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Introduction  

Irritable bowel syndrome (IBS) is a functional gastrointestinal 
disorder (FGID) characterized by abdominal pain and changes in 
stool form or frequency. According to the Rome IV criteria, IBS 
can be classified into 4 subtypes based on the predominant clini-
cal symptoms: IBS with diarrhea (IBS-D), IBS with constipation 
(IBS-C), IBS with a mixed stool pattern (IBS-M), and IBS unclas-
sified.1 It was estimated that the prevalence of IBS among different 
countries ranged from 10% to 20%.2 IBS affects the patients’ qual-
ity of life and places a heavy burden on both the healthcare systems 
and society.

The pathophysiology of IBS remains poorly understood, com-
plex, and multifactorial. Abnormal gut-brain interactions, visceral 

hypersensitivity, altered colon motility, and psychological factors 
are considered as the triggers of IBS.3 In addition, the gut micro-
environment has been implicated in the pathophysiology of IBS. 
Patients with IBS have a different gastrointestinal microbiome to 
that of healthy controls.4-9 Jeffery et al6 analyzed fecal microbiota 
and found that subjects with IBS had lower microbiota diversity 
than healthy controls. They showed that the microbiota composition 
and IBS subtypes were associations. They found an increase in Fir-
micutes and a depletion in Bacteroidetes in patients with IBS-C and 
IBS-M. This resulted from an increase in Dorea, Ruminococcus, 
and Clostridium spp., and a decrease in the number of Bacteroide-
tes, Bifidobacterium, and Faecalibacterium spp.9 A meta-analysis8 
indicated that bacterial colonization, including Lactobacillus, Bi-
fidobacterium, and Faecalibacterium prausnitzii, was significantly 
downregulated in patients with IBS-D. Moreover, Botschuijver et 
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al5 found a loss of mycobiome diversity in patients with IBS com-
pared to healthy volunteers. The results showed that the ratio of 
the predominant species, Saccharomyces cerevisiae and Candida 
albicans, increased, but the richness and evenness of the total species 
decreased. 

Recently, gut microbiota-derived metabolites, such as short 
chain fatty acids (SCFAs), amino acid-derived metabolites, and 
bile acids, have been proposed as the possible etiologies of IBS, and 
may play an important role in the development of IBS.10,11 SCFAs 
are the end products of non-absorbed carbohydrates fermented by 
obligate anerobic bacteria in the intestine.12 The most abundant SC-
FAs in the colon were acetate (C2), propionate (C3), and butyrate 
(C4), which occurred in a molar ratio of 3:1:1. SCFAs concentra-
tions are high in the proximal colon and cecum (70-140 mM for 
total SCFAs and 8-40 mM for individual SCFAs) and low in the 
distal colon (10-70 mM for total SCFAs and 1-20 mM for indi-
vidual SCFAs).13,14 Previous reports have indicated that SCFAs 
show promising effects against various diseases, including obesity, 
diabetes, cancer, inflammation, immunodeficiency, pain, and de-
pression.10,15 Increasing evidence has shown altered levels of SCFAs 
and abundance of SCFAs-producing bacteria in patients with IBS 
compared to healthy controls, revealing that SCFAs may affect the 
pathogenesis of IBS.16 

Although intestinal bacteria and their metabolites, SCFAs, may 
be involved in the pathogenesis of IBS, their potential mechanism 
is still unclear. This review aim to summarize the alterations in in-
testinal bacteria and SCFAs in patients with different IBS subtypes 
and explore their underlying mechanisms in the development of the 
disease.

Altered Short Chain Fatty Acids and Short 
Chain Fatty Acids-producing Bacteria in  
Irritable Bowel Syndrome  

It was reported that fecal samples from patients with IBS ex-

pressed significantly higher levels of acetate, propionate, and total 
SCFAs than controls, which positively related to the severity of 
symptoms.17 Altered fecal levels of SCFAs appeared to be associ-
ated with different IBS subtypes. Compared to controls, acetate, 
propionate, and butyrate levels were reduced in patients with IBS-
C and increased in patients with IBS-D.18,19 SCFAs in feces can 
become non-invasive and reliable biomarkers for the primary diag-
nosis of IBS, especially propionate and butyrate.20

Altered levels of SCFAs in feces is related to the distribution of 
intestinal bacteria in patients with IBS. It was reported that patients 
with IBS showed significantly higher counts of Veillonella and Lac-
tobacillus than controls, which are producers of acetate and propio-
nate.17 The number of butyrate-producing Roseburia-Eubacterium 
rectale group was lower in patients with IBS-C than in controls.21 
Ruminococcaceae, Clostridiales, and Erysipelotrichaceae, which are 
butyrate-producing bacteria, decreased in patients with IBS-D and 
IBS-M.22

Short Chain Fatty Acid Receptors  

G protein coupled receptors (GPRs), GPR41(known as 
FFA3), GPR43(known as FFA2) and GPR109A, are known SC-
FAs receptors (Table 1). GPR41 and GPR43 can be activated by 
all the 3 SCFAs, whereas GPR109A is activated only by butyrate.23 
All the receptors are coupled to Gi-type proteins, and GPR43 to 
Gq proteins.24,25 Both GPR41 and GPR43 receptors are expressed 
in enterocytes and enteroendocrine L-cells, which release glucagon-
like peptide 1 (GLP-1) and peptide YY (PYY).26,27 GPR43 is ex-
pressed in 5-hydroxytryptamine (5-HT)-containing mucosal mast 
cells, enterochromaffin cells,27,28 and immune cells such as neutro-
phils and eosinophils. GPR41 is specifically expressed in neuronal 
cells of the submucosal and myenteric ganglia29 and autonomic gan-
glia such as the vagal, spinal dorsal root, and trigeminal ganglia.30 
GPR109A is reported to be present in the intestinal epithelial and 
immune cells such as neutrophils and macrophages.25,31 

Table 1. Short Chain Fatty Acids Receptors Involved in Irritable Bowel Syndrome

Receptor G protein Ligand Cell Refs

GPR41 (FFA3) Gi/o Acetate, propionate, 
and butyrate 

Enteroendocrine cells (L cells) and neuronal cells 23-24, 26, 29, 30

GPR43 (FFA2) Gi/o, Gq Acetate, propionate, 
and butyrate 

Enteroendocrine cells, (enterochromaffin cells and L cells), 
mast cells, and immune cells (neutrophils and eosinophils)

23-24, 27, 28, 29

GPR109A Gi Butyrate Intestinal epithelial cells and immune cells (neutrophils and 
macrophages)

23-25, 31

GPR, G protein coupled receptors; FFA, free fatty acid receptors.
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Potential Mechanism of Short Chain Fatty 
Acids  

Immunity and Inflammation
SCFAs binding to GPR43 and GPR109A in colonic epithelial 

cells induced an increase in intracellular Ca2+ and stimulated K+ 
efflux and hyperpolarisation, thus leading to nucleotide-binding 
domain and leucine-rich repeat protein-3 (NLRP3) inflammasome 
activation.32 The NLRP3 inflammasome triggers caspase-1-depen-
dent processing of inflammatory mediators such as IL-18and IL-
1β, which play key roles in the maintenance of intestinal homeosta-
sis and protection from colitis development.33,34 Through GPR41 
and GPR43, SCFAs activate the extracellular signal-regulated ki-
nase 1/2 and p38 mitogen-activated protein kinase signalling path-
ways in colonic epithelial cells. This recruits leukocytes and activates 
effector T cells in the gut, inducing the production of chemokines 
(C-X-C motif chemokine ligand 1 [CXCL1], CXCL2, and 
CXCL10) and cytokines (IL-6).35 Chemokines and cytokines pro-
moted by SCFAs are critical for immune response, the early clear-
ance of pathogen or late excessive inflammatory response.36 SCFAs 
can promote the differentiation of effector T cells and regulatory T 
cells, such as T helper type 1 (Th1) cells, T helper type 17 (Th17) 
cells, and IL-10-producing T cells, which produce IFN-γ, IL-17, 
and IL-10. This regulation could be independent of GPR41 and 
GPR43 through the inhibition of histone deacetylase (HDAC) 
and regulation of the mechanistic target of rapamycin (mTOR)-
S6K pathway in T cells.37 Alternatively, GPR43-dependent activa-
tion of the mTOR-STAT3 pathway promotes the expression of B 
lymphocyte-induced maturation of protein 1 in T-cells.38

Butyrate can act on GPR109A in colonic macrophages and 
dendritic cells, enabling them to induce the differentiation of 
regulatory T cells and IL-10-producing T cells, and promote the 
expression of IL-10 and IL-18, thereby suppressing intestinal 
inflammation.39 Binding to GPR41, butyrate inhibits HDAC, 
activates the mTOR-STAT3 pathway, and increases the expression 
of aryl hydrocarbon receptor and hypoxia-inducible factor 1α, thus 
upregulating IL-22 production by CD4+ T cells and innate lym-
phocytes.40 IL-22 is central to host mucosal antimicrobial defense. 
The direct inhibition of IL-22 in intestinal innate lymphoid cells 
increases the risk of pathogen-mediated diarrhoea.41,42 In addition, 
butyrate downregulates lipopolysaccharide-induced pro-inflamma-
tory cytokine production by neutrophils and macrophages, includ-
ing IL-6, IL-12, and nitric oxide.43 

These studies have shown that SCFAs can regulate immune 
and inflammatory responses of the intestinal epithelium, protect the 
intestinal mucosa, and maintain intestinal homeostasis.

Intestinal Barrier Integrity
SCFAs, mainly butyrate, increase the secretion of the goblet 

cell-specific mucin 2 (MUC2) and promote reassembling of tight 
junctions, improving the protective effect of the intestinal epithe-
lium and enhancing the integrity of the intestinal barrier.44-46 How-
ever, this protective effect was dose-dependent, with small doses of 
SCFAs increasing MUC2 secretion and vice versa at high doses. 
Propionate and butyrate at concentrations of 1-15 mM have been 
reported to increase MUC2 expression. The effect of butyrate on 
MUC2 mRNA level is mediated through active activating pro-
tein-1 cis-element, acetylation of histone H3 and H4, and methyla-
tion of histone H3 at the promoter.44 One study showed that butyr-
ate stimulated MUC2 production in individual cells by HDAC 
inhibition,45 while another study indicated that a decrease in MUC2 
was associated with the ability of butyrate to repress HDAC.47 This 
was presumably related to the different butyrate concentrations 
used in these studies. SCFAs stimulate the expression of MUC2 in 
intestinal epithelial cells by regulating prostaglandin (PG) produc-
tion in subepithelial myofibroblasts and increasing the PG1/PG2 
ratio.48 These myofibroblasts are an important source of PGs and 
are therefore crucial for mucoprotection. Sodium butyrate has been 
reported to promote the reassembling of tight junctions by inhibit-
ing the myosin light chain kinase/myosin II regulatory light chain 
pathway and phosphorylation of PKCβ2 in Caco-2 cells.49 It acts 
on the Akt signaling pathway to increase the expression of tight 
junction proteins claudin-3, occludin, and zonula occludens-1 in 
the colon in a GPR109A-dependent manner.50

Motility
SCFAs play an important role in the regulation of gut motility. 

This modulation varies depending on the type and dose of SCFAs, 
animal species, and experimental models. In IBS-D mice, the fecal 
SCFA levels were higher and colonic contractions were stronger 
than those in controls. SCFAs dose-dependently (0.5-30 mM) re-
duced the tonic tone, frequency, and amplitude of proximal colonic 
contractions. Exogenous administration of butyrate (5 mM) in-
creased the colonic transit rate.51 In a rat model of IBS, total SCFAs 
potentiated proximal colonic contractions at low concentrations (5-
50 mM) and inhibited contractions at high concentrations (50-150 
mM).52 Studies have investigated the effects of SCFAs on proximal 
and distal colonic contractions in guinea pig models. In the proxi-
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mal colon, butyrate increased the frequency of contractions, whereas 
propionate and acetate decreased the frequency of contractions. In 
the distal colon, butyrate increased and propionate decreased the 
rate of colonic propulsion.53

SCFAs (100 mM) promotes the secretion of 5-HT from en-
terochromaffin cells, acted on 5-HT3 receptors on sensory fibres of 
the vagus nerve, and stimulates the colonic submucosal plexus and 
myenteric plexus. Increased Ca2+ signalling triggers action potential 
generation in neurones, resulting in the release of acetylcholine and 
muscle contraction, which contribute to proximal colonic contrac-
tions.54-56 However, another study came to the opposite conclu-
sion that SCFAs (> 5 mM) inhibited the distal colon contraction 
frequency through the above mechanism, which may be related to 
the different concentrations of SCFAs and the different segments 
of the colon.57 SCFAs promote the release of 5-HT from intestinal 
mucosal cells and activated 5-HT4/5-HT1p receptors in intrinsic 
calcitonin gene-related peptide-containing sensory neurones. It 
causes proximal colon contraction and distal colon relaxation, which 
enhances the peristaltic reflex induced by mechanical stimulation of 
the colonic mucosa and accelerates colonic transit.13,58,59 SCFAs in-
crease intestinal contractility by upregulating L-type calcium chan-
nels in intestinal smooth muscle cells and/or increasing the number 
of interstitial cells of Cajal through 5-HT2B receptors.60-62 The long-
term increase in butyrate can significantly increase the number of 
nitrogenic and cholinergic neurones that promote submucosal and 
myenteric neuromuscular signal transmission in the colon and en-
hance intestinal contraction and peristalsis.63-65 

The short chain fatty acid receptors GPR41 and GPR43 
are considered to be involved in intestinal motility.29 Activation of 
GPR41 in nitrergic and cholinergic neurones in the submucosal 
and myenteric plexus suppresses nicotinic acetylcholine receptor-
mediated neural activity and reduces intestinal motility.66,67 More-
over, the activation of GPR43/GPR41 located in enteroendocrine 
cells releases anorectic PYY and GLP-1, which functionally inhibit 
gut transit.68-71 GPR43 selective agonist stimulated GLP-1 secre-
tion in vivo and PYY secretion in the colonic mucosa.71 Colonic 
infusion of SCFAs, such as propionate, stimulated PYY release via 
GPR3.68,70 Contrary to many previous reports, one study showed 
that SCFAs increased colonic GLP-1/PYY secretion, but this 
seemed to be independent of GPR41 and GPR43.72 

These studies suggest that the effects of SCFAs on colonic 
motility are not absolute. Promotion or inhibition depends on the 
homeostasis of SCFA concentrations in different colonic segments.

Microbiota-Gut-Brain Axis
The microbiota-gut-brain axis is crucial in maintaining homeo-

stasis and may impact psychiatric disorders and IBS. Psychological 
disorders appear to be risk factors for IBS.73 The gut microbiota 
communicates with the brain through the neural (autonomic and 
enteric nervous system), endocrine (hypothalamic-pituitary-adrenal 
axis and enteroendocrine cells), and immune signaling channels.74-76 
SCFAs have been implicated in microbiota-gut-brain axis interac-
tions. However, the results of different studies vary. Studies have 
shown negative correlations between the levels of SCFAs (eg, 
acetate and propionate) and the degree of depression in a patient’s 
stool.77,78 Exogenous SCFA supplementation reduces stress-
induced psychological and behavioral deficits.79 Another study sug-
gested that emotional problems were significantly related to higher 
fecal butyrate levels.80 

Activation of the hypothalamic-pituitary-adrenal-axis is criti-
cal for psychoneurological-related diseases, such as depression and 
anxiety.81 SCFAs attenuate stress-induced behavioral and physi-
ological alterations by downregulating stress signaling and reducing 
the responsiveness of the hypothalamic-pituitary-adrenal axis.79 SC-
FAs modulate the activity of the sympathetic nervous system at the 
sympathetic ganglion level via GPR41. Propionate was reported to 
promote sympathetic activation and adrenaline secretion by activat-
ing GPR41.82 In PC12 cells, the administration of propionate and 
butyrate increased the expression of tyrosine hydroxylase and the 
ability of cells to produce catecholamines.83 In mouse models, gut 
microbiota dysbiosis and its reduction in SCFAs adversely affect 
epinephrine release, and oral SCFA supplementation improves the 
stress-induced epinephrine response.84 Vagus nerve stimulation was 
a form of neuromodulation which provided a treatment for chronic 
pain and depression.85,86 SCFAs such as butyrate can directly ac-
tivate vagal afferent nerve terminals in the gut.87 They stimulated 
vagal afferents by activating GPR41 in vagal neurones.30,88,89

Taken together, SCFAs coordinate pain transmission, depres-
sion, anxiety, and stress through neuroendocrine mechanisms.

Future Perspectives  

The concentration of SCFAs is susceptible to external condi-
tions such as dietary patterns, antibiotics, and probiotics. A low fer-
mentable oligosaccharide, disaccharide, monosaccharide, and polyol 
diet was able to improve bloating, flatulence, diarrhea, and systemic 
symptoms of IBS by reducing microbial fermentation products, 
including SCFAs.90 Dietary fiber intake is beneficial for regulat-
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ing gut bacteria and increasing the production of SCFAs.91 The 
use of antibiotics could lead to sustained changes in the intestinal 
microbiota composition and lower concentrations of SCFAs, which 
is accompanied by a decrease in the immunoreactivity of GPR41 
and GPR43 in the intestinal mucosa.92,93 Although probiotics in-
crease the number of bifidobacteria in the gut, they have no effect 
on SCFA levels.94,95 Fecal microbiota transplantation increased the 
concentration of SCFAs in the stool of patients with IBS and im-
proved their symptoms. Further studies have shown that increased 
butyrate levels are inversely associated with IBS symptoms after fe-
cal microbiota transplantation.96-98 

In addition, a series of agonists of SCFA receptors can affect 
gut function through different mechanisms (Table 2).66,71,99-102 Se-
lective GPR41 agonists are expected to become promising targets 
for the treatment of neurogenic diarrheal disorders because of their 
anti-dynamic and anti-secretory functions.66 Selective GPR43 
agonists inhibit gut transit via the PYY pathways.71 The selective 

GPR43 agonist phenylacetamide-1 stimulates enterochromaffin 
cells and releases 5-HT, which enhances intestinal mucosal de-
fences. However, excessive phenylacetamide-1 leads to injury of the 
intestinal mucosa by decreasing the blood flow.102 

Conclusions  

In the past decade, many studies have explored the relationship 
between SCFAs and IBS. Increasing evidence has revealed an im-
portant role of altered SCFAs in the pathophysiology of IBS. This 
review demonstrates the possible mechanism of SCFAs in IBS in 
terms of inflammation and immunity, intestinal barrier integrity, 
motility, and the microbiota-gut-brain axis (Figure). As discussed 
in this review, SCFAs were considered to exert a vital impact to the 
development of IBS, and modulating the concentration of SCFAs 
or the activity of SCFA receptors may be a new strategy for treating 
IBS. However, limited to different models and conditions of previ-
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Figure. The mechanism of short chain 
fatty acids (SCFAs) in irritable bowel 
syndrome (IBS). The metabolites of gut 
microbiota SCFAs can modulate intes-
tinal epithelial immunity and inflam-
mation, maintain gut barrier integrity, 
alter gut motility, and act as part of the 
microbiota-gut-brain axis, which may 
underlie the potential mechanisms of 
SCFAs in the pathogenesis of IBS.

Table 2. Selective Short Chain Fatty Acid Receptor Agonists Involved in Irritable Bowel Syndrome

Agonist Receptor Function Model Refs

AR420626 GPR41 Stimulate anion secretion, suppress neural activity, and inhibit muscle contractions Rat 66, 99
4-CMTB GPR43 Stimulate anion secretion Rat 99
AZ1729 GPR43 Activated and desensitize of neutrophils Human neutrophil 101
phenylacetamide-1 GPR43 Modulate the intestinal mucosa protection Mice 102
Compound 1 GPR43 Slow intestinal transit Mice 71
Compound 58 GPR43 Activate and desensitize of neutrophils Human neutrophil 101
Compound 110 GPR43 Attenuate intestinal inflammation Mice 100
Compound 187 GPR43 Attenuate intestinal inflammation Mice 100

GPR, G protein coupled receptors.
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ous studies, further studies are required to investigate the mecha-
nism of SCFAs in IBS and to provide more precise therapeutic 
strategies for IBS.
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