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Abstract

Although DNA methylation is a key regulator of gene expression, the comprehensive methylation 

landscape of metastatic cancer has never been defined. Through whole-genome bisulfite 

sequencing paired with deep whole-genome and transcriptome sequencing of 100 castration-

resistant prostate metastases, we discovered alterations affecting driver genes only detectable with 

integrated whole-genome approaches. Notably, we observed that 22% of tumors exhibited a novel 

epigenomic subtype associated with hyper-methylation and somatic mutations in TET2, 

DNMT3B, IDH1, and BRAF. We also identified intergenic regions where methylation is 

associated with RNA expression of the oncogenic driver genes AR, MYC and ERG. Finally, we 

showed that differential methylation during progression preferentially occurs at somatic 

mutational hotspots and putative regulatory regions. This study is a large integrated study of 

whole-genome, whole-methylome and whole-transcriptome sequencing in metastatic cancer and 

provides a comprehensive overview of the important regulatory role of methylation in metastatic 

castration-resistant prostate cancer.

INTRODUCTION

DNA methylation of cytosine residues is a pervasive epigenomic mechanism of gene 

regulation1,2. DNA methyltransferases add a methyl group to the 5’ carbon of cytosine 

nucleotides adjacent to guanines (CpG dinucleotides), creating 5mC nucleotides3. Most CpG 

dinucleotides are methylated, with the exception of hypo-methylated regions enriched for 

CpGs termed islands, shores (±2 Kbp around islands) and shelves (± 2 Kbp around shores4). 

These regions frequently mark gene regulatory loci such as promoters or enhancers5. 
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Aberrant methylation has been implicated in oncogenesis, and differences in methylation 

patterns between tumors and benign tissues have been reported in many tumor types6. 

Cancer cells are frequently less methylated at CpGs than normal cells, although hyper-

methylation at tumor CpG islands has also been reported1,2.

Several studies have compared DNA methylation patterns between primary prostate cancer 

(PCa) and benign prostate tissue, and between subtypes of primary PCa5,7–15. Metastatic 

castration-resistant prostate cancer (mCRPC) is the lethal form of the disease. Although the 

genomic and transcriptomic landscape of mCRPC has been well characterized16–19, the 

complete epigenetic landscape remains largely unknown. Prior studies of mCRPC assessed a 

small percentage of the genome, primarily focused on promoter regions20,21. Many 

important regulatory regions are outside of the profiled areas, and whole-genome bisulfite 

sequencing (WGBS) is required to systematically study the entire genome at single base-

level resolution. At the time of this analysis, WGBS has only been applied to a few relatively 

small cancer cohorts5,11,22–31. Moreover, WGBS has rarely been integrated with other 

genome-wide sequencing approaches such as whole-genome sequencing (WGS) and whole-

transcriptome RNA-seq23,28,30. Herein, we describe a WGBS study in a metastatic cancer 

integrated with matched deep WGS and RNA-seq in the same samples.

RESULTS

A prospective multi-institution IRB-approved study (NCT02432001) obtained fresh-frozen 

core biopsies of metastases from 100 mCRPC patients as previously described17. WGBS 

was performed on 100 biopsy samples and on 10 matched benign tissue samples, obtaining a 

mean aligned sequencing depth of 46X and 33X, respectively (Supplementary Table 1, 

Supplementary Figure 1a). Bone, lymph node, and liver biopsies were represented in these 

benign-adjacent samples, which exhibited distinct methylation patterns from the tumor 

samples (Supplementary Figure 1b). We integrated the methylation data with WGS (average 

tumor coverage 109X, benign-adjacent coverage 38X) and whole transcriptome RNA-seq 

(average 114M reads per sample) performed on these same tumors17. The median tumor 

purity by histologic assessment was 70%. 10X coverage was achieved in 96–99% of 

mappable CpGs across our samples (Supplementary Table 1, excluding the Y chromosome, 

which is frequently lost in mCRPC), and 10X coverage in 95% of samples was achieved in 

87% of mappable CpGs. Sample identity and tumor content was confirmed by the observed 

high concordance between copy number estimates derived from WGS and WGBS 

sequencing depth (Supplementary Figure 1c).Analysis also incorporated previously 

published WGBS of primary PCa and benign prostate32, Chromatin Immunoprecipitation 

Sequencing (ChIP-seq) performed on metastatic and primary PCa samples33–38, and 

Chromatin Interaction Analysis Paired-End Tag Sequencing (ChIA-PET) performed on the 

VCaP cell line39.

Novel CpG methylation subtype of mCRPC

The total number of hypo-methylated regions (HMRs) ranged from 24,388 to 85,474 per 

sample (Figure 1a, Supplementary Table 1). HMR methylation levels were a median of 43% 

lower than the same locus in samples lacking HMR. Most inter-sample variation was outside 
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of promoters and CpG islands/shores/shelves, manifesting in gene bodies and regulatory 

regions such as Transcription Factor Binding Sites (TFBS, e.g. AR, ERG, FOXA1, 

HOXB13), enhancer sites (marked by H3K27ac ChIP-seq peaks), and repressed regions 

(marked by H3K27me3 ChIP-seq signal) (Figure 1a). Tumors with more HMRs had 

significantly higher genome copy number alteration frequencies (Spearman’s ρ=0.42[0.23–

0.59], P=1.5×10−5), as previously observed40. HMR frequency was not associated with 

mutation or structural variant frequency (Figure 1a).

DNA methylation has been best characterized at the CpG islands present in promoter regions 

of genes41–43. However, 74% of the 97,747 recurrent HMRs (present in ≥5% of samples) 

were outside of CpG islands, shores, or shelves (Supplementary Table 2). We hypothesized 

that recurrent intergenic HMRs would be associated with regulatory loci. Indeed, 88% of 

recurrent HMR sites overlapped putative regulatory regions (Figure 1a). Unsupervised 

hierarchical clustering of recurrent HMRs identified subgroups of tumors with distinct 

patterns of methylation (Figure 1b). One cluster consisted of tumors previously identified as 

treatment-emergent Small-Cell Neuroendocrine Cancer44 (t-SCNC), which is characterized 

by decreased AR signaling, elevated expression of neuroendocrine markers20,44,45, and a 

distinct methylation profile20. We also identified a novel subtype of mCRPC (Figure 1b) 

with significantly higher methylation levels at recurrent HMRs than all other clusters 

(P’s<0.05, Wilcoxon test, Supplementary Figure 2a,b) and fewer HMRs (Figure 1c,d). These 

tumors harbored fewer HMRs at both CpG islands, shores and shelves (P=9.9×10−16, 

Wilcoxon test; Figure 1e) and in CpG open seas (i.e. the regions outside of CpG-islands, 

shores, and shelves4) (P=1.6×10−12, Wilcoxon test; Figure 1f), and were designated a CpG 

Methylator Phenotype (CMP). Bootstrap resampling analysis of the cluster composition 

indicated it was stable (Jaccard Index 0.81)46. CMP tumors less frequently harbored ETS 

fusions (P=0.03, OR=0.31[0.10–0.90], Fisher’s exact test), or TP53 bi-allelic inactivation 

(P=0.02, OR=0.26[0.07–0.81], Fisher’s exact test) (Figure 1b). The CMP subtype was not 

significantly associated with the anatomic site of the biopsy. A t-SNE plot incorporating all 

recurrently hypo-methylated sites, benign prostate and primary prostate tumor samples 

demonstrated that CMP tumors, benign prostate tumors, and t-SCNC tumors formed 

separate clusters (Supplementary Figure 2c).

Several CMP tumors harbored mutually exclusive mutations in TET2, IDH1, and BRAF 
(Figure 1b, Supplementary Table 3). Mutations in these genes have been associated with 

increased CpG methylation in other tumor types32,47,48. Two additional CMP tumors 

harbored somatic mutations in the DNA methyltransferase gene DNMT3B (Supplementary 

Figure 3a). CMP tumors were enriched for mutations in TET2, IDH1, BRAF, and DNMT3B 
compared to non-CMP tumors (P=8×10−5, OR=34.1[3.4–1622.9], Fisher’s exact test; 

Supplementary Table 3). To assess the potential for misattribution of somatic mutations to 

mutations introduced through clonal hematopoiesis49, we confirmed the absence of these 

mutations in peripheral blood germline DNA both using WGS and Sanger sequencing. 

TET2 mutations are frequent in hematologic malignancies, with missense mutations 

frequently clustered in TET2’s catalytic DSBH domain near the metal binding sites at 

residues 1382 and 188450,51. Three of the four TET2 mutations we observed (H1380L, 

Y1421H, and R1808T) occurred in or near these hotspot regions (Supplementary Figure 3b). 

The fourth mutation, T1499R, occurred in the single TET2 mutated sample that did not 
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cluster in the CMP subtype. Computational prediction of mutation consequences by 

FATHMM52 predicted H1380L, Y1421H, and R1808T to be deleterious and T1499R to be 

benign (Supplementary Figure 3b). TET2 mutation H1380L has previously been reported in 

hematopoietic and lymphoid malignancies (COSMIC identifier COSM4170052)53,54.

Similar to prior observations in tumors harboring hyper-methylation phenotypes32, not all 

CMP tumors harbored a somatic alteration in a gene known to affect methylation biology. 

No somatic mutations were observed in any DNMT or TET genes other than DNMT3B and 

TET2. A ranked list of somatic associations with CMP is noted in Supplementary Table 4. 

Tumor purity was not associated with distinct methylation patterns within the CMP or non-

CMP group (Supplementary Figure 4). CMP status was independently associated with HMR 

number in CpG islands/shores/shelves and CpG open seas after adjusting for tumor purity 

(P=0.008 and P=2.19×10−11 respectively, linear model).

Regional analysis of methylation

Long range epigenetic activation and repression is a phenomenon where large regions 

containing multiple genes are concomitantly activated or repressed in prostate cancer due to 

concordant epigenetic changes such as histone modification or DNA methylation55,56. We 

identified 14 candidate long-range interactions, (Supplementary Table 5) two of which 

(7p15.2 and 16q13) overlapped with previously identified long-range epigenetically silenced 

domains55. Partially methylated domains (PMDs) are genomic regions with incomplete loss 

of methylation57. There was modest correlation between PMD frequency and HMR 

frequency (Spearman’s ρ= 0.24[0.04–0.42], P=0.02). While the fraction of the genome 

harboring PMDs (21% to 61%) was not significantly different between benign prostate, 

primary PCa, and mCRPC (Supplementary Figure 5a), methylation levels within PMDs 

were lower in primary prostate cancer and mCRPC in comparison to benign prostate tissue 

(Supplementary Figure 5a). Genome PMD fraction was not significantly correlated with 

tumor purity, total number of mutations, or percent copy number altered in mCRPC. PMD 

regions harbored increased mutation burden and were less likely to include exons of genes 

(Supplementary Figure 5b,c), as previously observed in breast cancer58. While the fraction 

of the genome covered by PMDs was not associated with CMP status, the level of PMD 

methylation was significantly higher in the CMP subtype (P=0.03, Wilcoxon test, 

Supplementary Figure 5d).

We next identified DNA methylation valleys (DMVs), broad regions of hypo-

methylation59,60 associated with either the activating histone mark H3K4me3 or the 

repressive histone mark H3K27me360. The number of DMVs in mCRPC samples varied 

from a few hundred to over 20,000 (Figure 2a). H3K27me3-associated DMVs tend to be 

dynamically methylated, and the polycomb complex has been shown to play a key role in 

maintaining the repressive and self-interacting state of DMVs61. DMVs in tumors with low 

DMV frequencies were more frequently associated with H3K4me3, but tumors with many 

DMVs coincided with a nearly equal proportion of H3K4me3 and H3K27me3 marks.

Up to 20% of mCRPC patients develop treatment-induced small cell neuroendocrine 

carcinoma (t-SCNC)20,44,45,62,63. t-SCNC tumors harbored distinct genome-wide 

methylation patterns (Figure 1b), as previously reported by a study employing enhanced 
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reduced-representation bisulfite sequencing20. Genome-wide assessment of differential 

methylation demonstrated that the AR locus was the most differentially hypo-methylated 

locus in t-SCNC (Figure 2b, Supplementary Figure 6). Methylation levels in this region 

predicted t-SCNC status independently from copy number (P=0.01, logistic regression). 

These data are compatible with a model where epigenetic alterations drive t-SCNC64, and 

suggest a role for methylation at the AR locus in this phenotype.

Differential prostate cancer gene promoter methylation

Genes with higher expression had more frequent promoter hypo-methylation and gene body 

hyper-methylation (Supplementary Figure 7a), as previously observed23,65–67. Negative 

correlation of CpG methylation and gene expression peaked at the gene promoter, and 

positive correlation peaked in the gene body (Supplementary Figure 7b,c), also consistent 

with previous observations24. We identified recurrent HMRs correlated with expression of 

genes within 10 Kbp and termed these HMRs “expression-associated Hypo-Methylated 

Regions” (eHMRs). Negatively correlated eHMRs (70% of total) were predominantly 

located at the transcription start site (Supplementary Figure 7d). The strongest positive 

correlations (30% of total) fell at the 3’ end of the gene body (Supplementary Figure 7e), 

consistent with prior studies24,68. We expanded our analysis to test for associations in 

candidate enhancer regions and hypo-methylated regions identified in a 1 Mbp window 

around the transcription start site. Candidate enhancers were identified by the presence of 

H3K27ac peaks in primary prostate tumors. At a 5% FDR, 10,412 genes harbored at least 

one significant association with a candidate enhancer region, and 11,928 genes harbored at 

least one significant association with a hypo-methylated region. Combining both locus 

types, 71,163 associations were significant overall (reported in Supplementary Table 6). 

Association between methylation levels and expression tended to be stronger in regions 

physically close to the transcription start site (TSS; Supplementary Figure 8).

We found that key androgen-response genes demonstrated promoter hypo-methylation in 

mCRPC compared to benign prostate samples, including AR, KLK3 encoding Prostate-

Specific Antigen, NKX3–1, FOLH1 encoding Prostate-Specific Membrane Antigen, 

SChLAP1, and PIK3CA (Supplementary Figure 9). We did not observe promoter hyper-

methylation of tumor suppressors such as TP53 or RB1 in mCRPC tumors compared to 

benign prostate samples. However, numerous genes previously reported to be hyper-

methylated in PCa (e.g. GSTP1)69, were differentially methylated in mCRPC compared to 

benign prostate (Supplementary Figure 9).

Many genes with PCa-specific expression lack PCa-specific DNA sequence alterations. To 

test the model that methylation influences disease-specific expression of PCa-specific genes, 

we performed an unbiased analysis comparing eHMR correlation strength in all genes to 

their expression variability. PCa-specific genes had stronger associations with methylation 

than other genes (Figure 3a), even after adjusting for gene size, average expression, and 

variation in expression (P<2×10−16, Wilcoxon test). Many genes whose expression was most 

strongly independently linked to methylation were associated with prostate cancer, or 

exclusively expressed in prostate cancer, including TMEFF270 (P=4.1 × 10−13, F-

value=28.2, degrees of freedom=3, ANOVA), SPON271 (P=6.6×10−19, F- value=25.4, df=7, 

Zhao et al. Page 5

Nat Genet. Author manuscript; available in PMC 2021 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ANOVA), TDRD172 (P=3.3×10−29, F- value=78.2, df=4, ANOVA), SLC45A373 

(P=9.2×10−23, F- value=51.0, df=4, ANOVA), and the lncRNAs SChLAP174 (P=1.4×10−22, 

F- value=88.3, df=2, ANOVA) and PCAT1475 (P=7.4×10−20, F- value=132.7, df=1, 

ANOVA) (Figure 3b).

Novel intergenic regulatory regions of AR

DNA methylation may operate in tandem with other somatic DNA alterations that influence 

gene expression. Gene expression was significantly associated with local DNA copy number 

alterations, mutations, or structural variants in 15,014 of 51,708 genes (29%), and with local 

methylation in 10,118 genes (19.5%). Of the 10,118 genes where expression was associated 

with methylation, 4,735 had associations with both methylation and DNA alterations, and 

5,383 genes were only associated with methylation. Methylation improved the fit of a model 

for gene expression beyond DNA alterations alone for 16.4% of all genes and 26.3% of 

housekeeping genes76 (FDR≤0.05, ANOVA). The top enriched MSigDb Hallmark 

Pathway77,78 for genes with improved fit was Androgen Response, with methylation 

significantly improving model fit in 73.7% of transcripts in the pathway (Figure 4a; 

FDR=0.0002 versus housekeeping genes76, OR=2.06[1.49–2.85], Fisher’s Exact test). Key 

AR-associated genes correlated with methylation independent of DNA alterations included 

KLK3 (P=4.0×10−15, F- value=86.8, df=1, ANOVA), NKX3–1 (P=2.4×10−8, F- value=36.9, 

df=1, ANOVA), and FOLH1 (P=7.7×10−16, F- value=36.5, df=3, ANOVA) (Figure 4b). This 

finding supports the role of methylation in androgen pathway activity in mCRPC.

We and others have previously identified a distal AR enhancer region where DNA copy 

number amplifications are associated with elevated AR expression17,18,33. We identified 

multiple eHMRs near AR, including adjacent to the AR promoter, the previously identified 

AR enhancer, and additional loci upstream and downstream of AR (Figure 4c). While the 

AR promoter was hypo-methylated in all tissues evaluated, other eHMRs were identified 

only in mCRPC samples and not in benign-adjacent tissue, benign prostate, or primary PCa 

samples. Five of the 7 eHMRs co-localized with H3K27ac (a mark of enhancer activity), 

HOXB13, FOXA1, AR, or ERG binding sites. Furthermore, AR and ERG ChIA-PET data 

indicated long-range chromatin interactions exist between many of these loci, supporting the 

potential for physical interactions between these loci (Figure 4c). In a linear model 

predicting AR expression based on the number of hypo-methylated eHMR, AR expression 

was positively associated with the number of hypo-methylated eHMR loci (P=3.7×10−5, 

linear model).

The AR gene body and/or the enhancer were amplified in a total of 81% of mCRPC. The 

number of amplified eHMR loci was positively associated with AR expression (P=3.8×10−8, 

linear model), consistent with the hypothesis that these eHMR loci are AR regulatory 

regions (Supplementary Table 7). These data are compatible with a model in which selective 

pressure of androgen deprivation therapy (ADT) favors broad amplifications spanning 

multiple enhancers to drive AR expression in mCRPC. Hypo-methylation in non-t-SCNC 

mCRPC samples was focal, and correlation between hypo-methylation and copy number 

amplification was not present at genomic loci immediately adjacent to the focal eHMRs 

(Supplementary Table 7). This analysis identified focal genomic loci that may represent 
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novel intergenic regulatory regions of AR potentially important in the development of ADT-

resistance17,18.

Methylation associated with TMPRSS2-ERG and MYC expression

Approximately half of prostate cancers are defined by over-expression of the oncogenic 

transcription factor encoded by ERG. ERG expression is negligible in prostate cancer unless 

it is activated by gene fusions bypassing the ERG promoter79. The predominant 5’ ERG 
fusion partner is the AR-regulated gene TMPRSS2, and the fusion brings the TMPRSS2 
promoter into proximity with the ERG gene body, transforming ERG into an AR-driven 

gene79. ERG expression levels vary widely within TMPRSS2-ERG fusion positive tumors, 

and a linear model predicting ERG expression from AR expression and mutation status 

provided a poor fit (P=0.49, F-value=0.72, df=38, ANOVA; Figure 5b). We hypothesized 

that methylation in the promoter/upstream region of TMPRSS2 could influence ERG 
expression when the fusion was present. We identified recurrent HMRs upstream of 

TMPRSS2 that co-localized with HOXB13, FOXA1, AR, or ERG transcription factor 

binding sites (TFBS; Figure 5a). Hypo-methylation frequencies of these loci were similar in 

both the fusion positive and negative samples. However, methylation at these loci was 

negatively associated with ERG expression in only the fusion-positive samples, consistent 

with a model in which TFBS methylation modulates expression of the downstream fusion 

gene80–82 (Supplementary Figure 10). Prediction of ERG expression was significantly 

improved by the addition of methylation at all recurrent HMRs upstream of TMPRSS2, only 

in fusion-positive tumors (P=0.0002, F-value=5.1, df=16, for fusion positive vs. P=0.76, F-

value=0.72, df=16, for fusion-negative samples, ANOVA, Figure 5b). These data suggest 

that methylation at regulatory regions upstream of TMPRSS2 contribute to this subtype.

The oncogene MYC is amplified in 38% of our mCRPC samples17. MYC gene copy number 

amplification was modestly correlated with MYC expression (P=0.002, Spearman’s 

ρ=0.31[0.11–0.49]). Distal enhancers in the downstream gene PVT1 have been reported to 

regulate MYC via physical DNA-DNA interactions83. DNA interactions between PVT1 and 

MYC were present in the VCaP ChIA-PET data (Figure 5c). We observed recurrent HMRs 

in the MYC promoter and PVT1 associated with MYC expression (Figure 5c). These 

eHMRs improved the fit of a model predicting MYC expression over one using MYC 
amplification alone (Figure 5d, P=0.001, F-value=3.2, df=11, ANOVA). Enhancer 

methylation has been shown to modulate enhancer activity, providing a plausible explanation 

of this observation27,84. Altogether, these findings support the model that methylation may 

affect the activity of key PCa drivers.

Methylation and PCa progression

We used publicly available WGBS data on benign prostate and localized PCa samples11 to 

identify Differentially Methylated Regions (DMRs) when comparing benign prostate vs. 

primary prostate cancer and primary PCa vs. mCRPC (Figure 6a). Primary PCa was 

predominantly less methylated than benign prostate (97% of 113,622 DMRs, Supplementary 

Table 8). mCRPC samples were also predominantly less methylated than primary PCa (96% 

of 508,313 DMRs, Supplementary Table 9). 55% of the DMRs from benign vs. primary PCa 

overlapped with the DMRs from primary PCa vs. mCRPC.
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Global hypo-methylation in cancer may contribute to genomic instability85–87. When we 

compared DMRs between benign prostate vs. mCRPC (Supplementary Table 10) with the 

locations of mCRPC somatic mutations, we found that regions with more differential hypo-

methylation in mCRPC had an elevated somatic mutation rate in mCRPC (in 1Mbp 

windows, Spearman’s ρ=−0.70[0.68 to −0.72], P<2×10−16; Figure 6b). The mutation rate 

was 58.5% higher within a DMR than outside of a DMR (6.77 vs. 4.28 mutations/Mb), 

suggesting that certain regions of the genome are more frequently somatically altered by 

both mutation and methylation. Finally, we tested whether differential methylation occurs 

preferentially in regulatory regions across the genome. When we examined putative 

regulatory regions (marked by AR, ERG, FOXA1, HOXB13, H3K27ac ChIP-seq), 

differentially hypo-methylated regions in mCRPC compared to benign prostate were 

enriched at these sites compared to the surrounding genome (Figure 6c).

DISCUSSION

Here we present global analysis of methylation in mCRPC with WGBS on 100 tumor 

samples and 10 matched benign-adjacent metastatic samples, integrated with matched deep 

WGS and RNA-seq of the same samples. These data identified a novel epigenetic subtype of 

mCRPC, new intergenic regulatory regions of AR, and the interplay between somatic and 

epigenetic alterations in the regulation of AR, ERG, MYC, and other important PCa drivers. 

We also demonstrated global methylome changes distinguishing benign prostate, primary 

PCa, and mCRPC. We found that somatic mutations and putative regulatory regions are 

frequently located in regions that are differentially hypo-methylated.

While genomic and transcriptomic subtypes of PCa have been described12,16,18–20,88, we 

have identified a new epigenetic CpG Methylator Phenotype (CMP) subtype of mCRPC 

characterized by hyper-methylation both within and outside of CpG islands, shores, and 

shelves. We hypothesize that this phenomenon is analogous to the CpG Island Methylator 

Phenotype (CIMP) that has been described in other tumor types. The mCRPC CMP subtype 

was enriched for mutations in TET2, BRAF, and IDH1, which have been associated with the 

CIMP subtype in other cancer types32. IDH1 mutations were associated with CpG island 

hyper-methylation in the TCGA primary prostate cancer data12. The present study cannot 

determine whether any mutations we observed could drive methylation changes. Previous 

experimental studies of TET2 and DNMT3B mutations have demonstrated their impact may 

vary by tissue type and genomic region89–94, and phenotypic studies will be required to 

elucidate the mechanistic basis of the CMP phenotype. There are potential therapeutic 

implications of the mCRPC CMP subtype, as methylation inhibitors such as 5-azacytidine 

and 5-aza-2-deoxycytidine are FDA-approved anti-neoplastic drugs. In vitro data as well as 

clinical data suggest that hyper-methylated tumors may preferentially benefit from these 

treatments95,96.

Our results highlight the importance of cancer-associated hypo-methylation in over-

expression of oncogenic drivers in mCRPC. The androgen receptor is the dominant driver 

and therapeutic target in prostate cancer. Recent studies have characterized amplifications of 

the AR gene body and an enhancer upstream of AR17,18,33. We found that intergenic eHMRs 

in these regions at putative AR enhancers were associated with AR expression in mCRPC. 
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Many of these putative enhancers overlap transcription factor binding sites80–82,97. While 

these enhancers were distant from the AR gene body, region demonstrated complex DNA 

looping which may bring these loci into proximity with the AR promoter. The MYC-PVT1 
interaction is another example of the interplay between long-range cis-enhancers and 

methylation83. Distal enhancers are known to activate oncogenes across cancers27,84, and 

these data emphasize the complex interactions between methylation, transcription factors, 

DNA alterations, and the 3-dimensional structure of the genome in the pathogenesis of 

mCRPC.

Comparisons between methylation in mCRPC and primary PCa were limited by the small 

number of primary PCa samples on which WGBS has been performed5,11. Future work 

integrating WGS, WGBS, and RNA-seq in large cohorts of primary PCa samples would 

enable a more robust analysis of how DNA methylation changes during progression to 

advanced disease, and would better capture the molecular heterogeneity of primary PCa. 

Integrated sequencing on additional mCRPC cohorts would allow us to understand the 

impact of rare alterations (e.g. in the other DNMT/TET genes) on methylation. Furthermore, 

combining WGS, WGBS and RNA-seq with additional complementary sequencing 

approaches measuring protein-DNA binding or chromatin structure (e.g. ChIP-seq, ChIA-

PET) on the same tumors would allow direct observation of how these processes work 

together to regulate gene expression.

ONLINE METHODS

Biopsy samples

Fresh-frozen image-guided mCRPC biopsy samples were obtained as previously 

described17. Benign-adjacent metastatic biopsies were identified for a subset of patients on 

centralized pathology review. DNA extraction was performed as previously described17. 

WGBS libraries were prepared from 250 ng of genomic DNA with 0.5% un-methylated λ 
phage DNA (Promega) spiked in to measure bisulfite conversion efficiency. Bisulfite 

conversion efficiency was >99.5% in all samples, as measured by λ phage DNA spike-in. 

Samples were fragmented by Covaris M220 focused-ultrasonicator to an average size of 500 

bp. Bisulfite conversion was performed using the EZ DNA methylation gold kit (Zymo 

Research). Library preparation was performed using Accel-NGS Methyl-Seq (Swift 

BioSciences). Library quality was monitored by 2100 Bioanalyzer (Agilent). Sequencing 

was performed at the UCSF Center for Advanced Technology sequencing core. 151bp paired 

end reads were sequenced on the Illumina Novaseq 6000 system.

Data processing

Alignment, trimming, and methylation calling was performed using the Illumina Basespace 

platform. 10 bases were trimmed off the 5’ end of every read per the Bismark User Guide 

recommendations for the library kit used. Quality trimming was performed per default 

recommendations of the Illumina MethylSeq application 2.0.0 (trim bases at the 5’-end with 

a quality score less than 30; trim bases at the 3’-end with a quality score less than 30; trim 

the 3’-end of reads with a quality score less than 15; trim the 3’-end of reads using a sliding 

window approach with window length 4). Alignment to GRCh38.p12, de-duplication, and 
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base-level methylation calling was performed using Bismark 0.20.098 using the default 

parameters as recommended by the Bismark User Guide for the library kit. The “--paired-

end” and “--no_overlap” parameters were set. Bases with germline or somatic C→T or 

G→A mutations were excluded from analysis on a per-sample basis using the WGS 

germline and somatic results as these specific mutations resulted in variants which are 

indistinguishable from bisulfite-converted reference bases by the sequencer. HMRs and 

PMDs were identified using MethylSeekR 1.22.099, with a UMR/LMR threshold of 30%, 

and otherwise using the default parameters. Only bases with a minimum coverage of 5 reads 

(the default MethylSeekR cutoff) were included for subsequent analysis. RNA-seq from 

laser-capture micro-dissected samples was aligned as previously described17, and abundance 

was calculated using featureCounts using the default parameters100. Genes were defined 

using GENCODE release 28. Duplicate reads were ignored, and junction counts were 

included. Transcripts Per Million (TPM) was calculated for each gene to quantify 

expression17. WGS data were processed to call mutations, copy number alterations, and 

structural variants as previously described17. Tumor purity was assessed by histological 

evaluation, by analysis of DNA using Canvas101 and in the RNA by ESTIMATE102. Purity 

estimates were all significantly inter-correlated (Spearman’s P’s all < 0.0001 for histologic 

vs. DNA, histologic vs. RNA, and DNA vs. RNA).

Statistical methods

Plotting and statistical tests were performed using R 3.4.4. All statistical tests performed in 

the manuscript were two-sided. Box-plots were generated using the R ggplot2 function 

(center line=median; box limits=upper and lower quartiles; whiskers=1.5x interquartile 

range). Hierarchical clustering was performed using the Euclidean distance and the complete 

linkage method. A two-sided Wilcoxon signed-rank test was used to assess differences 

between two groups. Multiple testing correction was performed using the Benjamini-

Hochberg method when applicable. Boxplots show the median, first, and third quartiles, and 

outliers are shown if outside 1.5x the inter-quartile range. A reporting summary can be 

found in the attached Life Sciences Reporting Summary.

Publicly available data

WGBS for five primary prostate tumors and four matched benign-adjacent prostate samples 

(referred to as “benign prostate” throughout the text to avoid confusion with the benign-

adjacent metastatic biopsies) were obtained from the authors11. Quality trimming was 

performed as above, and alignment to GRCh38.p12, de-duplication, and base-level 

methylation calls were performed using Bismark 0.20.0 as above98. The default Bismark 

parameters were again used, as well as the “--non_directional” parameter needed for the 

specific library preparation protocol used on these samples. The “--paired-end” and “--

no_overlap” parameters were set as well similar to above. MethylSeekR was called with 

identical parameters as above except a 3-read minimum coverage30 was applied due to lower 

sequencing depth.

Processed ChIP-seq data were obtained from the Gene Expression Omnibus (GEO). Raw 

data were not re-processed. If raw density tracks were available in the form of BigWig files 

for plotting, these were used. Otherwise, the peaks were plotted. The peak calls from the 
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original ChIP-seq studies were used without modification for all analyses utilizing peaks. 

H3K27ac data from mCRPC and primary PCa samples were obtained from GSE11438533 

(only available on chromosome X). Primary PCa H3K27ac data was obtained from 

GSE9665234. H3K4me3, H3K27ac, and H3K27me3 primary PCa ChIP-seq data were 

obtained from GSE12073835. Primary and metastatic PCa AR ChIP-seq data were obtained 

from GSE2821936. Primary PCa FOXA1 and HOXB13 ChIP-seq data were obtained from 

GSE7007937. Metastatic PCa and VCaP ERG ChIP-seq data were obtained from 

GSE1409738. Processed AR and ERG ChIA-PET data from VCaP were obtained from 

GSE5494639. The ChIP-seq peaks and ChIA-PET interactions published in the original 

manuscripts were used, and coordinates were converted from hg19 to GRCh38 using the 

UCSC LiftOver tool.

Recurrent HMRs

Hypomethylated regions were identified with the MethylSeekR tool99. Recurrent HMRs 

were defined by running a 100bp sliding window across the genome and identifying 

contiguous regions where MethylSeekR called an HMR in ≥5% of mCRPC samples. For 

example, if on chr1, the region from 10000–10099, 1 sample had an HMR; from 10100–

10199, 5 samples had an HMR; from 10200–10299, 7 samples had an HMR; and from 

10300–10399, 2 samples had an HMR, the region from 10100–10299 would be marked as a 

recurrent HMR. Only focal HMRs (≤10kb) were utilized in this analysis. HMRs were 

assigned to the first group that they overlapped in the following order: promoter, gene body, 

publicly available prostate cancer ChIP-seq for transcription factors (AR36, ERG38, 

FOXA137, HOXB1337), H3K27ac35, and H3K27me335.

Definition of prostate cancer-specific genes

Prostate cancer-specific genes were defined as those with elevated expression in primary 

prostate cancer compared to all other tumor types and benign prostate103. We utilized the 

TCGA pan-cancer FPKM RNA-seq data104 (downloaded via the UCSC Xena Browser105) 

to identify genes over-expressed in PCa compared to benign prostate tissues and compared 

to all 32 other tumor/normal tissue types individually. Genes were deemed PCa-specific if 

all 33 comparisons had a one-sided Wilcoxon signed-rank test FDR ≤ 0.05, and a fold-

change > 2 comparing PCa samples versus non-PCa.

Correlation analysis between methylation and gene expression

All correlation analyses were performed using Spearman’s correlation. Genes with RNA-seq 

expression values <1 TPM in all samples were excluded from such analyses, resulting in a 

total of 51,708 genes retained for analysis. To estimate methylation levels and calculate 

eHMRs, the methylation levels of all CpGs in the rHMRs were first averaged in each 

sample, and then correlated with gene expression across samples. Expression-associated 

HMRs (eHMRs) were defined as recurrent HMRs significantly associated with expression, 

using a threshold of FDR ≤ 0.05. While multiple eHMRs could exist for a single gene, a 

single eHMR with the smallest P-value when correlating with gene expression was reported.
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Methylation association with gene expression independent of DNA alterations

In order to identify genes in which methylation was associated with gene expression 

independent of DNA alterations, we fit a linear model predicting gene expression based on 

DNA-sequence alterations and all promoter/gene-body recurrent HMRs collectively. Using 

ANOVA, we compared this model that included both DNA-sequence alterations and gene 

methylation to a linear model including DNA alterations alone106. All recurrent promoter 

and gene body HMRs were included (rather than only eHMRs) to avoid bias for only regions 

known to be associated with expression. Promoters were defined as +/− 1500bp from the 

gene start site68. To assess which genomic pathways were most associated with methylation, 

we computed the number of genes in each MSigDB Hallmark pathway version 6.277,78 

whose expression was associated with methylation independently of DNA alterations. 

Fisher’s Exact Test was used to compare this statistically with the number of housekeeping 

genes76 where methylation added to DNA alterations.

Differentially methylated regions

Differential methylation was performed using the DSS R package version 2.26.0107 with 

smoothing set to true, and otherwise default parameters. No minimum CpG read coverage 

was applied for this analysis, as DSS accounts for read depth when calling differentially 

methylated regions (DMRs). To compute the correlation between DMRs and somatic 

mutational frequency, differential methylation extent was computed in 1Mbp windows for 

the entire genome, defined as the sum of the DSS “areaStat” within the 1Mb window. 

Somatic mutational frequency was computed for the same 1Mbp windows and averaged 

across all samples, excluding the two hyper-mutated samples17. Mutation and differential 

methylation calls overlapping assembly gaps and centromeres (obtained from the UCSC 

genome browser) were excluded for this analysis. The correlation between differential 

methylation and mutational frequency in these windows was computed using Spearman’s 

correlation. Differential methylation analysis at ChIP-seq loci was performed by first 

identifying published AR, ERG, FOXA1, and HOXB13 binding and H3K27ac sites as 

above. A 20 Kbp window centered on each TFBS was considered. Each base in a 20Kbp 

window was represented as the degree of differential methylation if contained within a DMR 

(defined by DSS), or as 0 if not contained within a DMR. The per-base DSS values were 

averaged across all 20Kbp windows to assess focal enrichment of differential methylation in 

or around TFBS’s.

DNA methylation valleys

DNA methylation valleys were defined as HMRs ≥ 5kb in length59. To assess the balance 

between H3K4me3 and H3K27me3, for each sample, a 2×2 table was constructed with the 

number of DMVs which overlapped an H3K4me3 site only, an H3K27me3 site only, both an 

H3K4me3 and an H3K27me3 site, or neither. The odds ratio was then calculated and 

plotted.

Partially methylated domains

To globally assess the variability of PMDs in prostate cancer, we defined PMDs for each 

sample using the MethylseekR tool with the same settings as when calling HMRs. Total 
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length of PMDs for each sample was divided by total genome length to calculate proportion 

of the genome containing PMDs. For each PMD called by MethylSeekR, the mean 

methylation level of all CpG’s in that PMD was calculated and the mean methylation of all 

PMDs in each sample was calculated to obtain the mean PMD methylation value. 

GENCODE 28 annotated exons were merged to identify coding bases, and the total number 

of coding bases inside/outside PMDs were divided by the total length of all PMDs for each 

sample. This analysis was restricted to mCRPC samples. Mutational density inside and 

outside of PMDs was calculated for each sample. The two previously identified hyper-

mutated samples were excluded from this analysis17.

Long-range epigenetic regulation

To identify candidate long-range epigenetic regulated regions, we examined five-gene 

windows across the genome, where every gene was correlated with the nearest two genes up 

and down-stream. We identified peaks in Spearman’s correlation in this sliding window 

where average correlation exceeded 0.3. Peaks needed to have at least five genes and peaks 

within two genes of each other were merged together. This same sliding window approach 

was applied to CpG islands. Regions where the gene expression and CpG island inter-

correlated peak overlapped with each other were identified, where average correlation 

between expression and CpG island methylation exceeded 0.1 or −0.1.

DATA AVAILABILITY SUMMARY

WGBS, WGS and RNA-seq are available at dbGAP (phs001648). All figures use these raw 

data. Processed ChIP-seq and CHIA-PET data were obtained from the Gene Expression 

Omnibus (GEO): GSE114385; GSE96652; GSE120738; GSE28219; GSE70079; 

GSE14097; GSE54946.
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Figure 1: CpG Methylator Phenotype (CMP)
a, Sample-level summary of hypo-methylated region (HMR) frequency and somatic 

alterations in 100 independent mCRPC samples. Bar plots show HMR counts within 

genomic features (HMR count), counts of HMRs overlapping with CpG islands/shores/

shelves (CpG overlap), percent of the genome with DNA copy number alterations (CNA %), 

somatic mutations per megabase (Mutations / Mb), and counts of structural variants (SV 

count). CMP samples labeled in blue. TFBS, transcription factor binding site. b, 

Hierarchical clustering of the 10% most variable recurrent HMRs in 100 mCRPC samples. 

Blue dendrogram denotes CMP samples. c, HMR count per sample in thousands in non-

CMP (N=78) and CMP (N=22). Significance was assessed with two-sided Wilcoxon test. d, 
Percent of CpGs methylated at loci harboring recurrent HMRs in Non-CMP (N=78) and 
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CMP (N=22), plotted and assessed as in (c). e, rHMRs located in CpG islands, shores, and 

shelves, count per sample in thousands, plotted and assessed as in (c). f, rHMRs located in 

open seas, count per sample in thousands, plotted and assessed as in (c). Boxplots show the 

median, first, and third quartiles, and outliers are shown if outside 1.5x the inter-quartile 

range.
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Figure 2: DNA methylation valleys (DMVs)
a, Top: Sample-level log2 odds ratio calculated from the number of DMVs which overlap 

H3K4me3 vs. H3K27me3 sites. Lower values favor H3K27me3, higher values favor 

H3K4me3. Bottom: Sample-level count of DMVs in order matching top panel. b, Mean 

percent methylation across the AR locus for benign prostate (N=4), localized prostate cancer 

(N=5), mCRPC adenocarcinoma (N=95), and t-SCNC samples (N=5). Vertical black lines 

show the location of the previously identified AR enhancer17. The vertical green and red 

lines show the TSS and transcriptional terminator of the androgen receptor, respectively.
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Figure 3: Methylation associated with prostate cancer-specific genes
a, Variability in gene expression levels versus the correlation between gene expression and 

methylation. Expression variability was calculated as standard deviation (Log2(TPM+1), and 

correlation calculated at the most significant promoter/gene body eHMR for each gene. Y-

axis box-plot shows gene expression variability for prostate cancer-specific genes versus all 

other genes. X-axis box-plot shows correlation of methylation with gene expression of 

prostate cancer-specific genes versus all other genes. Significance was assessed with two-

sided Wilcoxon test, N=169 vs. 51502. Boxplots show the median, first, and third quartiles, 

and outliers are shown if outside 1.5x the inter-quartile range. b, Sample-level gene 

expression levels compared to the presence of DNA alterations and methylation at the most 

significant promoter/gene body eHMR. Alterations predicted to be activating (SLC45A3, 

SPON2, TDRD1, SCHLAP1) or inactivating (TMEFF2, PCAT14) are shown17). 

Significance of methylation levels was assessed by ANOVA comparing a model predicting 
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gene expression from DNA alterations alone to a second model with methylation as an 

added factor. N=100 independent mCRPC samples. CN, copy number.
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Figure 4: Methylation association with the androgen response pathway
a, Percentage of genes in MSigDB Hallmark pathways for which methylation predicted 

expression independently from DNA alterations in a linear model. An asterisk indicates 

significant enrichment (two-sided FDR ≤ 0.05) relative to the set of all housekeeping genes. 

Significance was assessed with a two-sided Fisher’s exact test. N=100 independent mCRPC 

samples.

b, Sample-level gene expression levels compared to the presence of DNA alterations and 

methylation at the most significant promoter/gene body eHMR. Alterations predicted to be 

activating (KLK3, FOLH1) or inactivating (NKX3–1) are shown17). Significance of 

methylation levels was assessed by ANOVA comparing a model predicting gene expression 

Zhao et al. Page 26

Nat Genet. Author manuscript; available in PMC 2021 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from DNA alterations alone to a second model with methylation as an added factor, N=100 

independent mCRPC samples.

c, HMRs, correlation between methylation in at loci harboring recurrent HMRs and AR 
expression, ChIP-seq peaks (H3K27ac33, AR36, ERG38, FOXA137, HOXB1337), and ChIA-

PET interactions (AR and ERG)39 at the AR locus. Stars denote HMRs at which 

methylation was associated with AR expression (eHMRs), colored black for previously 

reported AR upstream enhancer, blue for the AR promoter, gold for new putative AR 
regulatory regions. Significance was assessed with a two-sided Spearman’s correlation test, 

N=100 independent mCRPC samples. “Primary” in the ChIP-seq tracks indicates localized 

primary prostate cancer.
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Figure 5: Methylation association with TMPRSS2-ERG and MYC
a, HMRs, correlation between methylation in loci harboring recurrent HMRs and ERG 
expression, and ChIP-seq peaks (H3K27ac34, AR36, ERG38, FOXA137, HOXB1337) at the 

TMPRSS2 locus. Significance was assessed with two-sided Spearman’s correlation, N=100 

independent mCRPC samples. TMPRSS2 isoform 204 was not shown as its TSS was 

~20Kbp upstream of the other 5 protein coding isoforms.

b, Observed ERG expression in TMPRSS2-ERG fusion positive mCRPC and ERG 
expression predicted in those tumors using two linear models: one including AR expression 

and AR mutations and another including AR expression, AR mutations, and methylation at 

the TMPRSS2 promoter and upstream locus. Significance was assessed by a two-sided 

ANOVA (N=41 independent fusion positive samples).

c, HMRs, correlation between methylation in recurrent HMRs and MYC expression, ChIP-

seq peaks (H3K27ac34), and ChIA-PET interactions (AR and ERG)39 at the MYC-PVT1 
locus. Significance was assessed with two-sided Spearman’s correlation, N=100 

independent mCRPC samples. “Primary” in the ChIP-seq tracks indicates localized primary 

prostate cancer.
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d, Observed MYC expression and MYC expression predicted in those tumors using two 

linear models: one including MYC copy number alone and another including MYC copy 

number and methylation at the MYC-PVT1 locus. Significance was assessed by a two-sided 

ANOVA (N=100 independent mCRPC samples).
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Figure 6: Genome-wide analysis of differential methylation
a, Differentially methylated regions (DMRs) and mutation frequency in mCRPC. Ideogram 

shows, for each chromosome, from left to right: DMRs comparing primary prostate cancer 

(N=5) to benign prostate (N=4), DMRs comparing mCRPC (adenocarcinoma, N=95) to 

primary prostate cancer (N=5), and mutational frequency in 1Mbp windows in the mCRPC 

samples (excluding two hyper-mutated samples17). Maximum bar height in mutation 

frequency represents an average mutational frequency ≥10 mutations per Mb per sample.

b, Differential methylation (comparing mCRPC (adenocarcinoma) to benign prostate) 

compared to mutational frequency (excluding 2 hyper-mutated samples17), N=98. Each 

point represents a fixed 1Mbp window of the genome, and all points collectively represent 

all 1 Mb windows across the genome excluding centromeres and telomeres.

c, Average differential methylation values across all sites identified from publicly available 

ChIP-seq data (AR36, ERG38, FOXA137, HOXB1337, H3K27ac35). For each ChIP-seq peak, 

a 20Kbp window centered on midpoint of the peak (x=0) was assessed for differential 

methylation between mCRPC adenocarcinoma vs. benign prostate samples.
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