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Abstract
Background Recognising the early signs of ischemic stroke (IS) in emergency settings has been challenging. Machine learn-
ing (ML), a robust tool for predictive, preventive and personalised medicine (PPPM/3PM), presents a possible solution for 
this issue and produces accurate predictions for real-time data processing.
Methods This investigation evaluated 4999 IS patients among a total of 10,476 adults included in the initial dataset, and 
1076 IS subjects among 3935 participants in the external validation dataset. Six ML-based models for the prediction of IS 
were trained on the initial dataset of 10,476 participants (split participants into a training set [80%] and an internal vali-
dation set [20%]). Selected clinical laboratory features routinely assessed at admission were used to inform the models. 
Model performance was mainly evaluated by the area under the receiver operating characteristic (AUC) curve. Additional 
techniques—permutation feature importance (PFI), local interpretable model-agnostic explanations (LIME), and SHapley 
Additive exPlanations (SHAP)—were applied for explaining the black-box ML models.
Results Fifteen routine haematological and biochemical features were selected to establish ML-based models for the pre-
diction of IS. The XGBoost-based model achieved the highest predictive performance, reaching AUCs of 0.91 (0.90–0.92) 
and 0.92 (0.91–0.93) in the internal and external datasets respectively. PFI globally revealed that demographic feature age, 
routine haematological parameters, haemoglobin and neutrophil count, and biochemical analytes total protein and high-
density lipoprotein cholesterol were more influential on the model’s prediction. LIME and SHAP showed similar local 
feature attribution explanations.
Conclusion In the context of PPPM/3PM, we used the selected predictors obtained from the results of common blood tests 
to develop and validate ML-based models for the diagnosis of IS. The XGBoost-based model offers the most accurate pre-
diction. By incorporating the individualised patient profile, this prediction tool is simple and quick to administer. This is 
promising to support subjective decision making in resource-limited settings or primary care, thereby shortening the time 
window for the treatment, and improving outcomes after IS.

Keywords Predictive preventive and personalised medicine (PPPM/3PM) · Ischemic stroke · Machine learning · Objective 
clinical data · Disease prediction · Targeted prevention · Patients stratification · Improved individual outcomes

Introduction

Ischemic stroke is a major cause of death 
and disability globally

Stroke is one of the leading causes of morbidity and mortal-
ity worldwide, and the risk factors for stroke are compli-
cated, such as cardiovascular diseases, diabetes, hyperlipi-
daemia, and unhealthy lifestyles [1, 2]. Ischemic stroke (IS) 
accounts for approximately 87% of all stroke cases: ischemic 
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stroke, haemorrhagic stroke, and transient ischemic attack 
[3]. In China, stroke became the top leading cause of years 
of life lost, with rising mortality rates from 106 per 100,000 
persons in 1990 to 149 per 100,000 persons in 2017 [4]. 
China national report showed that the age-standardised 
prevalence of stroke reached 1114.8 per 100,000 persons 
in 2013, imposing an enormous burden on the healthcare 
system [5]. In middle-income countries, only 10% to 20% 
of stroke patients could reach the hospital within 3 h (treat-
ment during this period may still lead to disability). From 
the perspective of predictive, preventive and personalised 
medicine (PPPM/3PM), a prompt and accurate diagnosis of 
the stroke allows for reducing treatment delay and improving 
stroke outcomes [5].

Challenges in triaging patients with ischemic stroke

For now, the diagnosis of stroke in the less developed area 
mainly relies on neurological examination. However, this 
physical examination performed by a less experienced 
examiner can result in diagnoses with lower accuracy and 
reliability [6]. Moreover, the reported prediction models for 
IS diagnosis mostly relied on the conventional statistical 
models. For example, Cox proportional hazard model uses 
selected features for the prediction of disease occurrence, 
which is hard to predict discrete events and has a relatively 
low efficiency [7, 8]. Therefore, to improve subjective deci-
sion making in resource-limited settings, a paradigm change 
from reactive medicine to PPPM/3PM is needed [9]. We, 
therefore, developed and validated the predictive tool of IS 
using individualised IS patient profiles, and we also reported 
its feasibility.

Machine learning is an optimistic strategy 
for ischemic stroke diagnosis in the context 
of PPPM/3PM

In the context of PPPM/3PM, the real-time predictive ana-
lytic tool of IS can be instructive in identifying those at 
high risk who may benefit from the prompt intervention 
e.g. thrombolysis with alteplase and endovascular treatment 
[10–12]. Artificial intelligence (AI) approaches can incor-
porate high dimensional and multivariate data to solve these 
challenging issues [13], and machine learning (ML) is a sub-
domain of AI involving the automatic discovery of patterns 
within data [14]. Among various ML-based models, super-
vised learning tools, e.g. random forest, neural network, and 
extreme gradient boosting (XGBoost), can learn complicated 
structures by incorporating numerous variables with multi-
ple dimensional data [13, 15]. Furthermore, owning to the 
outstanding predictive performance [16], ML approaches 
have been applied to solve real problems in the framework 
of PPPM/3PM, including predictors selection, predictive 

diagnostics, targeted prevention, and personalised medical 
services [9, 17, 18].

Although complex ML models provide high prediction 
accuracy, they are less human-understandable. For critical 
applications in the field of medicine, explanations of ML-
based prediction models are essential for users to understand 
and trust the models established [19]. Extra techniques to 
peer into the black-box ML models are thus needed. Per-
mutation feature importance (PFI) is a global explanation 
method that provides insights into the model’s behaviour 
in general [20]. Apart from global explanation, local inter-
pretable model-agnostic explanations (LIME) and SHapley 
Additive exPlanations (SHAP) are two well-accepted local 
explanation approaches to interpret why a certain predic-
tion was made for a specific individual by incorporating the 
individualised patient profile [21].

Working hypothesis

We aimed to develop and validate an ML-based prediction 
tool for quickly and accurately triaging the patients with risk 
of IS in the framework of PPPM/3PM. We hypothesised 
that supervised ML classification algorithms may yield bet-
ter discrimination between individuals with and without IS 
than that of conventional statistical models. Therefore, in 
this current study, we used cost-effective clinical laboratory 
features to develop and validate ML-based models for the 
classification of IS and employ interpretation methods for 
explaining black-box ML models (Fig. 1).

Methods

Datasets

For developing the ML-based models, a derivation dataset 
of 10,476 subjects (with 4999 IS-present patients and 5477 
IS-absent controls) was used. The participants were obtained 
from the Second Affiliated Hospital of Shandong First Medi-
cal University (SAH-SFMU) between January 2015 and 
December 2019. Clinical data were obtained from the elec-
tronic medical records (EMRs), and the data collection was 
performed after the reference test (computed tomography 
[CT] and/or magnetic resonance imaging [MRI]) and the 
index test (routine haematological and biochemistry tests). 
The outcome IS (ICD-11, 8B11) was defined as a sudden 
symptom of neurological deficit (i.e., sudden weakness, 
numbness, lessened control of one side of the body, sudden 
dimness, loss of vision in one or both eyes, loss of speech, 
dizziness, unsteadiness or sudden fall, and difficulty in wal-
lowing), followed by the diagnosis of CT angiography and/
or MRI, which are the prerequisite conditions to avoid delay-
ing thrombolytic therapy [22].
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To evaluate the performance of the ML-based models, 
an external validation dataset of 3935 adults was used from 
another hospital Dongping People’s Hospital (DPH): 1076 
patients diagnosed with IS, and 2859 IS-absent controls. 
Participants were included from December 2019 to Octo-
ber 2021. Demographic and clinical data (routine haema-
tological parameters and common biochemical analytes) 
were collected. Both SAH-SFMU and DPH hospitals are 
urban-based healthcare providers. IS-absent controls in 
this dataset included the individuals who had undergone 
regular health examinations or presented IS mimics-
related diseases or disorders (such as type 2 diabetes, car-
diovascular diseases, cancer, headache, dizziness, and limb 
numbness) at the same hospital, this was analogous to the 
controls in the SAH-SFMU dataset.

The inclusion criteria of the participants were the fol-
lowing: (1) Chinese Han ethnicity, (2) aged 40–80 years 
old, and (3) without a history of a diagnosis of IS. Exclu-
sion criteria were the following: (1) pregnant or lactat-
ing women, (2) participants with severe mental disorders, 
and (3) individuals with other serious physical illnesses or 
injuries. There were no adverse events reported related to 
the reference test (CT and/or MRI) or the index test (rou-
tine haematological and blood biochemistry tests).

The study protocol was approved by the Clinical Ethics 
Review Committee of the SAH-SFMU (No. 2020–066) 
and the Clinical Ethics Review Committee of the DPH 
(No. DPH-06102021). This retrospective study used de-
identified patient data and met the criteria for IRB Waiver 
of Consent Guidance (45 CFR 46.116) [23]; it was there-
fore permissible to waive the informed consent in this 
research.

Sample size

Since there is no generally accepted method to estimate the 
sample size requirements for a derivation study of the risk 
prediction model, all accessible data were used to max-
imise the power and generalizability of results [24]. The 
reliability of the ML-based model was further examined 
by exploring an external validation dataset.

Machine learning methods and statistical 
analyses

Data pre‑processing

For the derivation dataset, listwise deletion was used to 
omit those samples with missing data (n = 95, the percent-
age of samples with missing data < 10%). For the external 
validation dataset, missing data were imputed with the 
mean of the corresponding feature (continuous distribu-
tion) [25].

Feature standardisation was applied to process the numer-
ical values of different scales aiming to improve model per-
formance [26] (Eq. 1):

where the data (x) is centralised based on the mean (μ) and 
scaled on the basis of standard deviation (σ); the standard-
ised data will follow a distribution with a mean of 0 and a 
variance of 1.

(1)x
∗
=

x − �

�

Fig. 1  Schematic diagram overview of the study. The overview 
illustrates five primary processes: data acquisition, feature selec-
tion, model development, model validation, and model explanation. 
SAH-SFMU, Second Affiliated Hospital of Shandong First Medical 
University; LASSO, least absolute shrinkage and selection operator; 

RFECV, recursive feature elimination with fivefold cross-validation; 
DPH, Dongping People’s Hospital; PFI, permutation feature impor-
tance; LIME, local interpretable model-agnostic explanations; SHAP, 
SHapley Additive exPlanations
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Feature selection

Four accepted feature selection methods were applied to 
the training set based on the free and open-source Python 
packages: (1) univariate logistic regression [27]; (2) the 
least absolute shrinkage and selection operator (LASSO) 
regression (https:// scikit- learn. org/ stable/ modul es/ gener 
ated/ sklea rn. linear_ model. Lasso. html); (3) the recursive 
feature elimination with fivefold cross-validation (RFECV) 
(https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. 
featu re_ selec tion. RFECV. html); (4) the Spearman correla-
tion (https:// docs. scipy. org/ doc/ scipy/ refer ence/ gener ated/ 
scipy. stats. spear manr. html).

For univariate logistic regression, the variables with 
P < 0.05 were considered the significant predictors for IS. 
For LASSO regression, according to the regulation weight, 
the features with non-zero regression coefficients were 
thought to be IS-relevant predictors. RFECV is a wrapper-
type feature selection method; in this study, a support vec-
tor classifier was used in core and was wrapped by RFE for 
helping select features. Spearman correlation determined 
the direction and the strength of the monotonic relationship 
between the outcome IS and the feature, features with cor-
relation coefficient > 0.1 in this study were selected.

To improve the ML-based models’ stability and minimise 
the risks of overfitting, the smallest number of features iden-
tified in the SAH-SFMU training set were selected to build 
the models.

Model development and validation

A sample of 10,476 participants in the derivation dataset 
were randomly allocated into a training set of 8380 (80% of 
the total) and an internal validation set of 2096 (20% of the 
total). This 80/20 split aimed to permit sufficient training 
data to quantify the complexity of the model while maintain-
ing adequate data to internally validate the model.

The training set was used to train the ML-based mod-
els and tune their corresponding parameters. In the training 
set, different parameter combinations were exhausted by the 
grid search algorithm, to determine which set of parameters 
could achieve the best performance. For each set of model 
parameters, 9/10 of data were used for fitting the model 
in turn, and 1/10 of data was used for validation and then 
repeated 10 times. The area under the receiver operating 
characteristic (ROC) curve (AUC) was selected as the score 
of the current parameter combination during the searching 
process [28]. The internal validation dataset was used to 
test the established ML-based models on the unseen dataset.

Six ML classifiers—extreme gradient boosting 
(XGBoost), random forest (RF), neural network (NN), 
logistic regression (LR), Gaussian Naive Bayes (Gaussi-
anNB), and k-nearest neighbours (k-NN)—were employed 

to generate six prediction models of IS [15, 29–35]. In 
supervised learning, these models were chosen because ML 
algorithms can increase the probability of good discrimina-
tive performance. Moreover, the usefulness of six ML-based 
models has been widely reported in medical applications 
[24, 36]. Detailed elucidations for model establishment are 
provided in the Supplementary Information.

Model performance was evaluated mainly by AUC, which 
calculates the area under the ROC curve showing the true 
positive rate (sensitivity, recall) against the false positive 
rate (1-specificity) for various threshold values. 95% con-
fidence intervals of AUC, sensitivity and specificity were 
provided to assess the variability in estimates. Additionally, 
for the purpose of completeness, other metrics were also per-
formed to evaluate the performance of ML-based models in 
this investigation, such as classification accuracy, precision 
score, F1 score, and log loss [31]. Log loss was calculated 
to indicate the confidence of the prediction. The lower the 
log loss value is, the lower the uncertainty and the better 
prediction of the model are for the classification results [37]. 
Illustrations for the ways and metrics of model evaluation are 
provided in the Supplementary Information.

To achieve higher generalizability of the model, we 
applied fivefold stratified cross-validation to obtain the aver-
age value of the performance metrics in the training, internal 
validation, and external validation datasets.

Model explanation

Explainable AI methods involving global and local methods 
were applied in the derivation dataset. To explain the ML-
based prediction model globally, PFI was ranked based on 
the relative importance score of each feature (the higher the 
score is, the more important the feature is to the prediction 
model). In this study, accuracy was chosen as the basis of 
the importance score for classification [38]. To reveal the 
impact of input features for a single sample or an individual 
prediction, local explainable methods (LIME and SHAP) 
were implemented. The LIME method assumes that the 
complex ML model is linear on a local scale and verifies 
the possibility of fitting the simple surrogate model around 
a specific sample that will mimic how the global model 
behaves at that locality [21]. SHAP values were estimated 
based on the XGBoost Tree SHAP algorithm in this study 
and were presented as log odds ratio for the binary classifica-
tion task in this study [39].

Statistical analyses

Continuous variables were reported as median (IQR), and 
categorical variables were presented as count (%). The 
Kolmogorov-Smirnoff test was used to verify the normal-
ity of the data. Mann–Whitney U-test and chi-squared test 
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were performed for continuous and categorical variables 
respectively. A two-sided P < 0.05 was considered statisti-
cally significant.

The analyses were performed using Python (version 3.8.5 
in Jupyter Notebook) and SPSS (version 25.0, IBM Corpora-
tion, Armonk, NY, USA).

Implementation of the web tool for the triage of IS

To implement the ML-based model into clinical practice, 
we designed and established an Automatic System for the 
Triage of Ischemic Stroke (ASTIS) based on those afore-
mentioned ML-based models with the best sensitivity and 
specificity. The haematological and biochemical predictors 
were embedded in the web-based tool. User data interaction 
and visualisation of analysis results were displayed using 
Nginx, HTML JavaScript, and Flask (Python version).

Results

Demographic and clinical characteristics

The demographic and clinical characteristics of the study 
population are presented in Table 1. In the derivation data-
set, 4999 were IS-present patients (47.7%), with similar pro-
portions of patients with IS in the training set (47.3%) and 
internal validation set (49.5%). In the external validation 
dataset, 1076 (27.3%) patients had IS occurrence. For data 
pre-processing in the exploratory data analyses, principal 
component analysis plots for the derivation and external 
validation datasets are shown in the Supplementary Infor-
mation (Fig. S1).

Selected features to develop machine 
learning‑based prediction models

In total, 15 features were selected on training set: one demo-
graphic feature (age), eight routine haematological parame-
ters (neutrophil percentage [NeuP], neutrophil count [NeuC], 
macrophage percentage [MonP], mean corpuscular hae-
moglobin concentration [MCHC], lymphocyte percentage 
[LymP], red blood cell distribution width-CV [RDW-CV], 
mean corpuscular volume [MCV], and haemoglobin [Hgb]), 
and six biochemical analytes (total cholesterol [TC], high 
density lipoprotein cholesterol [HDL-C], uric acid [UA], 
total protein [TP], calculated globulin [CG], and alkaline 
phosphatase [AKP]). Fig. S2 in Supplementary Informa-
tion demonstrated 41 initial features and the results of the 
four feature selection approaches. The characteristics of the 
selected features and corresponding reference intervals are 
detailed in Table 1.

Developing machine learning‑based prediction 
models

Based on the selected features, supervised classification 
algorithms were applied to develop and compare six ML-
based models. The models were fitted on the SAH-SFMU 
training dataset, and the optimised tunning parameters are 
provided in Table S1. Overall, the ML-based model is under-
standable to medical audiences making it feasible to convert 
into a usable prediction tool in clinical practice.

Validating machine learning‑based prediction 
models

Established ML-based models were both internally validated 
using 20% of the SAH-SFMU data and externally validated 
using the entire DPH dataset. The results are incorporated 
into Fig. S3 and show the AUCs of the ML-based models in 
the fivefold cross-validation. The average AUC for each ML-
based model was used as the primary performance metric 
in the training, internal validation, and external validation 
datasets (Fig. 2).

For triaging patients with IS, AUCs of the XGBoost-
based model were 0.92 (95% CI 0.91–0.92) in the train-
ing dataset and 0.91 (0.90–0.92) in the internal validation 
dataset. When applied to the external validation dataset, the 
model yielded an AUC of 0.92 (0.91–0.93).

The XGBoost-based model achieved the highest average 
sensitivities (recalls): 0.81 in the training and internal vali-
dation datasets, and 0.71 in the external validation dataset. 
Whereas the GaussianNB-based model achieved the best 
specificity of 0.87 in the training and internal validation 
datasets, RF- and XGBoost-based models yielded the high-
est specificity in the external validation dataset.

Other performance metrics including classification accu-
racy, precision score, F1 score, and log loss, these results 
were in a relatively narrow range e.g. classification accura-
cies ranging from 0.77–0.84, 0.74–0.83, to 0.70–0.86 for the 
training, internal validation, and external validation datasets 
respectively. XGBoost-based model is the preferable model 
for screening IS patients by offering the highest sensitivity. 
Moreover, the XGBoost-based model had the lowest log loss 
value (0.36 for the training set, 0.38 for the internal valida-
tion set, and 0.33 for the external validation dataset), indicat-
ing that the XGBoost-based model has the lowest amount 
of uncertainty in the prediction. The performance of the 
ML-based models for the training, internal validation, and 
external validation datasets is described in Table 2.

Global and local model explanation

PFI technique was applied to explain how complex black-box 
ML-based models make predictions globally. By ranking the 
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PFI score for each model, the 15 features were separated into 
two subgroups: strong informative vs. weak informative. The 
features allocated in the strong informative subgroup in this 
current study had vital influences on the predictability of the 
IS prediction model e.g. age, NeuC, TP, HDL-C, and Hgb 
are the most important features for IS prediction models. The 
other group included weaker features with less importance, 
such as AKP, CG, and LymP. Detailed PFIs and correspond-
ing rankings for each model are demonstrated in Fig. 3.

The case-level explanation involves the random 
drawing of the sample to make an individual prediction 
via the LIME algorithm and the XGBoost Tree SHAP 
algorithm [40]. The four individual real-time prediction 
scenarios (true positive, true negative, false positive, 
and false negative) are presented in Fig. 4 LIME is able 
to explain the model locally, explanations presented in 

Fig. 4A illustrating the complex XGBoost model could 
be described in an interpretable manner. For example, 
in Fig.  4A(a), this sample was rightly classified as 
an IS patient by the XGBoost model, the explanation 
assigns a weight of high IS risk to older age (67 years), 
low levels of HDL-C (1.1), TP (65.0) and high level of 
NeuC (4.5). These feature values are responsible for the 
XGBoost model’s IS-present prediction. For the SHAP 
method, the same individuals were selected as LIME, 
and local explanations offered by the SHAP force plot 
(Fig. 4B) were consistent with the explanations gener-
ated from LIME.

A SHAP summary plot was also provided to briefly 
display the direction and magnitude of a feature’s effect 
(Fig. 4C). It presents the direction of effects e.g. older 
age (red) had a higher IS risk than younger age (blue), as 

Table 1  Characteristics of Participants

Continuous variables are presented as mean [IQR], categorical variable sex is presented as count (%). Mann–Whitney U-test and chi-squared test 
were performed for continuous and categorical variables respectively

SAH-SFMU Dataset DPH Dataset

Reference 
interval

IS present IS absent P-value IS present IS absent P-Value

(n = 4999) (n = 5477) (n = 1076) (n = 2859)

Demographic characteristics
  Age 63.0 [56.0, 70.0] 53.0 [47.0, 61.0]  < 0.001 67.0 [60.0, 74.0] 56.0 [48.0, 66.0]  < 0.001
Sex (count, %)
  Male 2932 (58.7%) 3304 (60.3%) 0.08 631 (58.6%) 1198 (41.9%)  < 0.001
  Female 2067 (41.3%) 2173 (39.7%) 445 (41.4%) 1661 (58.1%)
Routine haematological parameter
  Neutrophil percentage (NeuP, 

%)
45.0–77.0 63.6 [57.0, 70.6] 57.3 [52.1, 62.5]  < 0.001 61.6 [55.3, 68.2] 58.7 [52.2, 66.2]  < 0.001

  Neutrophil count (NeuC, 
10^9/L)

2.0–7.7 4.1 [3.2, 5.3] 3.1 [2.5, 3.8]  < 0.001 3.6 [2.9, 4.7] 3.4 [2.6, 4.3] 0.001

  Monocytes percentage  
(MonP, %)

3.0–8.0 5.6 [4.5, 6.0] 5.0 [4.2, 6.0]  < 0.001 7.2 [6.1, 8.4] 7.0 [5.9, 8.3] 0.19

  Mean corpuscular haemoglobin 
concentration (MCHC, g/L)

310.0–370.0 333.0 [324.0, 343.0] 330.0 [321.0, 341.0]  < 0.001 337.3 [331.3, 343.3] 335.9 [325.4, 346.9] 0.03

  Lymphocyte percentage 
(LymP, %)

20.0–40.0 28.1 [21.5. 33.8] 34.5 [29.7, 39.5]  < 0.001 28.4 [22.2, 33.9] 31.1 [24.4, 38.3]  < 0.001

  Red blood cell distribution 
width-CV (RDW-CV, %)

11.0–17.0 12.6 [12.0, 13.3] 13.0 [12.4, 13.6]  < 0.001 12.0 [11.3, 12.6] 12.3 [11.9, 13.0]  < 0.001

  Mean corpuscular volume 
(MCV, fl)

86.0–100.0 92.2 [89.0, 96.0] 95.0 [91.0, 98.0]  < 0.001 91.0 [88.0, 94.0] 90.0 [86.9, 93.0] 0.36

  Haemoglobin (Hgb, g/L) 110.0–160.0 137.0 [127.0, 147.0] 147.0 [137.0, 157.0]  < 0.001 130.0 [120.0, 141.0] 137.0 [126.0, 148.0]  < 0.001
Biochemical analyte
  Total cholesterol (TC, 

mmol/L)
3.0–6.5 4.7 [4.0, 5.4] 5.3 [4.7, 6.0]  < 0.001 4.4 [3.7, 5.3] 5.1 [4.4, 5.8]  < 0.001

  High-density lipoprotein  
cholesterol (HDL-C, mmol/L)

0.9–2.2 1.2 [1.0, 1.4] 1.4 [1.2, 1.6]  < 0.001 1.1 [1.0, 1.3] 1.4 [1.1, 1.6]  < 0.001

  Uric acid (UA, μmol/L) 90.0–420.0 299.0 [248.0, 357.0] 331.0 [278.0, 388.0]  < 0.001 280.0 [232.0, 332.5] 268.5 [217.0, 320.0] 0.002
  Total protein (TP, g/L) 55.0–85.0 66.2 [62.2, 70.6] 70.6 [68.2, 73.2]  < 0.001 66.4 [62.2, 70.4] 72.6 [69.7. 75.8]  < 0.001
  Calculated globulin (CG, g/L) 20.0–33.0 25.4 [22.7, 28.2] 27.3 [25.1, 29.5]  < 0.001 28.3 [25.6, 31.3] 30.1 [27.5, 32.7]  < 0.001
  Alkaline phosphatase (AKP, 

U/L)
40.0–150.0 66.0 [55.0, 80.0] 63.0 [52.0, 74.0]  < 0.001 83.7 [69.0, 101.0] 84.8 [71.8, 102.8] 0.16
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well as the distribution of effect sizes e.g. the long right 
tails for routine clinical test values. The long tails repre-
sent features with relatively low importance for the entire 
model that could be greatly important for single individu-
als. Moreover, the most important features determined 
by SHAP values (Fig. 4C) and by PFI (Fig. 3—XGBoost 
model) are the same.

Implementation of the web‑based tool

We established a web-based tool (Automatic System for the 
Triage of Ischemic Stroke, ASTIS, [http:// istri age. com/]) for 
clinical practice that can be widely applied in the evaluation 
of the risk for IS in primary care settings (Fig. 5). By entering 
the 15 clinical laboratory-related features and selecting the 

Fig. 2  Comparison of the ROC curve of six machine learning-based 
models. A-C Performances for training, internal validation, and 
external validation sets. AUC value is obtained via the correspond-
ing ML-based model, 95% AUC confidence intervals are presented 
in the parentheses. Abbreviations: ROC, receiver operating charac-

teristic; AUC, area under the receiver operating characteristic curve; 
XGBoost, extreme gradient boosting; RF, random forest; NN, neu-
ral network; LR, logistic regression; GuaissianNB, Gaussian naive 
Bayes; k-NN, k-nearest neighbours

Table 2  Summary of machine learning-based model’s performance in the training, internal validation, and external validation sets

XGBoost extreme gradient boosting, RF random forest, NN neural network, LR logistic regression; GuaissianNB Gaussian naive Bayes, k-NN 
k-nearest neighbours

ML-based models Sensitivity 
(recall)

Specificity Classification 
accuracy

Precision score F1 score Log loss

Training XGBoost 0.81 0.87 0.84 0.85 0.83 0.36
RF 0.8 0.87 0.84 0.84 0.82 0.38
NN 0.75 0.79 0.81 0.84 0.8 0.43
LR 0.78 0.84 0.82 0.82 0.8 0.41
GaussianNB 0.73 0.87 0.81 0.84 0.78 0.55
k-NN 0.68 0.85 0.77 0.8 0.73 0.49

Internal validation XGBoost 0.81 0.85 0.83 0.84 0.82 0.38
RF 0.79 0.85 0.82 0.83 0.81 0.4
NN 0.79 0.84 0.79 0.8 0.79 0.46
LR 0.79 0.83 0.81 0.82 0.8 0.41
GaussianNB 0.72 0.87 0.8 0.84 0.78 0.56
k-NN 0.66 0.82 0.74 0.79 0.72 0.52

External validation XGBoost 0.71 0.92 0.86 0.78 0.74 0.33
RF 0.7 0.92 0.86 0.79 0.73 0.42
NN 0.54 0.88 0.78 0.68 0.57 0.47
LR 0.32 0.91 0.75 0.63 0.41 0.5
GaussianNB 0.43 0.8 0.7 0.58 0.43 1.03
k-NN 0.43 0.89 0.76 0.6 0.5 0.61
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intended ML-based model, healthcare professionals could use 
ASTIS by visiting the website (http:// istri age. com/) and obtain 
a rapid prediction for the IS. The higher the predicted prob-
ability, the higher the risk of the individual with suspected IS.

Discussion

In this study, we considered the PPPM/3PM strategy for the 
diagnosis of IS and applied the cost-effective clinical labo-
ratory patient profile to develop and validate the ML-based 
prediction models. We found that the selected 15 features 
presented optimal discriminative abilities for predicting 
the risk for IS. This outcome of the ML-based models was 
also externally validated in an independent dataset. Given 
the best AUCs and the highest sensitivities for internal and 
external datasets, the XGBoost-based model was therefore 
the preferred candidate model to identify the patients with 

IS in this current study. Key features for IS prediction were 
defined by measuring and ranking PFIs, and informative fea-
tures included age, total protein, neutrophil count, and high-
density lipoprotein cholesterol. The stability of the XGBoost 
model was verified through LIME and SHAP.

ML‑based models established with routine 
haematological and biochemical features bring 
broad translational applicability to the prediction 
of ischemic stroke

The paradigm shifts from the delayed reactive medicine to 
the proactive PPPM/3PM has been reckoned as a crucial 
transformation of the overall healthcare approach to benefit 
the patient and society at large [41]. Unlike conventional 
medical frameworks, the ML-based models for IS predic-
tion in the PPPM/3PM framework could support the subjec-
tive decision making for healthcare providers, especially in 

Fig. 3  PFI of each machine learning-based model in the deriva-
tion dataset. Each histogram describes the PFI (also known as mean 
decrease accuracy) for a given ML-based model. The PFI is quanti-
fied by assigning the relative importance score for every independent 
input feature, indicating the relative importance of each feature when 
making a prediction. The top rankings are the most important fea-
tures, while those bottom rankings matter least. Abbreviations: PFI, 

permutation feature importance; NeuP, neutrophil percentage; NeuC, 
neutrophil count; MonP, macrophage percentage; MCHC, mean cor-
puscular haemoglobin concentration; LymP, lymphocyte percentage; 
RDW-CV, red blood cell distribution width-CV; MCV, mean cor-
puscular volume; Hgb, haemoglobin; TC, total cholesterol; HDL-C, 
high-density lipoprotein cholesterol; UA, uric acid; TP, total protein; 
CG, calculated globulin; AKP, alkaline phosphatase
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resource-limited settings. This is beneficial for the patients’ 
stratification and the development of the individualised 
treatment.

Previous studies have identified predictive risk factors 
for stroke, the predictors/features are either costly or hardly 
obtained, especially in less-developed regions e.g. the bio-
markers like cytokines and chemokines, or genetic predic-
tors like circulating circular RNAs [42–44]. But in low-/
middle-income regions, for example, in rural areas of China, 
patients normally face difficulty in accessing health facilities 
(such as CT and MRI). Since 2018, the Standards of Service 
Capability of Community Health Service Centres and Town-
ship Health Centres has been issued by China, and primary 
hospitals and healthcare centres are required to be equipped 
with basic medical services and health technologies, such as 
routine haematological and blood biochemistry tests [45]. 
Therefore, on top of the demographic information, identi-
fying features that are easily available even in community 
or town hospitals plays a crucial role in developing rapid 
and accurate diagnostic tools to pre-screen the patients at 

risk for IS [46]. This can greatly support traditional physical 
examination for triaging patients with IS in resource-limited 
settings. Work on the Chinese Longitudinal Healthy Longev-
ity Study (CLHLS) database demonstrated the feasibility of 
ML-based models using demographic and haematological 
features to predict stroke [8]. But such a viable approach 
for the early diagnostic screening of stroke has not yet been 
applied in clinical settings. This is mainly because of the 
complexity of the ML-based models, such as the XGBoost 
model and RF model, which are hard to be explained for 
patients and even for healthcare professionals.

XGBoost‑based model and explainable AI 
techniques enable precise and individualised 
predictions

Recent work showed AUCs of 0.65–0.78, sensitivities of 
63–78%, and specificities of 60–79% in their internal vali-
dations [8, 47]. In contrast, the results in our current study 
showed higher applicability e.g. the XGBoost-based model 

Fig. 4  Interpretation of real-time sample prediction by LIME and 
SHAP. Explanations are based on the XGBoost model trained on the 
derivation dataset. (a–d) True positive, true negative, false positive, 
and false negative observations, respectively. A Four individual pre-
diction scenarios through the LIME algorithm, orange features push 
the IS risk higher whereas blue features push the IS risk lower. B 
The four individual prediction scenarios through the XGBoost Tree 
SHAP algorithm. “Base value” marks the mean of the model out-
put (log odds ratio) over the IS dataset; f(x) is the output value for 
a given observation; red arrows push the prediction towards high IS 
risk whereas blue arrows push towards low IS risk; the size of arrow 
marks the magnitude for the corresponding feature’s effect. C SHAP 

summary plot. Each dot represents a person in this study, the posi-
tion of the dot on the x-axis indicates the feature impact on the mod-
el’s prediction for a specific person. The features listed on the y-axis 
are ordered based on their importance. Abbreviations: IS, ischemic 
stroke; LIME, local interpretable model-agnostic explanations; 
SHAP, SHapley Additive exPlanations; NeuP, neutrophil percent-
age; NeuC, neutrophil count; MonP, macrophage percentage; MCHC, 
mean corpuscular haemoglobin concentration; LymP, lymphocyte 
percentage; RDW-CV, red blood cell distribution width-CV; MCV, 
mean corpuscular volume; Hgb, haemoglobin; TC, total cholesterol; 
HDL-C, high-density lipoprotein cholesterol; UA, uric acid; TP, total 
protein; CG, calculated globulin; AKP, alkaline phosphatase
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developed in this study validates externally at a level of 
0.92 (AUC) with routine haematological parameters and 
biochemical analytes considered, with sensitivities of 70% 
and specificities of 92%. Moreover, global and local explain-
able AI methods (PFI, LIME, and SHAP) can interpret 
how a complex black-box ML model makes a prediction. 
The developed XGBoost-based model in this study can be 
applied as a rapid triaging tool for pre-screening IS patients 
in less-developed regions with limited medical resources. 
This can reduce the delay in the referral of IS patients. The 
predictive analytic tool ASTIS (http:// istri age. com/) was fur-
ther implemented based on the established ML models and 
the SHAP technique, promising a quick and simple predic-
tion for the risk of ischemic stroke.

Recognition of age, neutrophil count, total 
protein, high‑density lipoprotein cholesterol, 
and haemoglobin may help to enhance PPPM/3PM 
strategies to prevent IS

Identification of laboratory values plays an important role 
in developing the accurate prediction tool for IS, since 
the potential application is not only limited to diagnosis 
and clinical differentiation but also can be applied to the 
prognosis and patient monitoring [46, 47]. IS is a multi-
factorial disease with both genetic and environmental 

aetiologies [2]. Over recent years, multi-omics projects 
involving genomics, transcriptomics, proteomics, gly-
comics, and metabolomics have offered an opportunity to 
understand the flow of information (e.g. the environmental 
risk) that underlies disease [48, 49]. To understand the 
complicated mechanisms underlying the IS in the future 
investigations, the different domains of the genetics, epi-
genetics, and environment should be considered; and their 
integrated effects on cerebrovascular health could contrib-
ute to the development of new prevention strategies and 
deeper insights into aetiological processes that lead to IS 
risk and susceptibility [3, 49].

Our current finding is consistent with prior research 
[50–57]. First, both human and animal studies revealed 
that ageing-related changes are associated with IS in terms 
of susceptibility, response to treatment, and prognosis [50]; 
relevant mechanisms may involve the accumulation of 
mitochondrial DNA, resulting in mitochondrial dysfunc-
tion which is associated with ageing-related neurologi-
cal disorders, such as the pathological oxidative stress by 
ischemia–reperfusion damage [51, 52]. Second, a clinical 
trial and a review have revealed the potential mechanisms 
regarding the neutrophil count on IS risk, suggesting the 
interactions with the endothelium and platelets and overac-
tivity of neutrophil extracellular traps may play a key role 
[53, 54]. Third, according to a bio-spectroscopic imaging 

Fig. 5  Website-Automatic System for the Triage of Ischemic Stroke. By inputting the example values of 15 clinical laboratory features and 
selecting the intended machine learning-based model, we can obtain a patient’s risk with ischemic stroke

294 EPMA Journal (2022) 13:285–298

http://istriage.com/


1 3

investigation in IS, the level of total protein was found 
significantly reduced within the neuron soma and neuropil 
within the peri-infarct zone, indicating total protein is an 
effective predictor of IS risk [55]. Fourth, a prospective 
cohort study suggested a low HDL-C level in combina-
tion with a high TG level was associated with increased 
risks of ischemic stroke (in the current study, both HDL-C 
and TG have also been selected as features for the ML-
based prediction model), particularly in those with other 
metabolic risk factors, such as high LDL-C level or with 
diabetes [56]; in a separate study, a significant lower level 
of HDL-C was observed in IS patients than in healthy con-
trols, and this study additionally indicated that the specific 
N-glycosylation profile within immunoglobin G (IgG) may 
involve in pro-inflammatory IgG functionality and further 
lead to the pathogenesis of IS [3]. Last, a hospital-based 
cohort showed that lower haemoglobin levels are associ-
ated with larger stroke infarcts. Possible pathology dem-
onstrated that haemoglobin is an essential oxygen-carrying 
molecule in vivo, and thus plays a crucial role in reducing 
the threshold for ischemia and resulting in higher IS risk 
[57]. In brief, the cost-effective routine haematological and 
biochemical features are reliable and quick for IS predic-
tion when basic laboratory tests are available in the context 
of PPPM/3PM.

Strengths and limitations

The advantage of this current investigation is that the data-
sets are non-synthetic which have higher distributions of 
IS cases and thus more likely to be objective and effective 
as a screening tool. Furthermore, ML algorithms avoid the 
overfitting phenomenon and perform well with feature selec-
tion, and adequate internal as well as external validation 
data to achieve a stable estimate. Fifteen easily accessible 
clinical laboratory features in this study could assist with 
the predictive diagnostics for suspected IS patients. In the 
context of PPM/3PM, this is an appropriate approach in 
IS management from the viewpoints of reasonability and 
cost-effectiveness.

However, there were also limitations. First, excluding 
patients younger than 40 would lead to models that would 
less likely detect stroke in the younger population. Second, 
the case–control ratio at relatively 1:1 may cause model 
performance that is different when models are used at the 
point of care. Further studies are needed to investigate any 
potential impact of false positives/negatives generated in 
real-world settings. Third, this prediction web tool is at a 
pilot stage and a qualitative assessment of the attitude of 
the healthcare providers towards this web tool is needed. To 
this end, we aim to apply our algorithm to the data which 
are generated from multi centres. Healthcare profession-
als could upload the patients’ demographic and real-time 

haematological or biochemistry features to the website 
(http:// istri age. com/) developed by this current study and 
receive a real-time risk-factor analysis. The data could then 
be uploaded to a central database (e.g. in the cloud) which 
would be shared by their doctors.

Conclusions and expert recommendations

In conclusion, we established and compared six ML-based 
models to pre-screen IS, showing that the XGBoost-based 
model has the highest overall predictive power, with AUC 
over 0.91 for the derivation dataset and external validation 
dataset. We also identified that age, NeuC, TP, HDL-C, and 
Hgb have important impacts/weights on the predictability 
of the models, while other predictors such as AKP, CG, and 
LymP are of less contribution to the prediction in the mod-
els. This study demonstrated that widely used clinical labo-
ratory features supported by ML algorithms could serve as 
an effective triaging approach in targeting individuals with a 
high risk of IS (the implementation of ASTIS [http:// istri age. 
com/]), particularly in the resource-limited primary health-
care settings.

This predictive analytic tool is quick and simple to admin-
ister but needs further calibration and validation in a longi-
tudinal study. Further prospective data collection is needed 
using a cohort study design within real-world primary care 
settings, to confirm the validity of this current finding, and to 
further optimise the final risk prediction model. Overall, the 
application of ML-based models combined with explainable 
AI techniques facilitates the development of individualised 
predictive diagnostics, effective targeted prevention, and 
optimal treatments tailored to the personalised patient pro-
file. This is supportive for the paradigm change from reactive 
medicine to PPPM/3PM.
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