling pathway with a post-
transcriptional mechanism [17], and the expression of IL-6, which is induced by IL-1β, was
significantly reduced by p38–MAPK inhibition [18]. Hence, inhibiting the expression of
IL-1 can simultaneously alleviate IL-1-triggered IL-6 expression and protein secretion [19].

In principle, the absorbed components in vivo, having sufficiently prolonged exposure
may be directly associated with therapeutic efficacy [20]. Therefore, identifying the key
bioactive components via global metabolic profiling, while focusing on the pathological
effects, may be meaningful. In contrast to classic NSAIDs, few COX-1/2 inhibitors have
been identified in commonly used clinical antipyretic herbs. Owing to the large number
of compounds in the herbs and limited information about the huge regulatory network,
accurately determining the most bioactive compound, its target, as well as the mechanism
of action, remains challenging [21].

Here, MN based on approximate hierarchical clustering was used to find the main
exposure prototype or metabolites in the blood from HEP. Chrom Align Net algorithm,
and Mass-MetaSite were used to match and identify these components. The uppermost
bioactive compound was utilized for target prediction using PharmMapper. Integrated
biological data interpretation benefited from multi-omics data conversion and the disease-
associated target database can improve the possibilities for target discovery [22]. Hence, the
multi-dimensional protein targets, including the antipyretic-related targets from GeneCards,
metabolomics-enriched targets from HEP intervention, and molecular docking targets were
integrated. Through our integrated analysis processes, CA and SWE were found to be the
key ingredients. It was known that CA attenuated different stimuli-induced ulcerative
colitis or toxicity through the MAPK–ERK–JNK or MAPK–AKT pathways [23,24]. SWE
was demonstrated to target the AKT PH domain, deactivated the phosphorylation of AKT,
and presented significant anti-inflammatory activity [10]. Organic acids were indicated
as the dominant compounds responsible for anti-inflammatory effects [25]. The above
evidence also supported our results from another aspect.

In conclusion, our findings indicate that CA targets MAPK3, regulating the expression
of both IL-1 and IL-6 and playing a vital role compared to SWE, which acts on the PI3K–
AKT pathway to reduce the production of IL-6 via the AKT target. By attenuating these
principal pro-inflammatory cytokines and their driving PGE2 expression, CA with SWE
synergistically can simulate the effect of HEP complexes for relieving fever. This paper
provides a feasible solution by using metabolite and metabolomics analysis to uncover the
associations of complex systems.

4. Materials and Methods
4.1. Reagents and Chemicals

The sample of HEP directly replaced by honeysuckle (Jinyinhua) oral liquid (lot no. 635031,
each package 20 mL, about 90 mg crude drug per ml) was produced by Zhenao Honeysuckle
Pharmaceutical Co., Ltd. (Xianning, China). Chlorogenic acid (CA) and swertiamarin (SWE)
(purity > 98%) were procured from Meilunbio (Dalian, China). Aspirin was obtained from
Solarbio (Beijing, China). Rat IL-6, IL-1β, and PGE2 enzyme-linked immunosorbent assay
kits were purchased from Thermo Fisher Scientific (Waltham, MA, USA) and LPS from
Macklin (Shanghai, China). Moreover, LC–MS-grade methanol, acetonitrile, and formic
acid (99.5+%) were purchased from Fisher Scientific, Inc. (Pittsburgh, PA, USA) and used
for the preparation of mobile phases and solutions.

4.2. Animals

Experimental Sprague Dawley rats (8 weeks old, male, weighing 200 ± 10 g) were
purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing,
China). All animals were fed a standard diet (Trophic Animal Feed High-tech Co. Ltd.,
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Nantong, China) and given water ad libitum under controlled environmental conditions
(temperature, 22 ± 2 ◦C; humidity, 45% ± 5%; light/dark cycle, 12 h/12 h).

After adaptation to the standard laboratory conditions for two weeks, the experimen-
tal rats were randomly allocated to the following groups (n = 10): control group (Con),
Mod group (LPS, 1 mg/kg), Aspirin (0.5 mg/kg), HEP group (800 mg/kg crude drug),
CA group (20 mg/kg), SWE group (10 mg/kg), and CA+SWE group (20 mg/kg CA plus
10 mg/kg SWE). In addition to the Con group, all groups were established by adminis-
tering intraperitoneal injections at the same dose of LPS (1 mg/kg). After LPS injection,
intragastric administration of Aspirin, HEP, CA, SWE, or CA+SWE was carried out im-
mediately. The rectal temperature was measured with a rectal probe coupled to a digital
thermometer (Taimeng, Sichuan, China) every 15 min for 3 h, and the temperature was
calibrated for 15–30 s before readings were taken. All measurements were performed at a
stable ambient temperature of 23 ± 1 ◦C.

4.3. Plasma Sample Preparation

First, plasma samples were obtained at different time points after oral administration
of HEP (800 mg/kg). Blood samples were taken from retroorbital blood, and 100 µL
of frozen plasma samples were thawed and placed into centrifuge tubes (1.5 mL). The
samples were then thoroughly mixed with 200 µL of methanol and vortexed for 5 min.
The solutions were centrifuged at 8000 rpm/min for 10 min. The supernatants at 0.5 h
were filtered through a 0.22 µm membrane for metabonomic analyses. Similarly, a plasma
mixture at 0.15, 0.5, 1.0, and 2.0 h was used for metabolite identification. Meanwhile,
the plasma after administration was also collected at 0.5 h and 2.25 h and centrifuged
at 8000 rpm/min for 10 min. The supernatants were then used for PGE2, IL-1, and IL-6
analyses by enzyme-linked immunosorbent assay.

4.4. UPLC–MS Analysis for Metabolites

An Align 1290 Infinity II UPLC combined with the 6550 iFunnel quadrupole time
of a flight LC–MS system was used in the proofing and identification of metabolites (the
conditions of chromatographic and MS–MS are described in the Supplementary Materials).
Chrom Align Net software was used to identify the metabolites [26].

4.5. Data Processing

A comprehensive approach, including global metabolic profiling by MN based on
MS–MS coupled with a series of integrated analysis, was used to discover and identify key
compounds. The workflow of functional ligand discovery from metabolic profiling and the
elucidation of the antipyretic mechanism via metabolomic data was performed, as shown
in Figure 5.

For molecular network construction, the MS–MS data for metabolites were collected
and converted to mzXML format using Proteo Wizard software (www.proteowizard.
sourceforge.net, Proteo Wizard, Palo Alto, CA, USA) and uploaded separately to the GNPS
platform (https://gnps.ucsd.edu, UCSD, San Diego, CA, USA) (accessed on 16 November 2021).
The GNPS parameters were set as follows: mass error of less than 0.02 Da, matched peaks
greater than 6, and cosine score greater than 0.50. Next, the merged molecular network
was successfully obtained according to our reported method [27]. Finally, Cytoscape
software v 3.7.1 (www.cytoscape.org, NRNB, Hill St, San Diego, CA, USA) (accessed on
16 November 2021) was used to build the molecular network.

For metabolomic analyses, the operations were performed according to our previous
study [21]. A Q-Exactive HF X mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA) was used for metabolite detection. After pretreatment of the rat plasma by
deproteinization, Compound Discoverer software (version 3.0; Thermo Fisher Scientific,
USA) was used for further data analysis, and the BGI Library, mzCloud, and ChemSpider
databases were used as the search databases.

www.proteowizard.sourceforge.net
www.proteowizard.sourceforge.net
https://gnps.ucsd.edu
www.cytoscape.org
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assay approach. The process including LC–MS combined MN screening to obtain the prototype
compounds and its metabolites; the enrichment of the key target proteins from metabonomics assay;
target prediction of potential bio-active compounds; and integrative analysis and validation of
biological effect.

To identify the key targets, the PharmMapper database (http://www.lilab-ecust.cn/
pharmmapper/) (accessed on 16 November 2021) was used to predict key metabolites from
HEP [27]. Python was adopted for data integration of all proteins, including differential
pathways by metabolomic analysis, potential targets matching by the PharmMapper,
disease proteins associated with fever, and the DAVID database. The intersect protein
was visually displayed using PEAC seq (https://peac.hpc.qmul.ac.uk/) (accessed on
22 November 2021).

4.6. Statistical Analysis

Data are shown as means ± standard deviation. For single comparisons, significant
differences between the means were determined by a one-way ANOVA Ordinary test.
Statistical significance was set at p < 0.05. All data were processed using GraphPad Prism 7
software (GraphPad Software, La Jolla, CA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12020121/s1, 1. Supplementary methods of Plasma
sample preparation, UPLC-MS Analysis for metabolites, 2. Related information of the metabolites of
HEP in MS data, 3. Data of intergrative analysis.
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L.T. and Y.H. (Yiman Han) conducted the experiments; H.W. and X.M. analyzed the data; H.W., G.B.
and Y.H. (Yuanyau Hou) wrote and revised the manuscript. All authors have agreed to the published
version of the manuscript.
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