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Pervasive coexpression of spatially proximal genes
is buffered at the protein level
Georg Kustatscher1,* , Piotr Grabowski2 & Juri Rappsilber1,2,**

Abstract

Genes are not randomly distributed in the genome. In humans,
10% of protein-coding genes are transcribed from bidirectional
promoters and many more are organised in larger clusters. Intrigu-
ingly, neighbouring genes are frequently coexpressed but rarely
functionally related. Here we show that coexpression of bidirec-
tional gene pairs, and closeby genes in general, is buffered at the
protein level. Taking into account the 3D architecture of the
genome, we find that co-regulation of spatially close, functionally
unrelated genes is pervasive at the transcriptome level, but does
not extend to the proteome. We present evidence that non-
functional mRNA coexpression in human cells arises from stochas-
tic chromatin fluctuations and direct regulatory interference
between spatially close genes. Protein-level buffering likely reflects
a lack of coordination of post-transcriptional regulation of func-
tionally unrelated genes. Grouping human genes together along
the genome sequence, or through long-range chromosome folding,
is associated with reduced expression noise. Our results support
the hypothesis that the selection for noise reduction is a major
driver of the evolution of genome organisation.
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Introduction

The position of genes in the human genome is not random (Hurst

et al, 2004). Genes are often found in pairs or larger clusters that

tend to be coexpressed (Caron et al, 2001; Lercher et al, 2002;

Trinklein et al, 2004). Some of these coordinate transcription of

genes with related functions, for example histone genes and other

clusters resulting from gene duplication. However, the majority of

closeby, coexpressed human genes appear not to have a higher

functional similarity than random gene pairs (Hurst et al, 2004;

Williams & Bowles, 2004; Li et al, 2006; Purmann et al, 2007;

Michalak, 2008; Xu et al, 2012). For example, 35 DNA repair genes

are transcribed from bidirectional promoters, but none of their

paired genes is involved in DNA repair (Xu et al, 2012). This raises

intriguing questions: Why are functionally unrelated genes clustered

in the genome and how can the cell tolerate their coexpression?

Pioneering work in yeast identified the selection for reduced gene

expression noise as a key driver for the evolution of chromosome

organisation (Batada & Hurst, 2007; Wang et al, 2011). A major

cause of gene expression noise is thought to be the random fluctua-

tion of chromatin domains between an active and inactive state,

causing mRNAs to be synthesised in short, stochastic bursts (Raj

et al, 2006). Clusters of active genes may mutually reinforce their

open chromatin state, minimising stochastic chromatin remodelling,

and thereby reduce expression noise (Batada & Hurst, 2007; Wang

et al, 2011). Similarly, genes flanking bidirectional promoters have

lower expression noise than other genes, even if one of the diver-

gent partners is a noncoding RNA (Wang et al, 2011). Noise-

sensitive genes, such as those encoding protein complex subunits,

are enriched among bidirectional pairs, but neither in yeast nor in

human do any of these pairs encode two subunits of the same

protein complex (Li et al, 2006; Wang et al, 2011). Consequently, it

has been suggested that bidirectional promoters may drive noise

reduction rather than the coexpression of functionally related genes

(Wang et al, 2011).

The noise reduction model not only provides a potential explana-

tion for the occurrence of clusters of functionally unrelated genes,

but also predicts that such genes may be coexpressed (Wang et al,

2011). In yeast, chromatin-modifying enzymes are major contribu-

tors to gene expression noise (Newman et al, 2006) and chromatin

remodelling drives the incidental coexpression of neighbouring,

functionally unrelated genes (Batada et al, 2007). This coexpression

may be due to a passive mechanism, whereby random transitions

between open and closed chromatin simultaneously expose all

genes within a chromatin domain to the transcriptional machinery.

Alternatively, for very close genes such as those with bidirectional

promoters, the up- or downregulation of one gene may directly

affect the transcriptional status of its neighbour (Wang et al, 2011).

Indeed, such a “ripple effect” of transcriptional activation has been

observed in yeast and humans (Ebisuya et al, 2008). The noise and
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expression levels of transgenes also vary with their insertion site, as

a result of both domain-wide effects and interference with individ-

ual neighbouring genes (Gierman et al, 2007; Chen & Zhang, 2016).

Transgenes can also affect the mRNA expression levels of endoge-

nous genes located close to the insertion site (Akhtar et al, 2013).

If the transcription of noise-reduced, clustered genes is unduly

influenced by their neighbours, how can individual genes reach

their optimal expression levels? Notably, gene expression is usually

measured at the mRNA level. However, protein levels are buffered

against certain transcript fluctuations (Liu et al, 2016), such as

those caused by stochastic transcription initiation (Raj et al, 2006;

Gandhi et al, 2011) and genetic variation between individuals

(Battle et al, 2015) and species (Khan et al, 2013). The abundance

of some proteins can also be buffered against gene copy number

variations (Geiger et al, 2010; Stingele et al, 2012; Dephoure et al,

2014). We therefore speculated that protein abundances may also

be buffered against regulatory interference between genes in close

spatial proximity.

Results

Coexpression of bidirectional gene pairs is buffered at the
protein level

We investigated the expression of 4,188 genes across 60 different

human lymphoblastoid cell lines (LCLs), for which mRNA (Pickrell

et al, 2010) and protein abundances (Battle et al, 2015) have been

reported (Fig 1A, Dataset EV1). These genes are highly expressed in

all human tissues and their promoters are in active chromatin states

(Appendix Fig S1). Although constitutively active, expression levels

of these “housekeeping” genes vary between LCLs, as a result of

genetic and other differences, including age and growth conditions

(Akey et al, 2007; Stark et al, 2014; Yuan et al, 2015). The LCL cell

line panel has been instrumental in identifying expression quantita-

tive trait loci, that is DNA sequence variants that specifically influ-

ence the expression level of one or more genes (Albert & Kruglyak,

2015). Here, instead of assessing how a gene’s expression level

depends on the genotype, we analyse how it is influenced by the

expression of other, closeby genes. LCLs are a valuable test system

as their genome structure and regulatory elements have been

mapped at unparalleled resolution (Lieberman-Aiden et al, 2009;

Ernst et al, 2011; ENCODE Project Consortium, 2012; Rao et al,

2014).

First, we analysed gene pairs that are transcribed from bidirec-

tional promoters. These are commonly defined as genes that are

found in head-to-head orientation with < 1 kb between their tran-

scription start sites (TSSs) (Trinklein et al, 2004). Out of 167 such

gene pairs in this dataset, the mRNA abundances of 31 (19%)

are strongly and significantly co-regulated across LCLs (Pearson’s

correlation coefficient, PCC > 0.5, BH-adjusted P-value < 0.001).

However, protein co-regulation is attenuated or buffered for 28 of

these (Fig 1B, Appendix Table S1). Literature analysis revealed that

the buffered gene pairs generally have unrelated biological func-

tions, in contrast to the three gene pairs whose co-regulation is

sustained at the protein level (Appendix Table S1).

We next considered the 929 non-bidirectional gene pairs with up

to 50 kb between their TSSs, regardless of their orientation (Dataset

EV2). Although these pairs do not share a promoter region, we find

that 22% have co-regulated mRNA abundances (PCC > 0.5, BH-

adjusted P < 0.001). However, only 3% are also co-regulated at the

protein level (Fig 1B).

Genes with similar functions have co-regulated mRNA and
protein abundances

To confirm that the different impact of gene proximity on mRNA

and protein abundances reflects a biological phenomenon, rather

than simply a difference in data quality, we assessed the co-regula-

tion of genes with known functional links, irrespective of their

genomic position. We analysed subunits of the same protein

complex, enzymes catalysing consecutive reactions in metabolic

pathways and proteins with identical subcellular localisations. In all

cases, we observe strong co-regulation on mRNA and protein levels,

but co-regulation of proteins is significantly stronger than that of

mRNAs (Fig EV1, P < 3 × 10�16). Therefore, data quality appears

not to be limiting. Instead, the observed differences between mRNA

and protein co-regulation indicate that post-transcriptional processes

eliminate co-regulation of genes which are related spatially, but not

functionally.

A fraction of closeby genes is enriched for similar functions

Our observation that only 3% of closeby genes have co-regulated

protein abundances appears to contrast with the fact that genes in

close genomic proximity are enriched for similar functions

(Thévenin et al, 2014). However, functional enrichment does not

exclude the possibility that the bulk of closeby gene pairs does not

share similar functions. For example, we find that co-regulation of

transcripts and proteins from closeby genes is more common than

for random protein pairs (Fig 1B), and this enrichment is highly

significant (3% versus 0.4%, P < 4 × 10�14).

To analyse the relationship between gene distance and func-

tion more systematically, we assessed functional associations

between our gene pairs using the STRING database (Szklarczyk

et al, 2017). We considered gene pairs to be functionally associ-

ated if their STRING score, that is the likelihood of the associa-

tion to be biologically meaningful, specific and reproducible, was

> 0.7. Using this comprehensive definition, we find that 4.5% of

closeby gene pairs, that is those with < 50 kb between their TSSs,

are related functionally (Fig EV2A). As observed by Thévenin

et al, we find this to be a significant enrichment over gene pairs

that are farther apart. Likewise, gene pairs from the same chro-

mosome are enriched for similar functions relative to those from

different chromosomes. Nevertheless, the extent of mRNA co-

regulation (22%) strongly exceeds co-function, and mRNA co-

regulation of most closeby gene pairs is not sustained at the

protein level (Fig EV2A).

Notably, a similar analysis in yeast has shown that adjacent

genes tend to have correlated mRNA expression and are statistically

enriched for similar functions (Cohen et al, 2000). However, in

striking agreement with our observations, only about 2% of these

coexpressed neighbouring gene pairs have related functions (Batada

et al, 2007) and only for these is gene order evolutionarily

conserved (Hurst et al, 2002). Coexpression of neighbouring genes

has also been observed in Arabidopsis thaliana, but only a fraction
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of the observed cases could be explained through a shared function

(Williams & Bowles, 2004).

Long-range gene co-regulation leads to coordinated mRNA but
not protein expression

The influence of gene distance on co-regulation of transcripts is not

limited to genes in close proximity. As seen in the example of chro-

mosome 11, mRNA co-regulation extends over many megabases but

does not affect protein abundances (Fig 1C). Although co-regulation

generally declines with increasing gene distance, such long-range

effects are unlikely to result from transcriptional interference in cis.

A major co-regulation peak of genes that are more than 50 Mb apart

on chromosome 11 suggests that long-range chromosome folding

may be involved. In agreement with this, all chromosomes have

distinct co-regulation curves (Appendix Fig S2).

The co-regulation map of chromosome 11 shows large patches of

genes whose transcripts are coordinately up- and downregulated

(Fig 1D). Importantly, no corresponding co-regulation is observed

on the protein level (Fig 1E). However, the mRNA co-regulation

map shows a striking similarity to physical associations observed

for our gene set, as extracted from existing Hi-C data (Rao et al,

2014; Fig 1F). The Hi-C contact matrix of chromosome 11 is corre-

lated with the mRNA co-regulation map (PCC 0.21, P < 2 × 10�318),

but not the protein map (PCC 0.00, P = 0.4). Similar mRNA

co-regulation patches can be observed on other chromosomes

(Fig EV3) as well as between different chromosomes (Fig EV4).

Generally, both intra- and interchromosomal co-regulation patches

A B C

D E F

G

Figure 1. Spatial proximity of genes affects mRNA but not protein regulation.

A We analysed previously reported mRNA and protein abundances in 59 lymphoblastoid cell lines (LCLs), relative to a reference sample.
B Genes transcribed from bidirectional promoters frequently have co-regulated mRNA abundances, but only a fraction of these also have co-regulated protein

abundances (left). The same is true for non-bidirectional gene pairs whose transcription start sites (TSS) are < 50 kb apart, irrespective of their orientation (right)
(*P < 0.05, **P < 2 × 10�7, ***P < 4 × 10�14 based on Fisher’s exact test).

C mRNA co-regulation of gene pairs on chromosome 11 decreases with chromosomal distance over many megabases, but not monotonously. Protein co-regulation is
unaffected by genomic distance.

D mRNA co-regulation map for chromosome 11 showing large patches of co-regulated (brown) and anti-regulated (blue) gene pairs. Four large, co-regulated patches
are highlighted (i–iv).

E No regulation patches exist on the protein level.
F mRNA co-regulation patches partially coincide with physical associations between genes derived from Hi-C data (Rao et al, 2014). Numbers in grey box show the

Pearson correlation between the Hi-C map and mRNA (blue) or protein (red) co-regulation maps.
G Patches i, iii and ii, iv broadly coincide with genome subcompartments A1 and A2, respectively.
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correspond to areas with increased Hi-C contacts (Appendix Table S2).

Some chromosomes have more prominent patches than others

(Fig EV3). Chromosome 19, which is short but exceptionally

gene-dense, is unique in forming a single large co-regulation patch

(Fig EV3C). Importantly, none of these mRNA co-regulation patches

are reflected at the protein level (Figs EV3 and EV4, Appendix Fig

S2). This suggests that regulatory interference between genes that

are close in 3D could be associated with similar non-functional

mRNA co-regulation as observed for neighbouring genes in the

genome sequence.

We next sought to determine which structural features of the

genome give rise to mRNA co-regulation patches. Four large mRNA

co-regulation patches can be observed on chromosome 11 (labelled

i–iv in Fig 1D). Co-regulation patches differ widely in size but often

span many megabases, likely reflecting broad architectural features.

Notably, promoters and enhancers typically interact on a smaller

scale, within topologically associated domains (Gibcus & Dekker,

2013). However, co-regulated groups of genes are more reminiscent

of genome compartments. Genome compartments were first identi-

fied on the basis of long-range interactions mapped by Hi-C, which

showed that open and closed chromatin spatially segregate into two

genome-wide compartments (Lieberman-Aiden et al, 2009). The

compartments containing active and repressive chromatin were

designated A and B, respectively. A high-resolution Hi-C map of the

genome in LCLs subsequently identified that these compartments

segregate further into six subcompartments: A1-2 and B1-4 (Rao

et al, 2014). Genomic loci within each subcompartment tend to be

associated with each other more often than with loci from other

subcompartments, that is they are in closer spatial proximity. We

find that co-regulation patches i and iii of chromosome 11 align with

subcompartment A1 and patches ii and iv align with subcompart-

ment A2 (Fig 1G). These are the two subcompartments of the

genome formed by transcriptionally active chromatin, which is

expected given that we analyse housekeeping genes. Interestingly,

genes across patches i and iii are co-regulated, as are genes across

patches ii and iv, suggesting that co-localisation in subcompart-

ments may contribute to the existence of these patches.

Genes with co-regulated mRNAs co-localise in genome
subcompartments

To assess systematically the overlap of co-regulated gene groups

with genome compartments, we clustered genes by co-regulation.

We found four transcriptome regulation groups T1-4 (Fig 2A and

Dataset EV3), explaining more than 50% of the total variance

(Appendix Fig S3). Transcripts within each group are co-regulated

(Fig 2A and B). Genes from T1 and T2 are strongly enriched for

subcompartments A2 and A1, respectively (Fig 2C). Curiously, they

are anti-correlated, that is when T1 genes are upregulated, T2 genes

tend to be downregulated, and vice versa (Fig 2B). Co-regulated

genes of the T3 and T4 groups are also enriched for A1 and A2

subcompartments, respectively. However, they are independent of

T1 and T2, that is there is neither a positive nor a negative correla-

tion between T1/T2 and T3/T4 (Fig 2B). Therefore, while subcom-

partments A1 and A2 are strongly related to transcriptome

regulation groups, they are not sufficient to explain them.

Genome compartments and subcompartments were defined

solely based on their physical interaction patterns, but also have

A

B

C

D

E

Figure 2. Transcriptome and proteome regulation are driven by
different factors.

A k-means clustering of genes based on their mRNA or protein abundance
changes across LCLs.

B Median Pearson’s correlation coefficients (PCCs) for each transcriptome and
proteome k-means cluster. Genes assigned to different k-means clusters
can either be anti-regulated (e.g. T1 and T2) or not correlated (e.g. T1 and
T3). k-means clusters formed by genes that are co-regulated at the mRNA
level are not generally co-regulated at the protein level, and vice versa.

C Transcriptome clusters are strongly enriched for subcompartment A1 or A2.
Dashed lines indicate the percentage of genes expected if
subcompartments were evenly distributed across clusters.

D Proteome clusters are mainly composed of proteins from distinct
subcellular locations. Dashed lines indicate the percentage of genes
expected if subcellular locations were evenly distributed across clusters.

E Genomic and epigenomic features enriched in each cluster relative to the
whole dataset.
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different genomic and epigenomic characteristics. A1 and A2

subcompartments are both enriched for features associated with

transcriptionally active chromatin, but to different extents (Rao

et al, 2014). Interestingly, we also found clear differences in

histone modifications and DNA methylation associated with tran-

scriptome regulation groups (Fig 2E). For example, in comparison

with T2, T1 gene bodies are enriched for H3K9me3, depleted in

activating marks such as H3K4me3 and H3K27ac, are longer,

replicate later and have a lower GC content. These differences

mirror those observed between A2 and A1 subcompartments (Rao

et al, 2014). In contrast, T3 and T4 do not show these features

despite preferentially localising to A1 and A2 subcompartments.

Instead, T3 genes display heavy CpG methylation, which is almost

an order of magnitude stronger than for T4 genes. Consequently,

T3 and T4 define their own epigenetic subpopulation within

A-type compartments.

Genes with co-regulated protein abundances are related
functionally, not spatially

Clustering analysis of protein expression profiles led to three

proteome regulation groups P1-3 (Fig 2A and Dataset EV3), explain-

ing more than 50% of the total variance (Appendix Fig S3). Neither

genome compartments nor epigenomic signatures appear to be asso-

ciated with proteome regulation groups (Fig 2C and E). In contrast,

proteome regulation groups broadly correspond to subcellular loca-

tions: nucleus (P1), mitochondria, ER and Golgi (P2) and cytoplasm

(P3) (Fig 2D). They are also enriched for biological processes taking

place in these subcellular locations (Appendix Fig S4). In contrast,

T1-4 only weakly coincide with subcellular locations or biological

processes.

Intriguingly, T1-4 and P1-3 are independent of each other, that is

genes that are clustered based on their transcript expression signa-

ture are generally not co-regulated on the protein level, and vice

versa (Fig 2B). This suggests that much of the mRNA coexpression

of genes from the same subcompartment may be non-functional.

Note that as for sequence proximity (see above), this appears to

contrast with a previous report that genes which are close in 3D

nuclear space often have similar functions (Thévenin et al, 2014).

However, we also find significant enrichment of functional associa-

tions between genes from the same subcompartment (Fig EV2B).

Nevertheless, in quantitative terms, the extent of mRNA co-regula-

tion strongly exceeds co-function as well as protein co-regulation.

For example, while 11% of gene pairs in the same (intrachromoso-

mal) subcompartment have co-regulated mRNAs, < 1% have similar

functions according to STRING and are co-regulated at the protein

level (Fig EV2B).

Gene clustering within but not between chromosomes associates
with reduced expression noise

In yeast, clustering of genes in the genome sequence is associated

with reduced expression noise (Batada & Hurst, 2007; Wang et al,

2011). However, the situation is more complex when considering

the 3D structure of the genome. Highly transcribed gene clusters

tend to form fewer contacts with other chromosomes, and genomic

loci with more interchromosomal contacts tend to have higher

expression noise (McCullagh et al, 2010; Sandhu, 2012).

We tested whether gene clustering has a similar effect in human

cells. For each gene in our dataset, we calculated a clustering

degree, defined as the average distance to its three nearest neigh-

bouring genes along the DNA sequence. We then compared the

expression noise of the 5% most and least clustered genes, respec-

tively. As observed in yeast, we find that gene expression noise in

LCLs is significantly reduced for genes in gene-dense areas (Fig 3A).

The noise-reducing effect is much more significant on the mRNA

than the protein level.

In a second step, we investigated whether gene clustering in

nuclear space has a similar noise-reducing effect. In principle, gene-

dense regions may interact with each other in 3D to benefit from

further noise reduction by forming “super-clusters”. The three

human histone gene clusters on chromosome 6, for example,

converge in 3D to form such a super-cluster (Sandhu et al, 2012).

Therefore, we calculated a second clustering degree for each gene,

defined as the average distance to its three nearest neighbours in

3D, using Hi-C contacts. To capture long-range interactions resulting

from chromosome folding, we only considered neighbouring genes

that were on the same chromosome, but at least 500 kb up- or

downstream in terms of DNA sequence. There is a positive correla-

tion between the clustering degree in 1D and 3D (PCC 0.32,

P < 6 × 10�97), suggesting that genes clustered along the sequence

are also more densely packed in the 3D structure of a chromosome.

Moreover, this gene clustering due to chromosome folding is also

associated with a significant reduction of gene expression noise,

albeit not as strongly as sequence-based clusters (Fig 3A).

Next, we investigated clusters that genes from different chromo-

somes may form in nuclear space, calculating a third clustering

degree based on interchromosomal Hi-C contacts. As shown in yeast

(McCullagh et al, 2010; Sandhu, 2012), we find a negative correla-

tion between sequence-based and interchromosomal clustering

(PCC �0.1, P < 5 × 10�11). This suggests that gene-dense regions,

while forming long-range, noise-reducing interactions within the

same chromosome, are less likely to interact with gene clusters on a

different chromosome. Moreover, genes forming interchromosomal

clusters are associated with higher expression noise than those with

fewer interactions (Fig 3A). This difference is not statistically signifi-

cant but is in agreement with earlier findings in yeast (McCullagh

et al, 2010; Sandhu, 2012).

Coexpression of closeby genes is driven by stochastic epigenetic
fluctuations and regulatory interference

How can gene proximity lead to mRNA coexpression? Many inci-

dents of coexpressed genes that are close in sequence have been

linked to stochastic alternation between an active and inactive chro-

matin state (Batada et al, 2007). Such chromatin fluctuations can

lead to coordinated transcriptional bursts of all genes within a chro-

matin domain (Raj et al, 2006). We first compared the chromatin

environment of genes that are co-regulated with their sequence

neighbours with genes that show no such co-regulation (“neigh-

bours” being defined as genes whose TSSs are < 50 kb away). We

find that genes which are coexpressed with their neighbours are

more often flanked by heterochromatin, upstream of their transcrip-

tion start site (Fig 3B). This is consistent with mRNA coexpression

driven by stochastic spreading of the adjacent heterochromatin

domain into the active locus, silencing all genes therein. This is
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reminiscent of subtelomeric regions in yeast, which are hot spots for

expression noise (Batada & Hurst, 2007) due to transient spreading

of telomeric heterochromatin (Anderson et al, 2014).

Notably, chromatin fluctuations may lead to mRNA coexpression

that is not restricted to genes in close spatial proximity. Chromatin

factors play a key role in creating gene expression noise (Newman

A B C D

E F G

H I J

Figure 3. mRNA coexpression of neighbouring genes is driven by chromatin fluctuations and regulatory interference.

A Intrachromosomal gene clustering reduces gene expression noise. We determined the expression noise (coefficient of variation, CV) of the most and least densely
clustered genes, considering three different types of clustering: in terms of sequence proximity (seq), using long-range Hi-C contacts (> 500 kb) within the same
chromosome (intra) and using interchromosomal Hi-C contacts (inter). Expression noise is reduced for clustered genes, except for genes forming more
interchromosomal contacts (*P < 0.01, **P < 0.002, ***P < 5 × 10�6 based on Kolmogorov–Smirnov test). Boxplot drawn in the style of Tukey, that is box limits
indicate the first and third quartiles, central lines the median, whiskers extend 1.5 times the interquartile range from the box limits. Notches indicate the 95%
confidence interval for comparing medians.

B The upstream region of genes that are co-regulated with their neighbours, that is other genes within 50 kb, is more likely to be occupied by heterochromatin than
that of genes showing no such co-regulation. Heterochromatin regions in LCLs have been reported previously (Ernst et al, 2011).

C Epigenetic similarity calculated on the basis of histone marks and CpG methylation is a strong general predictor of mRNA co-regulation. Curves are fitted to all
intrachromosomal gene pairs irrespective of their genomic distance.

D Two randomly picked gene pairs exemplifying low and high epigenetic similarity, respectively. Each column represents a gene and each row an epigenetic feature.
Colours show the standardised, average abundance of each mark across the gene body.

E mRNA co-regulation requires epigenetic similarity or spatial proximity, but not both. Intrachromosomal gene pairs were binned by epigenetic similarity and spatial
proximity (Hi-C contacts), and the percentage of co-regulated mRNAs is shown in colour. Note bins 2 and 4 are both enriched for co-regulated mRNAs despite
containing gene pairs that are spatially distant and epigenetically different, respectively.

F Description of bins highlighted in panel (E).
G Gene pairs binned as in (E) but colour showing percentage of co-regulated proteins. Protein co-regulation does not depend on epigenetic similarity or spatial

proximity.
H On average, gene pairs in bins 1 and 4 have many more Hi-C contacts than those in bins 2 and 3, that is they are spatially closer. Dashed line shows average Hi-C

contacts between genes in the dataset.
I On average, gene pairs in bins 1 and 2 are epigenetically much more similar than those in bins 3 and 4. Dashed line shows average epigenetic similarity between

genes in the dataset.
J Heterochromatin profile for genes in bins 1–4.

Molecular Systems Biology 13: 937 | 2017 ª 2017 The Authors

Molecular Systems Biology Co-regulation of closeby genes Georg Kustatscher et al

6



et al, 2006). Fluctuating expression levels of, for example, a

histone-modifying enzyme may simultaneously affect all its target

chromatin domains in the genome. To test for such a global chro-

matin-mediated co-regulation effect, we determined the epigenetic

similarity between all genes in our dataset. We defined “epigenetic

similarity” based on the abundance of various histone marks within

gene bodies. We used the Mahalanobis distance to measure similar-

ity, as this takes into account that some histone marks are strongly

co-dependent, for example H3K9ac and H3K4me3. Genes with simi-

lar epigenetic profiles are targeted by a similar set of chromatin-

modifying factors, and are therefore expected to respond similarly

to stochastic fluctuations of these factors. Indeed, we find that the

epigenetic similarity is a strong predictor of non-functional mRNA

co-regulation (Fig 3C and D).

This chromatin fluctuation scenario is a passive mechanism

where genes simply respond to changes in their chromatin domain.

However, on a local scale, transcriptional changes of one gene may

directly affect the transcription of its neighbours, if chromatin

remodelling or transcription factors spill over to adjacent genomic

regions (Ebisuya et al, 2008; Wang et al, 2011). This “regulatory

interference” model crucially depends on spatial proximity, but

does not require co-regulated genes to be part of the same chro-

matin domain. To compare the impact of chromatin and gene

distance on non-functional mRNA coexpression, we grouped gene

pairs based on epigenetic similarity as well as based on Hi-C contact

frequency. We then observed which groups contain co-regulated

mRNAs (Fig 3E). This shows that gene pairs which are far apart

both spatially and epigenetically are rarely co-regulated (bin 3 in

Fig 3E and F). Gene pairs with similar histone marks tend to be

co-regulated, even if they are spatially distant (Fig 3E and H).

Co-regulation of such genes is consistent with the passive

chromatin fluctuation model, but not the transcriptional inter-

ference model. Importantly, spatially close gene pairs can be

co-regulated even if their histone marks show no similarity (bin 4

in Fig 3E and I). This type of coexpression is not consistent with

the passive chromatin fluctuation model, since the epigenetic dif-

ferences between the gene pairs suggest that, in steady state, they

occupy distinct chromatin domains. These genes are also the least

likely to be flanked by heterochromatin (Fig 3J). However, the

behaviour of gene pairs in bin 4 is consistent with the regulatory

interference model, where fluctuations in one gene affect the chro-

matin and transcriptional state of its neighbours, in sequence and

3D. Note that this effect is buffered at the protein level (Fig 3G),

which is in agreement with this type of coexpression being not

functional.

Buffering of non-functional mRNA coexpression tends to be a
non-selective process

Finally, we asked which post-transcriptional mechanisms might

buffer the coexpression of genes that are spatially close, but func-

tionally unrelated. In principle, this could be a selective process that

specifically targets closeby genes and disentangles their expression

patterns. Alternatively, buffering could be a neutral process, where

the lack of coordination between post-transcriptional mechanisms

prevents the mRNA coexpression to be propagated to the protein

level. In this case, a selective process would need to exist to ensure

that functionally related genes do in fact have co-regulated protein

abundances. To distinguish between these two possibilities, we

analysed five measures of post-transcriptional gene expression

control (Fig 4).

First, we tested whether gene pairs with sustained protein co-

regulation are more likely to have similar mRNA half-lives in LCLs

(Duan et al, 2013), relative to co-regulated gene pairs with buffered

protein abundances. Indeed, we find this to be the case, even

though the difference is modest (Fig 4A). Next, we analysed which

co-regulated gene pairs are more likely to be targeted by the same

miRNA (Helwak et al, 2013). Again, gene pairs that are also co-

regulated on the protein level are enriched for pairs sharing at least

one miRNA. Third, as an indication for translation-related effects,

we took into account ribosome profiling data for the LCL cell line

panel (Battle et al, 2015), which reflect both the abundance of

mRNAs and the extent to which they are occupied by ribosomes

(Ingolia, 2014). Gene pairs with coexpressed proteins are almost

three times as likely to have correlated ribosome profiles than pairs

which only have co-regulated mRNA abundances. Then, we looked

at the impact of protein degradation, by considering the occurrence

of non-exponentially degraded proteins (NEDs) (McShane et al,

2016). These are proteins that are rapidly degraded after synthesis,

for example because they are protein complex subunits produced

in super-stoichiometric amounts. Again, we find that NEDs are

enriched among gene pairs with co-regulated proteins rather than

those with buffered protein levels. Finally, we show that the

protein sequence length, which strongly correlates with the extent

of post-transcriptional control (Vogel et al, 2010), is more similar

for co-regulated than buffered proteins. Proximity in the genome

seemed to have no impact on the similarity of gene pairs in any of

the five measures of post-transcriptional gene expression control

investigated here (Fig 4B). Taken together, these results suggest

that buffering of co-regulated closeby genes may occur via a

neutral mechanism, with buffered gene pairs consistently lacking

the extent of shared post-transcriptional processing observed for

functionally related gene pairs. If mRNA coexpression is func-

tionally relevant, multiple layers of post-transcriptional control

appear to work together to ensure that this is propagated to the

protein level.

Discussion

Genes are not randomly distributed across the sequence and struc-

ture of the genome, forming clusters that tend to be coexpressed but

do not generally have a shared function. Gene expression noise is

detrimental to cell fitness, especially for housekeeping genes (Fraser

et al, 2004). Clusters of actively transcribed genes have low expres-

sion noise, which may drive the evolution of non-random gene

order (Batada & Hurst, 2007). The coexpression of functionally

unrelated neighbouring genes may then be a side effect of the selec-

tion for noise reduction. However, such coexpression is not neces-

sarily deleterious. As we show here, non-functional co-regulation is

frequently observed at the mRNA level, but is largely buffered at the

protein level. Consequently, non-functional coexpression is unlikely

to offset the benefit of noise reduction.

The expression profiles of genes in a cluster co-evolve, such that

the evolutionary change in expression of one gene on average

predicts changes in its neighbours (Ghanbarian & Hurst, 2015).
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Nevertheless, it is still unclear whether expression clusters are the

result of natural selection. In yeast, only the most highly coex-

pressed neighbours are conserved as a pair, but these also tend to

be functionally related (Hurst et al, 2002). Neighbouring gene pairs

that separate tend to show interchromosomal co-localisation (Dai

et al, 2014). In Drosophila, highly coexpressed neighbouring gene

pairs are less likely to be conserved than expected (Weber & Hurst,

2011). In mammals, although some coexpression clusters are evolu-

tionarily maintained (Sémon & Duret, 2006), natural selection

generally tends to separate gene pairs that show a strong position-

related coexpression effect (Liao & Zhang, 2008) or that involve

tissue-specific expression (Lercher et al, 2002). This indicates that

non-functional coexpression can affect cell fitness under some

circumstances, possibly if it becomes so strong that it persists

through the uncoordinated post-transcriptional processes.

The existence of coexpression clusters may also reflect the way

new genes originate. For example, highly transcribed chromatin

regions are more susceptible to retroposition (Hurst et al, 2004).

Recently, it has been proposed that the large number of human gene

pairs in head-to-head orientation may arise from divergent tran-

scription of single genes, when initially noncoding, antisense tran-

scripts evolve into new protein-coding genes (Wu & Sharp, 2013). In

both of these cases, new genes would have no sequence homology

with their neighbours, and would therefore be unlikely to share

their function. However, some of the most well-known coexpression

clusters, such as histone gene clusters, arose by gene duplication.

Gene duplicates could potentially explain why some gene clusters

are functionally related. There are 30 gene pairs in our dataset that

are located within 50 kb from each other and are coexpressed on

both the mRNA and the protein level. Of these, 10 (33%) are classi-

fied as paralogues by Ensembl, a strong enrichment considering that

paralogues account for only 1.5% of these closeby gene pairs over-

all. However, 20 (66%) of the clustered gene pairs with co-regulated

protein abundances show no evidence for paralogy, suggesting that

functionally relevant clusters need not necessarily arise by gene

duplication.

Our analysis focussed on housekeeping genes, because compara-

ble data for tissue- or condition-specific genes were not available.

Housekeeping genes constitute about half of all human genes (Uhlén

et al, 2015). They have a higher tendency to cluster than other

genes (Lercher et al, 2002), presumably because they are more

sensitive to gene expression noise (Fraser et al, 2004). Interestingly,

post-transcriptional expression control is particularly important for

housekeeping genes (Gandhi et al, 2011; Jovanovic et al, 2015).

Notably, transcriptional activation of induced genes can also lead to

co-activation of functionally unrelated neighbouring genes (Spitz

et al, 2003; Ebisuya et al, 2008). However, it remains to be seen if

such co-activation is also buffered at the protein level.

A

B

Figure 4. Buffering of non-functional mRNA co-regulation likely is a passive process.

A Percentage of gene pairs with coordinated post-transcriptional regulation, irrespective of genomic distance. Gene pairs with sustained protein co-regulation
consistently stand out as more likely to share similar aspects of post-transcriptional control. Genes were considered to have a similar mRNA half-life if the half-life
ratio between the more and less stable gene was < 1.5. For miRNAs, all gene pairs targeted by at least one shared miRNA were considered. Gene pairs were said to
have correlated ribosome profiles if their ribosome occupancy correlated with PCC > 0.5 (BH adj. P < 0.001) across LCLs. For the non-exponentially degraded proteins
(NEDs) barchart, gene pairs containing at least one NED were counted. Coding length was considered similar if the longer protein was < 1.5-fold longer than the
shorter protein. Numbers of gene pairs are shown inside the bars. Statistical significance was calculated using Fisher’s exact test (*P < 0.01, **P < 1 × 10�6,
***P < 3 × 10�27).

B No striking relationship between gene distance and the extent to which gene pairs show similar post-transcriptional regulation. Note that the small increase of
similar ribosome occupancy towards closeby genes may be explained by the fact that ribosome profiles partially reflect mRNA abundance.
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In conclusion, non-functional mRNA coexpression, due to chro-

matin fluctuations and regulatory interference, is far more common

than previously thought. Generally, this does not hamper cell fitness

as post-transcriptional regulatory mechanisms enforce functional

coexpression while dampening non-functional coexpression. Our

observations suggest that evolution of human genome organisation

is driven by noise reduction, which is a hypothesis initially made in

yeast (Batada & Hurst, 2007). The large presence of non-functional

coexpression of genes at the transcript but not protein level has

implications for the fields of transcriptomics and proteomics when

screening for functional links between genes.

Materials and Methods

mRNA abundances in human lymphoblastoid cell lines

RNA-sequencing data for human lymphoblastoid cell lines (LCLs)

have been reported (Pickrell et al, 2010). Counts per mapped reads

were downloaded from http://eqtl.uchicago.edu and converted to

log2 “reads per kilobase transcript per million mapped reads”

(RPKMs). Genes expressed in < 30 LCLs were removed. In order to

make mRNA measurements comparable to proteomics data, expres-

sion levels needed to be analysed relative to the same reference

LCL. To do so, log2 RPKMs values from the reference cell line

GM19238 were subtracted from all other LCLs.

Protein abundances in human lymphoblastoid cell lines

Protein abundances in LCLs have also been reported (Battle et al,

2015). They have been measured by mass spectrometry and quanti-

fied relative to the reference cell line GM19238, using stable isotope

labelling by amino acids in cell culture (SILAC) (Ong et al, 2002).

Mass spectrometry raw files were downloaded from the PRIDE

repository (Vizcaı́no et al, 2016) (project identifier PXD001406) and

re-processed using MaxQuant 1.5.2.8 (Cox & Mann, 2008). Raw files

tagged as “run2” were omitted. Mass spectra were searched against

human Swiss-Prot sequences downloaded from Uniprot (UniProt

Consortium, 2015). To facilitate combining mRNA and protein data-

sets, no protein isoforms were considered. We used non-normalised

SILAC ratios obtained by MaxQuant with at least two ratio counts.

Because the internal standard had been used as heavy SILAC sample,

heavy/light (H/L) SILAC ratios were inverted to obtain L/H ratios

(i.e. test LCLs / reference LCL). Proteins that could not be unambigu-

ously mapped to a single gene were removed, as were proteins

detected in 30 LCLs or less. SILAC ratios were also log2-transformed.

Combining mRNA and protein expression data

To combine mRNA and protein data, ENSEMBL gene IDs from RNA

sequencing were mapped to Uniprot IDs using Uniprot’s webtool

(UniProt Consortium, 2015). Genes with ambiguous mappings were

removed. We also only considered LCLs for which both mRNA and

protein data were available. The resulting file contains mRNA and

protein abundances for 4,188 human genes in 59 LCLs, relative to

the GM19238 reference sample (Dataset EV1). It contains 0.1 and

6.7% missing values for mRNA and protein measurements,

respectively.

Defining positions of genes in the genome

Genomic coordinates of human genes (dataset version GRCh38.p5)

were downloaded from ENSEMBL (Yates et al, 2016). As we are

considering genes but not specific transcript or protein isoforms,

transcription start sites (TSSs) were defined as the start site of the

outermost transcript of a gene.

Testing gene pairs for co-regulation

Coordinated up- and downregulation of gene expression was

measured using Pearson’s correlation coefficient (PCC). The gene

expression datasets for LCLs (Dataset EV1) were used as input. The

median log2 fold change of each LCL was set to zero, in order to

prevent correlations reflecting irrelevant data features such as

uneven mixing of light and heavy SILAC samples. Gene pairs

were considered to be co-regulated at PCC > 0.5, but only if the

correlation was significant (Benjamini and Hochberg-adjusted

P-values < 0.001).

Characterisation of genes as housekeeping genes

To demonstrate that the 4,188 genes in the LCL dataset belong to

the constitutively expressed core proteome, we performed a number

of tests:

Chromatin states of gene promoters

Chromatin states of the genome of the GM12878 lymphoblastoid

cell line were determined previously (Ernst et al, 2011). They

were downloaded as hg19 genome coordinates from the USCS

genome browser (Rosenbloom et al, 2015) and converted to

GRCh38 coordinates using the liftOver command line tool (avail-

able at https://genome-store.ucsc.edu/). Genomic regions with

conflicting chromatin state annotations, resulting from the genome

coordinates update, were removed. For each gene in our dataset,

the chromatin state mapping to its transcription start site was

determined.

GO term enrichment

A statistical overrepresentation test was performed using the

PANTHER classification system (Mi et al, 2016) according to the

reported protocol (Mi et al, 2013). Overrepresentation of Gene

Ontology Biological Process (slim) terms was assessed for our 4,188

genes compared to the entire human genome. Only significantly

enriched terms (more than twofold; P < 0.05 after Bonferroni

correction) were considered.

mRNA tissue expression data

mRNA expression levels in different human tissues have been

assessed using RNA sequencing (Uhlén et al, 2015). Transcripts

detected with FPKM ≥ 1 were considered to be expressed.

Protein tissue expression data

Protein expression levels in different human tissues have been

assessed using mass spectrometry (Wilhelm et al, 2014) (available

at www.proteomicsdb.org). To avoid bias due to the incomplete

nature of current proteome maps, only tissues with expression

values for more than 6,000 proteins were considered.
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Defining pairs of genes with related functions (focussed
on accuracy)

To test whether genes with related functions are co-regulated across

LCLs, we defined three sets of functionally linked gene pairs. Func-

tional associations in these test sets are as accurate—not as compre-

hensive—as possible.

Gene pairs from same protein complexes

Human protein–protein interaction pairs based on Reactome path-

ways (Fabregat et al, 2016) were downloaded from www.reactome.

org (homo_sapiens.interactions.txt file; March 2016). They were fil-

tered for physical interactions of the “direct_complex” category.

Gene pairs belonging to more than one complex and homodimeric

interactions were removed.

Gene pairs encoding enzymes from consecutive metabolic reactions

As for protein complexes, human protein–protein interaction pairs

based on Reactome pathways (Fabregat et al, 2016) were down-

loaded from www.reactome.org (homo_sapiens.interactions.txt file;

March 2016). They were filtered for interactions of the “neighbour-

ing_reactions” category. These are interactions where one gene/

protein produces the input or catalyst for the second reaction. Any

gene pairs known to interact also physically, that is belonging to

the “direct_complex” or “indirect_complex” categories, were

removed. In addition, gene pairs were filtered for those involved

in metabolic pathways, as opposed to, for example, the cell cycle

pathway which would contain irrelevant reactions such as “Mis18

complex binds the centromere”. To do so, we first inferred all

pathways mapping to the metabolism root pathway, using the

pathway hierarchy relationship file (ReactomePathwaysRela-

tion.txt, available on www.reactome.org). Enzymatic reactions

belonging to each metabolic pathway were then identified using

another interaction file available from Reactome (homo_sapi-

ens.mitab.interactions.txt). Finally, to avoid “trivial” consecutive

reactions such as those involving ubiquitous metabolites like

NAD+, we removed metabolic reactions with more than ten neigh-

bouring reactions.

Gene pairs from identical subcellular locations

Subcellular localisations of human proteins were downloaded from

Uniprot (UniProt Consortium, 2015). Proteins localising to more

than one subcellular location were removed. To avoid trivial locali-

sations such as “cytoplasm”, only subcellular compartments with

200 or less known protein components were considered.

Defining pairs of genes with related functions (focussed
on completeness)

To estimate an upper limit for how many coexpressed neighbouring

genes may be functionally related, we defined a separate test set

based on the STRING database (Szklarczyk et al, 2017). Functional

associations in this test set are as comprehensive as possible.

Protein network data for Homo sapiens were downloaded from

http://string-db.org. We considered all functional associations with

a combined STRING score > 0.7. This score integrates various types

of evidence and indicates the likelihood of the association to be

biologically meaningful, specific and reproducible.

Testing functionally related gene pairs for co-regulation

Correlation coefficients were obtained for every gene pair in our

three test sets (protein complexes, consecutive metabolic reactions,

subcellular locations) and their distribution was displayed in histo-

grams. As a control, gene pairs were randomly shuffled to break the

link between the pairs. For example, gene pairs encoding subunits

of the same protein complexes were shuffled such that the same

genes were paired randomly, in which case most gene pairs encode

subunits of different protein complexes. The Kolmogorov–Smirnov

test was used to assess whether PCC distributions of relevant gene

pairs were significantly different from those obtained with rando-

mised pairs.

Chromosome co-regulation mapping

PCCs were calculated for all relevant gene combinations, as

described for histograms above. For chromosome co-regulation

curves, PCCs were plotted against the genomic distance between

transcription start sites, with curves fitted by a generalised additive

model. For chromosome co-regulation maps, genes were plotted in

their chromosomal order and PCCs between all gene combinations

were represented by a colour scale.

Hi-C interactions for our gene set

Hi-C contact matrices for a lymphoblastoid cell line (Rao et al,

2014) were downloaded from NCBI GEO database (accession

GSE63525). An unpublished script from Liz Ing-Simmons (available

at https://github.com/liz-is/readhic) was adapted (available at

https://github.com/Rappsilber-Laboratory/readhic) and then used

to import the Hi-C contact matrices into R, using 10-kb resolution

and “KRnorm” normalisation for intrachromosomal pairs and 50-kb

resolution and “INTERKRnorm” normalisation for interchromoso-

mal pairs. All reads used passed the MAPQ>0 filter. Hi-C data are

based on GRCh37 genome coordinates. GRCh37 transcription start

sites for all genes were obtained using the biomaRt R package

(Durinck et al, 2009), considering only the TSS of the outermost tran-

script of each gene. The GenomicInteractions R package (Harmston

et al, 2015) was used to determine the contact frequency between the

genes in our dataset, considering the median read count of all Hi-C

pixels in a range � 40 kb around the TSS of each gene.

Analysis of genome subcompartments

Nuclear subcompartments A1, A2, B1, B2, B3 and B4 have been

defined previously (Rao et al, 2014). A genome-wide mapping of

subcompartments in a lymphoblastoid cell line is available via the

NCBI GEO database (accession GSE63525). Subcompartment anno-

tations were lifted from hg19/b37 to GRCh38 genome coordinates

using the UCSC genome browser service (Rosenbloom et al, 2015).

k-means clustering of transcript and protein expression changes

k-means clustering was performed using the default algorithm and

settings in R (R Core Team, 2016), with k = 4 (mRNAs) or k = 3

(proteins) and five random start sets. Values of k were chosen such

that the clusters explain at least 50% of the total variance.
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Analysis of cluster features

Subcellular locations

To get a broad understanding of subcellular locations enriched in

k-means clusters, we downloaded all Uniprot entries mapping to the

locations Nucleus (Uniprot subcellular location ID: SL-0191), Endo-

plasmic reticulum (SL-0095), Golgi apparatus (SL-0132), Mitochon-

drion (SL-0173) and Cytoplasm (SL-0086) (UniProt Consortium,

2015). Proteins localising to the Endoplasmic reticulum and/or the

Golgi apparatus were combined as “ER-Golgi”. Proteins mapping to

more than one organelle were removed.

GO term enrichment

A statistical overrepresentation test was performed using the

PANTHER classification system (Mi et al, 2016) according to the

reported protocol (Mi et al, 2013). Overrepresentation of Gene

Ontology Biological Process (complete) terms in each cluster, rela-

tive to other clusters, was assessed. Using PANTHER’s GO hierarchy

annotation, we reported only the most specific GO terms and omit-

ted any co-enriched parent terms for clarity. All reported GO terms

were significantly enriched (P < 0.05 after Bonferroni correction).

Genomic and epigenomic features

Raw signals of ChIP-seq experiments for lymphoblastoid cells

were downloaded from ENCODE (ENCODE Project Consortium,

2012) in hg19 genomic coordinates. ENCODE accessions were

ENCFF000ARW (H2AZ), ENCFF000ARZ (H3K4me1), ENCFF000ATL

(H3K4me2), ENCFF001EXX (H3K4me3), ENCFF000ASJ (H3K27ac),

ENCFF000ATX (H3K79me2), ENCFF000AUF (H3K9ac), ENCFF000

AUL (H3K9me3), ENCFF000AUS (H4K20me1), ENCFF001EXC (H3K

27me3), ENCFF001EXP (H3K36me3), ENCFF001GNK (RepliSeq

G1b), ENCFF001GNN (RepliSeq G2), ENCFF001GNR (RepliSeq S1),

ENCFF001GNT (RepliSeq S2), ENCFF001GNX (RepliSeq S3) and

ENCFF001GOA (RepliSeq S4). These bigWig files were converted to

bedGraph files, lifted over to GRCh38 coordinates, cleared of any

resulting overlaps and converted back to bigWig files using

command line tools from the UCSC genome browser (Rosenbloom

et al, 2015) (tools available at https://genome-store.ucsc.edu/). GC

percentage over 5-bp windows was downloaded from the UCSC

genome browser (Rosenbloom et al, 2015). Average signals over

gene bodies were calculated with the UCSC bigWigAverageOverBed

command line utility, using the coordinates of our genes as bed

files. CpG methylation from reduced representation bisulphite

sequencing of a lymphoblastoid cell line was also available from

ENCODE (ENCODE Project Consortium, 2012) (experiment

ENCSR000DFT; file accession ENCFF001TLQ). After lifting the hg19

bedMethyl file over to GRCh38 genomic coordinates, the mean

percentage of CpG methylation in gene bodies was calculated using

an R script. For each epigenomic or genomic feature, the median

enrichment for genes in each k-means cluster, compared to all genes

in our dataset, was calculated and plotted as log2 ratio in a

heatmap.

Calculation of gene expression noise

Gene expression noise at the mRNA and protein levels was calcu-

lated as the coefficient of variation (CV; standard deviation divided

by the mean) of log2-transformed RPKM and SILAC ratios,

respectively. To avoid dividing by zero (for unchanged genes with a

log2 ratio of zero), a constant value of 10 was added to all mRNA

and protein log2 ratios before calculating the noise.

Calculating the clustering degree

To define local gene density in a manner that can be applied to both

the sequence and the 3D structure of the genome, we determined

the average distance of a gene to its three nearest neighbouring

genes. We calculated three such “clustering degrees” for each gene

in our dataset. For the sequence-based clustering degree, the

distance to neighbouring genes was calculated in base pairs. For

intrachromosomal clustering in 3D, gene distance was calculated

based on Hi-C counts. However, we only considered “nearest”

neighbours which were at least 500 kb away in terms of DNA

sequence, to catch long-range interactions and avoid replicating the

sequence-based clustering degree. For interchromosomal clustering,

we considered the three nearest neighbours on other chromosomes,

based on interchromosomal Hi-C contacts.

Heterochromatin profiles of upstream regions

Chromatin states throughout the LCL genome were previously

described (Ernst et al, 2011). To simplify the analysis, we combined

the five inactive chromatin states defined by Ernst et al (“Hete-

rochromatin”, “Repressed”, “Repetitive”, “Poised Promoter” and

“Insulator”) into one “heterochromatin” state. We then scanned the

promoter region of test genes for the presence of heterochromatin,

moving in 100-bp intervals from �50,000 bp to +10,000 bp relative

to their transcription start site.

Calculating epigenetic similarity

Epigenetic similarity was calculated on the basis of the histone mark

abundance within gene bodies (see section “Analysis of cluster

features” for processing of ChIP-seq data). For this analysis, we

considered H2AFZ, H3K4me1, H3K4me2, H3K4me3, H3K27ac,

H3K79me2, H3K9ac, H3K9me3, H4K20me1, H3K27me3, H3K36me3

and CpG methylation, but not GC content, gene length and replica-

tion timing. For every pair of genes, we then determined how simi-

lar or dissimilar they are regarding the abundance of these

epigenetic features. This was calculated using the Mahalanobis

distance measure, which takes into account that some histone

marks strongly covary.

Analysis of post-transcriptional mechanisms

mRNA half-lives in seven different LCLs were previously reported

(Duan et al, 2013). We first calculated the average half-life of each

mRNA in these LCLs. We considered two mRNAs to have a similar

stability if the half-life of the more stable one was < 1.5-fold longer

than the less stable one. mRNA targets of human miRNAs were also

described previously (Helwak et al, 2013). Ribosome occupancy

profiles for the LCL cell line panel were recently published (Battle

et al, 2015). We considered ribosome profiles for 57 LCLs and 4,033

genes for which we had matching mRNA and protein measure-

ments. We calculated Pearson correlation coefficients (PCCs) for

ribosome profiles between all gene pairs. Two genes were said to
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have correlated ribosome profiles at PCC > 0.5 (BH-adjusted P-

value < 0.001). Proteins subjected to non-exponential degradation

in human RPE-1 cells were also described recently (McShane et al,

2016). Finally, protein sequence lengths were downloaded from

Uniprot (UniProt Consortium, 2015).

Human paralogous genes

Human gene duplicates were downloaded from ENSEMBL (Yates

et al, 2016). We only considered paralogues with at least 25%

sequence identity.

General data processing and plotting

Data processing was performed in R (R Core Team, 2016), unless

indicated otherwise. Plots were created using the ggplot2 package

(Wickham, 2009).

Expanded View for this article is available online.
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