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Abstract

Background: Long terminal repeat (LTR) retrotransposons are a class of eukaryotic mobile elements characterized by
a distinctive sequence similarity-based structure. Hence they are well suited for computational identification. Current
software allows for a comprehensive genome-wide de novo detection of such elements. The obvious next step is the
classification of newly detected candidates resulting in (super-)families. Such a de novo classification approach based
on sequence-based clustering of transposon features has been proposed before, resulting in a preliminary
assignment of candidates to families as a basis for subsequent manual refinement. However, such a classification
workflow is typically split across a heterogeneous set of glue scripts and generic software (for example, spreadsheets),
making it tedious for a human expert to inspect, curate and export the putative families produced by the workflow.

Results: We have developed LTRsift , an interactive graphical software tool for semi-automatic postprocessing of de
novo predicted LTR retrotransposon annotations. Its user-friendly interface offers customizable filtering and
classification functionality, displaying the putative candidate groups, their members and their internal structure in a
hierarchical fashion. To ease manual work, it also supports graphical user interface-driven reassignment, splitting and
further annotation of candidates. Export of grouped candidate sets in standard formats is possible. In two case studies,

an open-source license.

we demonstrate how LTRsift can be employed in the context of a genome-wide LTR retrotransposon survey effort.

Conclusions: LTRsift is a useful and convenient tool for semi-automated classification of newly detected LTR
retrotransposons based on their internal features. Its efficient implementation allows for convenient and seamless
filtering and classification in an integrated environment. Developed for life scientists, it is helpful in postprocessing
and refining the output of software for predicting LTR retrotransposons up to the stage of preparing full-length
reference sequence libraries. The LTRsift software is freely available at http://www.zbh.uni-hamburg.de/LTRsift under
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Background

Large portions of eukaryotic genomes are repetitive, that
is, the sequences in question appear in more than one
genomic location. Repetitive DNA (in the scope of this
paper also referred to as repeats) can be further subdi-
vided into a hierarchy of categories, the most general of
which are simple repeats — for example, satellite DNA or
telomeres — and interspersed repeats, for example, trans-
posable elements (TE). Interspersed repeats are abundant
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in the genomes of many higher organisms. For example,
about 46% of the human genome [1] and 38% of the mouse
genome [2] consists of interspersed repeats, most of which
are transposons. These, in turn, are further characterized
by their transposition mechanism: class I transposons or
retrotransposons replicate via an RNA intermediate, while
class II transposons or DNA transposons replicate via a
DNA intermediate [3,4].

An important order of retrotransposons are LTR retro-
transposons, which are less common in animals, but
the predominant order in plants. Similar in structure to
retroviruses (Figure 1), they show long terminal repeat
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Figure 1 Structure of a typical long terminal repeat retrotransposon. Adapted from [5]. AP:Aspartic protease; IN: integrase; LTR: long terminal
repeat; PPT: polypurine tract; RH: RNase H; RT: reverse transcriptase; TSD: target site duplication. The numbers below the illustration denote typical
lengths of the respective component. This example is of the copia-like superfamily, as it shows the IN-RT-RH domain order.

(LTR) sequences at their flanks, with adjacent small direct
repeats resulting from target site integration (target site
duplications or TSD). The sequence between the LTRs
typically encodes polyprotein genes, for example, gag and
pol, containing structural proteins for an intracellular
replication compartment as well as enzymatic functions
required to perform the reverse transcription and inte-
gration process. This includes an aspartic protease (AP),
reverse transcriptase (RT), RNase H (RH), and integrase
(IN) function.

Additionally, several other structural elements are
required for successful transposition. These include the
primer binding site (PBS), which is essential as the start
point for reverse transcription [6-8]. Typically the PBS is
8 to 18 base pairs long and expected to be found directly
downstream of the inner 5" LTR boundary. In this region
of 8 to 18 nucleotides, it is also highly complementary
to the 3’ region of a transfer RNA of the host organism.
Another important feature is the polypurine tract (PPT),
needed as a primer for plus-strand DNA synthesis. The
A/G-rich polypurine tracts vary in length and are usually
in the range of 8 to 22 bases [8]. Often a U-rich section
(the so-called U-box) can be found just upstream of the
PPT [9].

The presence of these distinctive structural features
have led to the development of various software tools
using these features as markers to identify potential LTR
retrotransposon insertions (called candidates in the scope
of this paper) [10-14]. These tools do not use any external
reference sequence, an approach called de novo identifi-
cation. The rationale behind this approach is that transpo-
son sequences are typically species-specific and a purely
homology-based identification approach is not guaran-
teed to be successful. Instead, for transposon annotation
in newly sequenced genomes with no or only few related
and annotated genomes, a de novo approach is required.
Some tools also detect internal features of the candidates
and exploit their occurrence to improve the candidate
detection results [13] or output the feature annotations for
further analysis [5].

For about a decade, de novo software tools have been
in use, delivering useful results in a variety of detailed
studies covering LTR retrotransposons in insect [5,15,16],
crustacean [17], mammalian [18,19], avian [20], meta-
zoan [21] and plant [22,23] genomes. In these studies, the

prediction is followed by several postprocessing steps to
clean up the result set and to infer additional informa-
tion from the predicted candidate sequences and features.
For example, it is reasonable to separate all candidates
from the analysis set which do not satisfy a given set of
rules (for example, presence of significant open reading
frames or profile hidden Markov models (pHMM) domain
hits) to identify and discard potential false positives
[5,12,21].

Furthermore, it is desirable to classify each candidate
according to a hierarchical schema consisting of classes,
subclasses, orders, superfamilies and — on the lowest level
— individual families. We will use these terms as defined
in the classification scheme proposed by Wicker and col-
leagues [4]. This schema has been widely accepted despite
some initial discussions regarding its consistency [24] and
originality [25].

It has to be noted that in this paper we will focus on
the order of LTR retrotransposons from the retrotranspo-
son class (class I), as such elements are the result of the de
novo identification tools. However, if more general repeat
detection approaches are used, a preclassification on a
higher level is possible using existing software, for exam-
ple, TEclass [26] on the class level, or REPCLASS [27] up
to the superfamily level.

In the LTR retrotransposon order, several superfami-
lies have been established, for most of which membership
can be determined by the order of protein domains in the
coding region. For example, copia-like elements (IN-RT-
RH configuration) are distinct from gypsy-like elements
(RT-RH-IN configuration). Thus if protein domain loca-
tions are known, subfamily assignment is straightforward.
If protein domain locations are not known, pHMM-
based approaches using superfamily-specific reference
sequences have proven to be successful [21].

A more fine-grained classification groups the candi-
dates into putative families. Most studies perform the
family classification using either sequence-based cluster-
ing of the inter-LTR region of the predicted candidates
[15-17] according to fixed similarity thresholds (for exam-
ple, the 80-80-80 rule [4]), by inferring family membership
from phylogenies [19,20,28] or by using graph clustering
algorithms based on stochastic flow [21], a method that
does not require any arbitrary similarity threshold. Other
methods — though not used in an LTR retrotransposon
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context - follow an aggregation procedure based on pair-
wise distances [29]. Another approach is to obtain sets
of similarity-based clusters per feature (LTR, PBS, PPT,
protein domains and so on), then to combine them adher-
ing to the principle of cluster compatibility [5], arriving
at final family assignments. This approach makes use of
biologically relevant sequence information only and is
expected to work for families containing candidates with
partially deleted or mutated internal regions. A case study
of this method on Drosophila melanogaster candidates
predicted by LTRharvest [14] and annotated using LTRdi-
gest [5] showed that this approach recovers the majority of
the known families in this species, with well-reproduced
reference sequences [5].

However, putting this family classification scheme into
practice is rather complex and time-consuming. A possi-
ble approach would be to augment the tabular file output
of LTRdigest with cluster number data using third-party
matching and/or clustering tools (for example, Vmatch
[30]), then open the augmented table in a spreadsheet soft-
ware (for example, Microsoft Excel or OpenOffice Calc)
and to iteratively sort the candidates by cluster num-
ber, inspecting candidates with identical cluster number
sets and marking compatible groups as putative fami-
lies in the process. Removal of uninteresting candidates
or false positives is in this case only a matter of delet-
ing the corresponding rows in the spreadsheet. While
this manual approach is feasible (but tedious) for smaller
non-mammalian genomes (713 candidates and 25 features
in the D. melanogaster example from [5]), it does not
scale too well with growing candidate sets. This is due
to both the long run times of sorting rows in such soft-
ware and the presentation and/or visualization of results
getting more and more difficult to follow with increasing
candidate and family numbers. Another important issue
is the reproducibility of such a manual approach when
prediction runs are repeated, for example with modified
parameters.

Since the classification as proposed is an algorithmically
well-defined problem, an alternative would be a purely
automatic software implementation of the approach, for
instance using a scripting language. However, a human
expert often would like to inspect and improve the result-
ing family assignments, not only to get an impression of
how the individual families look, but also to verify that no
two families were inadvertently joined, or that one family
could be split up into two at a second glance. Later steps
then would include matching the sequence of a family
representative to a set of reference sequences to identify
relatives to known families, or to create multiple sequence
alignments (MSA) of family members determining varia-
tions across family members. As an alternative to MSAs,
the identification and analysis of units called modules has
been proposed [31].
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The final step, after filtering and classification, is
the preparation of a species-specific reference sequence
library of full-length LTR retrotransposons. Consisting
of one representative sequence per putative family, this
library can then be used as a basis for homology-
based identification and classification of incomplete, non-
autonomous insertions or solo LTRs in the whole genome
sequence. This can be done using well-established soft-
ware, for example, based on RepeatMasker [32].

In this manuscript we propose a de movo analysis
approach of LTR retrotransposons relying on a com-
bination of automatic and manually guided interactive
processing of a given dataset. For this approach a com-
prehensive workbench for LTR retrotransposon candidate
postprocessing with the following features is needed:

e intuitive display of a candidate set (for example,
unclassified candidates or putative families) and its
properties in a flexible, concise table representation

e hierarchical display of detected features for each
candidate, including a linear diagram illustrating the
feature locations and orientations

e convenient maintenance of putative families and
their members via a drag-and-drop interface

e flexible, extensible filtering and reassignment of
candidates based on simple, annotation-based rules

e assisted assignment of candidates to putative families,
based on feature sequence matches, single-linkage
clustering and joining of compatible candidates

e automatic selection of candidates suitable for a
reference library

e automatic annotation of candidates with matches to a
reference library

e input and output of library sequences and
annotations in standard output formats (GFF3 [33]
and FASTA) to ensure interoperability with external
preprocessing and/or postprocessing software.

To address this need we have developed LTRsift, an open
source graphical software tool implementing these fea-
tures. As LTRsift is based on a larger software suite that
also includes LTRharvest [14] and LTRdigest [5], a typical
and complete use case will likely include all three tools.

This paper is structured as follows: after familiariz-
ing the reader with the interface and usage of LTRsift,
we present two case studies showing how the software
can assist a researcher in de novo analyses of complete
genomes. First, we perform the Drosophila melanogaster
analysis from the LTRdigest paper [5], exemplifying the
use of the software. In a second use case, we briefly
describe an analysis from scratch using LTRsift on a mam-
malian genome, specifically the gray short-tailed opossum
(Monodelphis domestica) genome. We show that LTRsift
scales for such larger data sets yielding some interesting
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results. We give a comprehensive discussion of the result
and finally conclude with some remarks on the usability of
the software.

Implementation

This section describes the use of the LTRsift software and
the design of its user interface. We explain the import
of input data into the software and the initial prepro-
cessing. Then we describe the components of the LTRsift
window and show what information they depict and how
they allow curation of the candidate sets. We show how to
define filtering rules, possibly incorporating all the infor-
mation given in the annotation file. Finally, we give some
examples for such rules.

Working with data

All data handled by LTRsift are organized as projects.
A project is a collection of data, consisting of the can-
didate annotation, the sequence set the annotations are
based upon (given as an external encoded sequence file
in the GtEncseq format [34] that is produced by soft-
ware coming with LTRsift), and various metadata (such
as the currently open tabs, parameter sets for classifica-
tion/matching, and so on). A user can create a new project
by selecting the ‘New’ entry from the ‘File’ menu. A series
of dialog windows then guides the user through the steps
of specifying all components of the project. The first step
is to specify a project (file) name as well as the initial
annotation and sequence inputs. This is done by choos-
ing the corresponding GFF3 and GtEncseq files from disk.
The GFF3 annotations have to satisfy the following basic
requirements:

e candidates must be of the Sequence Ontology [35]
type ‘LTR_retrotransposon’,

e additional features (for example, ‘protein_match’,
‘primer_binding_site’, ‘RR_tract’) must be children of
this root type, and

e the GFF3 sequence identifier for all features must
start with ‘seqX’, where X is the sequence number
(0-based) of the corresponding sequence in the
associated genome, for example, ‘seq3’ references the
fourth sequence in the encoded input index.

The GFF3 output produced by LTRharvest and LTRdi-
gest satisfies these requirements. More information about
the input data formats can be found in Additional file 1,
Section 1.2.

If the user chooses to compute the matches required
for the clustering process, then the second step is param-
eterization of the matching and clustering parameters.
LTRsift utilizes the sensitive and efficient sequence com-
parison software LAST [36] to calculate matches if feature
sequences are longer than 80 nucleotides on average.
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If the user has chosen to perform the automatic clas-
sification at this point, the next step is to specify which
features should be used as the basis of classification, that
is, for which features in the annotation cluster numbers
should be compared. In addition, a prefix for automati-
cally assigned family names can be given. Since the notion
of most complete candidates depends on the deviation of
candidates from the group median in terms of LTR and
whole-candidate length [5], deviation thresholds can be
stated as well. All settings can be reviewed and corrected
if necessary before starting the actual import and prepro-
cessing run. This process finally delivers a new project
file, which can later be opened at any time using the
‘Open’ entry from the ‘File’ menu. This allows the user to
continue a previously interrupted session.

User interface

After opening a project file, its content appears in the
main window of LTRsift. The main window is subdi-
vided into four main components (Figure 2). The family
list (Figure 2a) shows the current list of putative fami-
lies, identified by their names. Names are automatically
assigned whenever a new family is created by the classifi-
cation algorithm. However, a family name can be edited at
any time.

A double click on a family opens a new tab holding the
candidate list comprising the family (Figure 2b). Each tab,
labeled with the family name, shows all member candi-
dates of a given family, with columns specifying sequence,
strand, location, LTR and element lengths, and cluster
numbers for all detected features according to a color
code. Colors are user-configurable via a style definition
file. By default LTR, gag-associated domains, AP domains,
RT domains, RH domains and IN domains, as well as
PPT and PBS are displayed in different colors. Candi-
dates which could not be placed unambiguously in one
of the families remain in an ‘unclassified’ tab, as do can-
didates with no cluster numbers (singletons). The rows
making up the candidate list can be sorted according to
the values in any column. Moreover, individual columns
can be hidden to improve legibility on screens with low
horizontal resolution. Candidates can be moved from one
family to another by dragging and dropping the respec-
tive row in the candidate list. Whenever candidates are
deleted from families, they are added to a project-wide list
of unclassified candidates. Candidates deleted from the
list of unclassified candidates will be removed from the
project entirely.

Clicking on an entry in the candidate list displays addi-
tional detailed information. In particular, a hierarchical
tree representation of the candidate features (Figure 2c)
and a linear visualization of the candidate and its com-
ponents (Figure 2d) are displayed. The latter depicts the
candidate together with its genomic location, most likely
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Figure 2 Screenshot of the LTRsift main window. (a) Putative family list, (b) candidate list, (c) candidate details, (d) candidate visualization. The
currently loaded project contains 13,943 candidates from the Monodelphis domestica genome, with the currently selected candidate showing a full
set of detected features (PBS, PPT, protein domains). ORF detection and reference matching have been performed. Additional details, such as PPT
and PBS sequences, Pfam IDs and so on, are available by scrolling to the right in (c). The graphical representation in (d) depicts the retrotransposon
(red) with PPT and PBS as small lines in the two tracks below. The next track shows protein domain matches, coded in different colors. Here
integrase domains are depicted in blue, reverse transcriptase domains in red, protease domains in purple, RNase H domains in gold, and any other
domains in green. The RNase H domain is marked in red because it has been selected in the candidate detail list. The reference match in the track
below (shown in yellow) spans the interior region of the candidate completely, suggesting that it likely is a full-length element. The bottom track
shows open reading frames in blue color. LTR: long terminal repeat; ORF: open reading frame; PBS: primer binding site; PPT: polypurine tract; TSD:
target site duplication.

reading direction and internal features, intuitively spread
out into separate tracks reminiscent of the representation
used in a genome browser such as Ensembl [37].

Augmenting annotations with additional data

LTRsift does not only allow displaying results of the auto-
matic classification, but can also perform additional oper-
ations which add extra information to the annotations
stored in the project. One possible augmentation con-
sists of detecting the longest open reading frames (ORFs)
inside candidates. The ORFs are added to the candi-
date annotations as ‘reading_frame’ features. For cross-
referencing the de novo results with custom sequence
data, LTRsift also allows users to match candidates against

external reference sequences by calling BLAST [38] as an
external matching tool. The parameter sets used for all
matching runs are numbered and stored in the project
both for documentation purposes and for simplifying
multiple runs with varying but similar parameters. LTRsift
allows flexible filtering of candidate sets, based on filter-
ing rules defined in a simple programming language (see
next section for more details). Candidates which do or
do not satisfy the filtering conditions (or boolean combi-
nation thereof) can be either unclassified or moved to a
new family entry created on the fly. These postprocess-
ing steps can either be performed on all candidates, on
all candidates in a family, or on an arbitrary selection
of candidates.
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Filtering rule definitions

Besides the described presentation of candidate sets, LTR-
sift allows for flexible filtering of candidates based on
their internal structure or external data. This is done by
evaluating each candidate with regard to a given chain
of annotation-based rules. Each rule specifies one aspect
of the candidate which is satisfied or not, expressed
via a boolean value (true or false). We call these rules
predicates. For example, the presence of detected pro-
tein domains is a predicate, as is the property of being
Copia-like (or Gypsy-like, for that matter). The predicate
is captured in a rule returning the appropriate boolean
value.

When a filtering run is started, candidates are selected
according to rules, keeping a candidate in its original fam-
ily if the evaluation returns the value false. If it returns
the value true, the desired behavior can be selected by
the user. Either the candidate in question is taken out
of a putative family and put back into the unclassified
set. This means that filtered candidates already in the
unclassified set are deleted from the project altogether.
Alternatively the candidate in question can be assigned
to a separate family, newly created for candidates which
were filtered out in this run. Which one of these options
is used can be selected in the filtering dialog (Figure 3).
Rules are chainable: if more than one rule is given, LTR-
sift allows their combination by requiring that all of them
must be true to filter out a candidate (boolean AND),
or that it suffices to have one of them evaluate to true
(boolean OR).

The rule is stored in a text file which is interpreted by
the software when added to the project. Each filtering rule
contains a set of metadata, such as its author contact,
description, and version to ease distributability and repro-
ducability of results (see Additional file 1, Section 1 for
more details).

As the filtering rules are not built into LTRsift itself, but
rather described in Lua, a powerful but simple program-
ming language [39], the filtering functionality is extensible
which gives a user a maximum amount of flexibility. We
will now show example filtering rules to illustrate how
annotation data are accessed.

Filtering by protein domain presence

As the protein domain coding sequences are the main
basis for the matching and clustering steps leading to fam-
ily assignment, a common task is to remove all candidates
which do not contain at least one domain hit.

This task can be solved by a rule implemented in a
function named filter. This function has access to a
representation of each candidate in the form of a directed
acyclic graph in which nodes represent individual features
(for example, LTR, TSD, PBS, ...) and edges represent
‘part of” relationships between such features. The latter
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indicate, for instance, that an LTR is part of an LTR retro-
transposon, which in turn is part of a repeated region.
The actual rule defined in the programming language
Lua looks as follows:
function filter (candidate_node)

gfi = gt.featurenode_iterator_new
(candidate_node)
node = gfi:next /()

while not (node == nil) do

if (node:get_type() ==
"proteinmatch") then

return false

end

node = gfi:next()

end
return true

end

The rule evaluates whether the candidate contains a
‘protein_match’ feature. The traversal stops and returns
false once a node with the type ‘protein_match’ is found.
If no such node is found, ¢rue is returned. This is the case
when node becomes nil, indicating that all children have
been examined without breaking the loop.

Besides the type, the following additional data are stored
in each node and can conveniently be queried from a
filtering rule:

e the sequence region (for example, chromosome,
contig, and so on) the feature is located on,

® location of the feature on that region in terms of start
and end position (1-based),
strand (forward/reverse),

a numeric score value (the meaning of which depends
on the tool which produced this value, for example,
an E-value),

e a set of key-value pairs containing arbitrary named
attributes (for example, feature name/ID, anticodon
for PBS-binding tRNAs, Pfam ID for matching
pHMMs, and so on).

Filtering by match coverage
Another use case for the filtering component is to separate
candidates with high local sequence similarity to a refer-
ence sequence set from those that do not contain such
similarities. To give an example, a filtering rule which fil-
ters out all candidates not matching a reference sequence
over at least 80% of their length is easily implemented
(Figure 4).

In the first step (lines 2 to 11), the length of the can-
didate is calculated from the start and end positions of



Steinbiss et al. Mobile DNA 2012, 3:18
http://www.mobilednajournal.com/content/3/1/18

Page 7 of 13

Available filter rule files

4PAdd
Full Protein Domain Set 1.0
==RemoVe | Filters out candidates without full protein domain set

Protein Domain Filter 1.0
Filters out candidates without protein domains

Reference Match Filter 1.0
Selects candidates with long reference matches

aNew

S Edit

Author:
Sascha Steinbiss

Author email:
steinbiss@zbh.uni-hamburg.de

Description:

Run filtering on 382 candidates || Cancel

Clicking the button on the lower left starts the filtering process.

Action to perform with filtered candidates:  Unclassify/Delete

Filter rule metadata

Filters out a candidate if it does not contain at least one match for each RT, PR, INT and RH.

Figure 3 Screenshot of the LTRsift filter selection dialog. The left side of the dialog shows the filtering rules added to the project and available
to be used. The right side shows the filtering rules to be applied in the current filtering run. The checkbox next to each rule allows the user to negate
it. This dialog is set to unclassify or delete all candidates not passing the filtering step - in this case, this means all candidates that do not contain
protein domains and no long reference matches. The buttons on the left allow adding rules to the project and removing them again. Moreover
rules can be edited directly from within LTRsift in a simple built-in text editor, avoiding the need to locate and open them in a separate text editor.

Invert?

<)  Selected filter rule files

Full Protein Domain Set 1.0
€| Filters out candidates without full protein domain set

- @ if all filters match (logical AND)

if any filter matches (logical OR)

the node in this connected component with the type
‘LTR_retrotransposon’. We only store the length of the last
occurrence of such a node because in a valid annotation
there is only one such node per connected component.
The length is stored in the variable candidate_length.
If no “LTR retrotransposon” node was found, we are not

looking at an LTR retrotransposon element (lines 12 to
14). This case can occur when filtering annotation files
in which LTR retrotransposon annotations occur besides
other annotations, e.g. gene annotations, which this rule
is designed to ignore. The second step then iterates over
all features again, comparing the lengths of the matches

function filter (candidate_node)

1

2 candidate_length = 0

3 gfi = gt.feature_node_iterator_new (candidate_node)

4 node = gfi:next ()

5 while not (node == nil) do

6 if (node:get_type() == "LTR_retrotransposon") then
7 range = node:get_range ()

8 candidate_length = range:get_end() - range:get_start() + 1
9 end

10 node = gfi:next ()

1 end

12 if (candidate_length == 0) then

13 return true

14 end

15

16 gfi = gt.feature_node_iterator_new(candidate_node)

17 node = gfi:next ()

18 while not (node == nil) do

19 if (node:get_type() == "nucleotide_match") then

20 mrange = node:get_range ()

21 if mrange:get_end() - mrange:get_start() + 1 > candidate_length % 0.8 then
2 return false

23 end

2 end

25 node = gfi:next ()

2 end

27 return true

23 end

Figure 4 Source code (in the programming language Lua) of the filtering rule for selecting/filtering candidates according to reference
match coverage. The function computes the lengths of the candidate and reference matches contained in the candidate. If the length of at least
one reference match exceeds 80% of the candidate length, the function returns false, otherwise true.




Steinbiss et al. Mobile DNA 2012, 3:18
http://www.mobilednajournal.com/content/3/1/18

with 80% of the candidate length (line 21) and returns the
appropriate value in the process (lines 16 to 27).

Additional command-line tools

For very large data sets or for scripted processing (for
example, in an automated pipeline), the filtering and clus-
tering functionality is also accessible using command-line
tools, which are part of the GenomeTools package.

Data export

Candidate sequences (in FASTA format) and candidate
annotations (in GFF3 format) can be exported to files.
LTRsift supports exporting all candidates in the whole
project into a single file as well as exporting the mem-
bers of one or more specific families into one or multiple
separate files. This makes it easy to prepare sequence sets
for subsequent external analysis, for example, multiple
sequence alignment.

Software requirements

LTRsift is intended for use on UNIX-like operating sys-
tems, like Linux, Mac OS X or the BSD family of operating
systems. The GUI is built upon the GTK+ version 2 toolkit
for creating graphical user interfaces [40,41], a wide-
spread library component which is already being used as
the basis of many popular free software packages like the
GIMP image editor [42] or the GNOME desktop environ-
ment [43]. GTK+ is included in the majority of currently
available Linux distributions.

The necessary components for parsing and handling
both sequence and annotation data are provided by
the GenomeTools genome analysis library [44], freely
available from http://genometools.org. For drawing the
schematic illustration of each candidate, the AnnotationS-
ketch engine [45] is used, which is based on the Cairo 2D
vector graphics engine [46] for rendering. Again, Cairo is
a standard library very likely to be present on a recent
graphical UNIX or Linux machine. It can be installed on
Mac OS X using one of several package managers, for
example, Fink [47].

As an external component to compute initial matches
for clustering, the LAST software [36] is used and must
be installed on the system. Likewise, for reference match-
ing the BLAST software (version 2.2 and higher) must be
present in order to use this LTRsift feature.

Also, we provide a statically linked version of LTR-
sift for the Linux platform which does not require any
pre-installed version of the GenomeTools shared library.

Results

To illustrate the use of LTRsift in de novo LTR retrotrans-
poson analysis efforts, we performed example analyses of
the Drosophila melanogaster (fruit fly) and Monodelphis
domestica (gray short-tailed opossum) genomes.
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Results of the Drosophila melanogaster analysis

We utilized LTRsift to semi-manually curate and
postprocess putative LTR retrotransposon families
and potential full-length members in the Drosophila
melanogaster release 5.8 genome [GenBank:AE014134,
GenBank:CM000456, GenBank:AE013599, GenBank:CM
000457, GenBank:AE014296, GenBank:CMO000458, Gen
Bank:AE014297, GenBank:CM000459, GenBank:AEO01
4135, GenBank:AE014298, GenBank:CM000460] from
scratch, detected using LTRharvest and LTRdigest. These
were parameterized with range, similarity and offset
constraints for the detection of LTR pairs, and with
tRNA sequences as well as profile HMMs to annotate
the internal region. These parameters were identical to
the parameters used in previous publications [5,14]. We
refer to Additional file 1 for more details on the param-
eterization of these two external tools. For both the
initial detection and the subsequent LTRsift analysis steps
described below, an Intel Core 2 Duo system (2.4GHz,
4GB RAM, Ubuntu Linux 12.04) was used.

The encoded genome sequence and the sorted GFF3 file
were added to the project using the guided project cre-
ation dialog. Then matching and clustering of all feature
sequences was performed in a matter of minutes, keep-
ing the default parameters in the appropriate dialogs, with
the exception that the query step size (LAST parame-
ter -k) was increased to 10 to speed up the process. We
required matches to span 80% of the shorter sequence and
30% of the longer sequence. For the classification step, all
detected features were used as evidence in the group join-
ing process by selecting all of them in the classification
dialog. As deviation thresholds for putative full-length
candidate detection, an LTR length deviation of 50 bp
and a candidate length deviation of 200 bp were set. No
filtering was done at this time.

After creating the project, the initial classification
resulted in 359 candidates being split up into 48 puta-
tive families, appearing in the putative family list. The
remaining 354 (49.6%) remained unclassified. Afterwards
we discarded all families with less than three members
by using an automatic LTRsift feature which selects such
families and offers to delete them. Of the original 48 fam-
ilies, 37 remained. In the next step, each of the putative
families was individually opened in a new tab and their
members were inspected one after the other by examin-
ing the data displayed in the candidate detail list and the
linear visualization. Special attention was paid to the can-
didate length and the length of the LTRs they contain
as well as their feature composition. Candidates which
obviously lacked features present in the majority of the
members of their family were discarded by deleting them
in LTRsift, placing them back into the group of unclassified
candidates. This was particularly the case when a length
aberration coincided with the loss of a common protein
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domain. This situation was regarded as evidence for a
deletion inside the candidate in question. After inspecting
all groups in this way, we had a closer look at the pre-
viously unclassified candidates by opening the respective
tab and manually joined another 134 of them into four
additional groups, again looking at their details. In addi-
tion to cluster compatibility, this joining was based again
on element and LTR length as well as specific features such
as the presence of ORFs and their lengths. For this man-
ual approach, new empty families were created using the
LTRsift GUI and the respective member candidates were
moved into them using the drag-and-drop functionality.

To evaluate which existing families our de novo iden-
tified families correspond to, we used the reference
sequence matching function in LTRsift to compare all can-
didate sequences with the reference sequence set of LTR
retrotransposons used in our previous work [5], contain-
ing 61 sequences. After matching the reference sequences
to the candidates from within LTRsift using BLASTN
(E-value threshold: 0.01), the results are displayed as an
extra track in the candidate visualization. That is, in the
delivered image the matched candidate region is cov-
ered by a separate feature, while the label of the feature
describes the matched region on the reference. We exam-
ined our putative families for consistency according to the
match features and assigned names which incorporate the
recovered reference family (for example, the group corre-
sponding to the existing mdg3 family was called ‘dmel_1
(mdg3)).

With little effort, we were able to recover 28 of the 61
known families as defined by the reference sequence set
(Table 1). In one case (the family named 412), we obtained
two automatically derived putative families for one refer-
ence family due to the LTR sequences of the candidates
ending up in different clusters, breaking their compati-
bility. The roo family proved to be a difficult family to
recover due to the presence of only short protein domain
matches within their members. However, joining them
on the basis of the LTR sequences alone allowed us to
obtain a putative family of 94 candidates, though not all
of them appeared to be full-length. Another group diffi-
cult to separate was a group of elements belonging to the
Stalker/Stalker2/Stalker3T/Stalker4 families. Members of
all of these were clustered into one large family, possibly
due to the high similarity of their coding sequence.

Seven additional putative families were found which
could not be uniquely matched to any reference fam-
ily. The majority of these consist only of three to five
candidates with widely varying element and LTR lengths.
These candidates are linked only by one protein domain
or LTR sequence match and show short ORFs only. In
some of them, spurious short matches to the Dm88 and
GATE families were found in non-coding areas of these
candidates.
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Table 1 Results for the Drosophila melanogaster use case

Assigned family Reference family Number of candidates

dmel_1 mdg3 12
dmel_3 opus 18
dmel 4 copia 24
dmel_5 springer 6
dmel_6 Burdock 16
dmel.7 diver 8
dmel_8 HMS-Beagle 10
dmel_9 Tirant 19
dmel_10 Tabor 4
dmel_11 Quasimodo 14
dmel_12 Transpac 9
dmel_14 flea 16
dmel_17 invader2 8
dmel_172 invader3 7
dmel_18 Max-element 4
dmel_22 3518 6
dmel_24 McClintock 4
dmel 26 Stalker 25
dmel_32 17.6 18
dmel_33 412 17
dmel_34 412 9
dmel_36 Idefix 5
dmel_39 rover 5
dmel_46 micropia 3
newfam_0 blood 25
newfam_29 HMS-Beagle2 4
newfam_40 297 20
manual gypsy4 7
manual mdg1 17
manual roo 94

This table lists the putative families as assigned during our semi-automatic
evaluation run on the Drosophila melanogaster genome (left column). The center
column shows the name of the known family represented by that putative
family, obtained from matching of the candidate sequence against a reference
sequence set. The rightmost column lists the number of candidates in the
respective family. The dmel_26 group (matched to various Stalker sequences)
was not counted as recovered due to the multitude of non-unique matches to
multiple references. Families with the newfam prefix were obtained by
re-running the classification algorithm on subsets of the unclassified candidate
set. Finally, families marked as manual were derived non-automatically.

We have included the annotation files generated by
LTRsift for this analysis as Additional file 2.

Results of the M. domestica analysis

By contrast, the goal of this analysis was to confirm that
the LTRsift software can handle input data of a scale likely
to be produced in de novo LTR retrotransposon prediction
efforts in large genomes, for example, those of mammals.
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As an example dataset, we applied LTRharvest and LTRdi-
gest to the genome of M. domestica, the gray short-tailed
opossum [48]. It is estimated that 10% of its approxi-
mately 3.5 gigabase genome is comprised of endogenous
retroviruses (ERV) [49,50]. This has been detected in a
homology-based approach searching for protein-coding
sequences known from the Repbase database [51], but not
incorporating the LTRs as structural features for de novo
detection.

The M. domestica sequence (Broad Institute assem-
bly version MonDom5) [GenBank:CM000368, GenBank:
CM000369, GenBank:CMO000370, GenBank:CM000371,
GenBank:CM000372, GenBank:CMO000373, GenBank:
CMO000374, GenBank:CMO000375, GenBank:CM000376]
was downloaded from the Ensembl website [52].

The LTRharvest and LTRdigest runs and the subsequent
LTRsift analysis were performed on the same Linux stan-
dard desktop system equipped with the same hardware as
described above. We used a slightly different set of param-
eters than in the Drosophila case because some peculiari-
ties in the fly genome (such as unusual PBS-tRNA binding
offsets) are not known for the opossum genome. In addi-
tion, we used some extra protein domain pHMMs suitable
for mammals (see Additional file 1, Section 3).

The LTRharvest prediction with default parameters
(see Additional file 1, Section 3) delivered 58,684 candi-
dates. We then utilized the command-line filtering tool to
remove all candidates which did not contain any protein
domain hits, reducing the number of candidates to 13,944.

This set of candidates was then loaded into an LTRsift
project and preprocessed. The matches used for clus-
tering were computed with the same settings as in the
Drosophila case (LAST option -k 10, matches need to
span 80% of the shorter sequence and 30% of the longer
sequence). Full-length member deviation thresholds were
identical as well.

Matching and joining of the 13,944 candidates took
about 30 minutes. As a result of the initial classi-
fication on the basis of the parameters above, 171
putative families were created containing 2,015 candi-
dates altogether. There were initially 11,929 candidates
that were unclassified, and 76 of the 171 initial puta-
tive families contained only two members and were
again discarded using the respective LTRsift function-
ality. This left 95 remaining families comprising 1,863
candidates.

A look at the 95 remaining putative families reveals
that the distribution of candidates across the families is
skewed: 937 of the 1,863 candidates are in two puta-
tive families, one with 722 members and one with 215
members. The candidates in the smaller one are linked
via their LTR and RT clusters only. The linear visual-
ization in LTRsift shows that the location of the RT
matches widely varies across the family members. Only
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very short ORFs are present. This may suggest that this
family of 215 members is composed of non-autonomous
candidates with many mutations. By contrast, the major-
ity of the members of the second, larger putative family
of 722 members contain a full set of protein domain
hits — that is, protease, RT, RH and IN domains. In
most candidates, hits to a protein domain associated with
Gag were found as well. The candidates are consistently
linked on the basis of these protein domain clusters, as
well as their LTR sequence clusters. ORFs are predom-
inantly longer (up to thousands of bases). We matched
these candidates to known M. domestica ERV sequences
downloaded from Repbase using the LTRsift reference
matching functionality, resulting in partial and full-length
matches to the ERV2_MD, ERV37_MD and ERVI11_MD
reference sequences. The other, smaller families, contain-
ing between 3 and 74 members, in many cases showed
full sets of protein domains without being covered by
a reference match, suggesting that there may be poten-
tial for previously undiscovered or unclassified elements.
Some of these protein domains also contain other rel-
evant protein domain hits, such as other Gag domains
(Gag-_p30, Gag_-MA and Gag_p24) or a potential Env/coat
polyprotein (TLV _coat).

To assess the possible number of yet undetected full-
length candidates, we prepared a filter rule selecting only
those candidates with a full set of protein domains. That
is, the protease, RT, IN and RH functions must all be
represented with at least one pHMM hit associated with
that function. We used this rule to select matching can-
didates from the whole candidate set using LTRsift. This
delivered a new group containing 1,009 candidates pass-
ing the filter. Afterwards we used the reference match
coverage filter with threshold 80% to weed out those can-
didates among the 1,009 that were already matched to
a known reference sequence. As a result, we only found
159 candidates with a full set of protein domain hits
which have a match to a reference sequence over at least
80% of their internal sequence or more, leaving 850 still
unmatched and interesting for further analysis. This illus-
trates that LTRsift allows a user to conveniently prepare
interesting subgroups of candidates on the basis of their
features.

Discussion

The advantages of having a specific graphical applica-
tion for classification, postprocessing and curation of LTR
retrotransposon candidates are obvious when compared
with a purely manual approach. No data conversion is nec-
essary when using de novo candidate detection tools that
are able to output the increasingly common GFF3 format
to represent their results. LTRsift is intended to be used
with the LTRharvest and LTRdigest software that satisfy
this requirement.
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Once input data are imported into a project file, the
project and all associated data are loaded quickly, even
when the number of candidates is in the tens of thousands,
as may occur when analyzing large mammalian genomes.
The window configuration of the user interface, includ-
ing all open tabs, is saved with the project, allowing the
user to continue previously interrupted work in the same
environment. LTRsift displays candidates and their family
memberships in an intuitive way, using common GUI con-
cepts like drag-and-drop to support manipulation. A user
familiar with web-based genome browsers can intuitively
understand the visual candidate representation. Features
are shown in color-coded tracks and are labeled with addi-
tional information, such as domain names, match targets,
or reading frame and orientation. The view is extensively
configurable using a style file, making it possible to adjust
both colors and other layout options such as font sizes,
as well as enable or disable the display of specific feature
types.

Filtering rules are powerful while easy to write with
basic programming skills. They support extensive access
to the candidate annotation and can be combined to form
more complex conditions, not only allowing the user to
discard candidates but also to add them to new subgroups
that do or do not satisfy the condition described by the fil-
tering rules. Another advantage is that filtering rules are
self-contained in one text file per rule. This makes it possi-
ble to distribute user-defined filtering rules in the research
community.

The matching, clustering and classification components
used in LTRsift have been designed to be modular, making
it possible to quickly add support for new matching tools,
clustering strategies or classification algorithms. A unified
representation of the candidates as graphs allows the same
for other tasks working on annotations and sequences,
creating new annotations in the process.

The currently implemented ORF detection and refer-
ence annotation components are good examples for such
tasks, employing GenomeTIools functionality and third-
party tools like BLAST to transparently extend the anno-
tation within the graphical interface.

We are not aware of any other tool for this exact task
of supporting postprocessing and curation of de novo LTR
retrotransposon annotations in a fashion similar to LTR-
sift. There is a graphical tool, VisualRepbase [53], available
to display occurrences of TEs, for example, taken from
the Repbase Update database [51] in a genomic context
together with annotations, for example, downloaded from
the NCBI databases. However, VisualRepbase does not
support the formation of families inside the database, nei-
ther does it display the internal structure of the displayed
elements in terms of features. By contrast, LTRsift does
not take the genomic neighborhood of the candidates into
account.
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The classification approach as described in [5] works
well in the Drosophila genome. Nevertheless, a large vari-
ety of clustering and family assignment strategies exists,
and it would be a natural assumption that other, more
sophisticated approaches may work better on candidates
from other genomes. The modular architecture of LTR-
sift allows the user to incorporate alternative classification
strategies in the future, creating a comprehensive and flex-
ible solution for the integration of tools among the diverse
landscape of classification methods.

A basic requirement of our classification approach is the
presence of annotated internal feature sequences, whose
similarities are used to separate candidates into putative
families. Many of the candidates satisfy this requirement.
Unfortunately, in the M. domestica data set no features
were detected in the majority of the candidates. Con-
sequently, these candidates can be either false positives
or non-autonomous copies. While non-autonomous ele-
ments are indisputably important in general, prior anal-
yses have shown that such de novo predicted candidates
are often unreliable and may well be false positives, as we
demonstrated in an earlier use case [5]. However, there are
also non-autonomous elements which still retain internal
features, which can readily be processed using LTRsift and
included in a reference sequence set. This set could then
be used as a starting point for homology-based detection
of more truncated copies in the genome.

World Wide Web-based solutions are becoming
increasingly popular for interactive and sometimes dis-
tributed analysis of structured data sets due to their
platform independence on the user side — only a web
browser is needed to access the data from any loca-
tion with a network connection. We did not follow a
web-based approach for the design and development of
LTRsift. The main reason is that the size of the underlying
genome sequences may well become too large to be con-
veniently uploaded to a web server when analyzing large,
for example, mammalian, genomes. By contrast, the size
of the annotations is of moderate size (approximately 42
MB for the full unfiltered M. domestica candidate set).
The sequence is required to perform sequence-based
analyses like reference matching, ORF finding or simply
to display short motif sequences like PBS and PPT in
the candidate details. Hence uploading the annotation
alone would not suffice to display every interesting bit of
information on the candidates. Instead, we chose to build
LTRsift on an open source GUI platform intended to run
on freely available desktop operating systems. Sharing
project files, for example, via a shared network drive,
allows a distributed annotation.

While parameterization of the filtering rules is cur-
rently only possible by editing the rule files directly, a
useful improvement would be the definition of param-
eter sets, which can then directly be set in the filter
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selection window. This would also allow the use of multi-
ple instances of the same filter with different parameters
without having to copy the file. Another desirable feature
would be support for multiple levels of group member-
ship per candidate. For example, a candidate may appear
in multiple groups, which in this context describe the
candidate on multiple levels: it may appear once in its spe-
cific family, and once in a more general ‘copia-like’ group.
This could be implemented by assigning tags to candi-
dates and allowing queries on the tags to group candidates
together. While functionality to export sequences already
exists, it could be very useful to be able to start exter-
nal tools on given candidate sets (for example, selected
candidates or all members of a putative family). A typical
example for this kind of use would be a multiple sequence
alignment tool such as ClustalX [54] or others. Finally, on
some occasions, exporting the linear candidate visualiza-
tion as an image file would be desirable. Such functional-
ity could easily be implemented as the AnnotationSketch
engine supports output in a variety of vector and bitmap
formats [45].

Conclusions

We have developed LTRsift, a software tool for visualiza-
tion and postprocessing of de novo predicted LTR retro-
transposon annotations. It literally allows the user to ‘sift’
through a possibly large quantity of results from a pre-
diction and annotation software like LTRharvest and/or
LTRdigest, which it was designed to work with. How-
ever, it relies on standard data formats and can also work
on results from other tools, given that the input data
are appropriately formatted. LTR retrotransposons can be
assigned both automatically and manually to groups con-
sidered putative families, which can then serve as a basis
for comprehensive sequence library preparation. To the
best of our knowledge, LTRsift is the first software for this
specific task, implementing not only classification but also
flexible, customizable filtering in a graphical environment.
Relying on a common GUI toolkit from the open source
world, the user interface is familiar to everyday computer
users. LTRsift is efficient enough to allow work with large
datasets consisting of up to tens of thousands of candi-
dates on standard desktop hardware, making it likely to
be used by life scientists preferring a visual, exploratory
hands-on approach to dealing with result data.

Availability and requirements

e Project name: LTRsift

® Project home page:
http://www.zbh.uni-hamburg.de/LTRsift

e Operating system(s): UNIX-like systems, for
example, Linux or Mac OS X

¢ Programming language: C (GUI software), Lua
(filtering rules)
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e Other requirements: GenomeTools version 1.4.2
and higher (not required by the static version), GTK+
2.2.4 and higher

e License: GPL2

Additional files

Additional file 1: Technical information. This PDF file contains
additional information on how to write filtering rules for the LTRsift
software. Besides a description of the rule file structure, it also contains a
documentation of the functions to access the representation of the
candidate annotation and a documentation of the command line tools.
Finally, it lists parameterization details for the example runs.

Additional file 2: Example annotation for D. melanogaster. This
gzipped tar archive contains the annotation GFF3 file created as a result of
our evaluation runs for the D. melanogaster genome, as well as the
corresponding sequence in FASTA format.
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