
Review

Wanqiong Yuan and Chunli Song*

Crosstalk between bone and other organs
https://doi.org/10.1515/mr-2022-0018
Received June 13, 2022; accepted August 6, 2022;
published online September 15, 2022

Abstract: Bone has long been considered as a silent organ
that provides a reservoir of calcium and phosphorus,
traditionally. Recently, further study of bone has revealed
additional functions as an endocrine organ connecting
systemic organs of the whole body. Communication
between bone and other organs participates in most
physiological and pathological events and is responsible
for the maintenance of homeostasis. Here, we present an
overview of the crosstalk between bone and other organs.
Furthermore, we describe the factors mediating the cross-
talk and review the mechanisms in the development of
potential associated diseases. These connections shed new
light on the pathogenesis of systemic diseases and provide
novel potential targets for the treatment of systemic
diseases.
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Introduction

Bone is a living and dynamic organ, which coordinately
processes bone formation by osteoblasts and bone resorp-
tion by osteoclasts, respectively. Osteoblasts develop from
mesenchymal stem cells, and osteoclasts are large multi-
nucleated cells that develop from hematopoietic stem cells.
Another bone cell type, osteocytes, are the most abundant
cells, comprising 95% of bone cells and regulating osteo-
clasts and osteoblasts to maintain bone balance [1]. These
cells are influenced by numerous local and systemic factors
and produce factors that participate in systemic body

regulation. The mutual regulation among these cells con-
tributes to maintaining bone homeostasis.

The endocrine system plays crucial roles in the main-
tenance of whole organism physiology. Traditionally, bone
has long been considered as an inertia organ that provides
the storage for calcium and phosphate to support the body.
Recently, bone revealed extra-skeletal functions [2] and is
redefined as an active endocrine organ. The crosstalk
between bone and other organs is essential to whole-body
homeostasis, coordinating the activity of organs and
guaranteeing the proper physiological functions of organs.
Communication between bone and other organs is
increasingly recognized as a critical way to maintain
homeostasis and disease adaptation [3]. In this review, we
will present an overview of the crosstalk between bone and
other organs, including muscle, brain, immune system,
blood vessel, pancreas, kidney, liver and gonad (Figure 1).

Crosstalk between bone andmuscle

The musculoskeletal system is comprised of muscle and
bone. Bone provides attachment sites for muscle, and
skeletal muscle imparts a force on the bone to facilitate
locomotion of the organism. Compared with bones, muscle
was recognized as an endocrine organ earlier. Bone and
muscle interact to maintain their structures and functions,
and their anatomic and physiological connections have
been considered to transmit that the mechanical forces
applied to muscle to the skeleton to promote bone forma-
tion, historically [4, 5].

The coexistence of osteoporosis and sarcopenia has
been recently considered as a syndrome termed ‘osteo-
sarcopenia’, which is common in older age and is associ-
ated with significant morbidity andmortality [6]. However,
it is unclear whether one condition precedes the other or if
the conditions are linked with energy demand to facilitate
bone formation [7]. Muscle and bone can also secrete and
receive common factors to regulate their metabolism, as
well as that of thewhole body [7].When contraction occurs,
muscle is most likely producing osteocyte viability factors,
which lost with aging [8]. Therefore, it is essential to
identify the muscle factors that protect osteocytes and the
bone factors that maintain muscle function to design
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therapeutics for the prevention and treatment of osteopo-
rosis and sarcopenia [8].

Recent studies have shown that biochemical commu-
nication also exists between muscle and bone in addition
to mechanical interactions through the endocrine system
mediated by myokines (derived from myocytes) and
osteokines (derived from bone cells) as shown in Figure 2.
In this section, we will discuss the bidirectional effects of
myokines and osteokines on bone andmusclemetabolism.

Bone to muscle

The number of bone‐derived factors, namely, osteokines,
continues to increase, including osteocalcin (OCN), scle-
rostin, prostaglandin E2 (PGE2), transforming growth
factor-β (TGF-β) and receptor activator for nuclear factor-κ
B ligand (RANKL). Herein, we describe the effects of these
factors on muscle in this review.

OCN, an osteoblast-derived molecule encoded by the
bone gamma-carboxyglutamate protein gene, is so impor-
tant in life processes. It has been reported that OCN levels
increase during physical activity and meanwhile, the level
of OCN decreases during aging [9]. Administration of
exogenousOCN increases the exercise capacity of 3-month-
old mice and restores the exercise capacity of 9-, 12- and

15-month-old mice by promoting glucose absorption and
stimulating catabolism in skeletal muscle [10]. Under-
carboxylated OCN has a close relationship with the muscle
regulation of insulin sensitivity [11]. In addition, OCN
promotes the synthesis of interlukin (IL)-6 [12], which in
turn promotes adaptation to exercise by stimulatingOCN in
bone.

Sclerostin is encoded by the SOST gene. It is secreted
by osteocytes and suppresses bone formation via the
canonical Wnt/β‐catenin pathway [13]. The absence of
sclerostin caused by sclerostin antibody or SOST gene
intervention technology increases bone mass [14] and
may further induce sclerosteosis [15]. Instead, the level of
sclerostin is reduced after muscle or bone loading [16, 17].

PGE2 is essential for efficacious skeletal muscle-
specific stem cell function, augmenting regeneration and
strength by interacting with its receptor EP4 [18]. PGE2
activates the β-catenin pathway via the stimulation of
PI3K in osteocytes in response to fluid shear stress [19], and
PGE2 accelerates C2C12 myoblast proliferation [20]. PGE2
signaling ameliorates muscle atrophy and rejuvenates
muscle function. Thus, the PGE2-degrading enzyme
15-PGDH may be a potential therapeutic target for pre-
venting sarcopenia [21].

TGF‐β is another muscle regulator that is mainly
derived from bone and is stored within the mineralized
bone matrix. Mice treated with TGF‐β reduces the produc-
tion of specific muscle force, but the muscle mass remains
unchanged [22]. Moreover, TGF‐β causes muscle weakness
in the setting of osteolytic cancer through an increase in
muscle oxidative stress and calcium mishandling [8, 23].

RANKL is a key mediator of osteoclast formation,
function, and survival [24]. Overexpression of RANKL in-
duces bone loss, which is associated with impairment of
muscle function and strength. RANKL receptor RANK
deletion in muscle prevents muscle atrophy and dysfunc-
tion induced by denervation [25]. Anti-RANKL treatment
(such as denosumab) protects against skeletal muscle
dysfunctions while enhancing bone mechanical proper-
ties [26]. Moreover, denosumab significantly increases
appendicular lean mass and improves handgrip strength,
suggesting that bone and muscle have a tight connection
and that denosumab could represent a novel therapeutic
approach for sarcopenia [27].

Muscle to bone

Muscle influences bone metabolism mainly via myokines,
including interleukins and myostatin. Understanding the
functional role and signaling pathways of myokines,

Figure 1: Crosstalk between bone and other organs. There is a tight
connection between bone and other organs, including muscle,
brain, immune system, blood vessel, pancreas, kidney, liver and
gonad.
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particularly as they relate to exercise, may reveal new
therapeutic targets to promote bone health.

One of the most significant interleukins is IL-6. While,
IL-6 derived frommuscle is stimulated by exercise [28] and
generally acts as an anti-inflammatory compound and
increases glucose uptake and sensitivity [29, 30]. The roles
of IL-6 in bone are negative to some extent by binding to its
soluble receptor, gp130. IL-6 drives osteoclastogenesis via
promoting the release of RANKL by osteoblasts, osteocytes
and leukocytes and increasing the expression of RANK in
osteoclast to reveal a net resorptive effect [31]. Mechani-
cally loaded myotubes promote osteoclasts formation
through the secretion of IL‐6 [32]. IL‐7 and IL-15, abun-
dantly secreted by muscle, are also widely regarded as
osteoclastogenic factors [8, 33].

Myostatin is a secreted growth and differentiation
factor that belongs to the TGF-β superfamily [34] and has
been clearly defined as a negative regulator of muscle and
bone [35, 36]. Myostatin elicits osteoclastogenesis and

reduces bone formation [35, 37]. Suppressing myostatin
in the osteogenic differentiation of bone marrow stem
cells induces the expression of osteogenic growth factors,
such as insulin like growth factor-1 (IGF-1), leading to
increasing osteoblast proliferation and accelerating bone
formation [37]. Inhibition of the soluble myostatin decoy
receptor ActRIIB, which is expressed on the cell membrane
of osteoblasts, increases bone formation [38, 39]. Some
studies have proposed that myostatin stimulates the pro-
duction of sclerostin, RANKL, Dickkopf, andWnt signaling
pathway inhibitor 1 (DKK1) [40] and accelerates the
absorption of osteocyte-derived exosomes by osteoblasts,
leading to reducing osteoblastogenesis [41]. In contrast,
myostatin acts as a positive regulator of osteoclast forma-
tion by activating the RANKL/SMAD2/nuclear factor of
activated T cells (NFATc1) signaling pathway [42].

Irisin is a peptide produced by proteolytic cleavage of
fibronectin type III domain-containing protein 5, a trans-
membrane protein localized in skeletal muscle mediated

Figure 2: Crosstalk between bone and muscle. Osteokines produced and released by bone and myokines produced and released by muscle
together maintain the crosstalk between bone and muscle. Osteokines secreted by osteoblast (OB) and osteocyte (such as sclerostin,
osteocalcin prostaglandin E2, transforming growth factor-β and receptor activator for nuclear factor-κ B ligand) affect muscle metabolism.
Myokines secreted by muscle include interleukin and myostatin. IL-6 regulates OB and osteocyte by binding to the IL-6 receptor gp130.
Myostatins (such as musclin, irisin, insulin like growth factor-1 and fibroblast growth factor 2) also affect osteocyte, OB and osteoclast.
OCN, osteocalcin; PGE2, prostaglandin; TGF-β, transforming growth factor-β; RANKL, receptor activator for nuclear factor-κ B ligand;
IL, include interleukin; IGF-1, insulin like growth factor-1; FGF-2, fibroblast growth factor 2; OC, OB and osteoclast.
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by exercise [43]. Irisin was initially regarded as a hormone
that induces thermogenesis in adipose tissue [43], but
recently, a potent ability to modulate the bone turnover
has been revealed. Several studies have shown that irisin
is positively associated with bone mineral status [44].
It inhibits osteoclast differentiation by suppressing
the RANKL/NFATc1 and nuclear factor-κB (NF-κB) path-
ways [45] and promotes osteoblast differentiation by
upregulating Nrf2 and inhibiting the NLRP3 inflamma-
some [46]. In contrast, irisin increases sclerostin expres-
sion in osteocytes to induce bone resorption and deletion
of irisin completely blocks the ovariectomy-induced
trabecular bone loss [47]. Thus, the role of irisin in the
skeleton is quite complex and requires further study.

Musclin is a novel skeletal muscle-derived secretory
factor [48]. Its protein sequence is similar to that of osteoc-
rin, a protein expressed in osteoblasts which disappears
after birth [49]. Thus, musclin may play important roles in
bone. As we speculated, musclin enhances C-type natri-
uretic peptide receptor signaling by targetingNPR3, a C-type
natriuretic peptide clearance receptor, for degradation.
Musclin mRNA expression has been linked to insulin
induced Akt and forkhead box O1 transcription factor
signaling pathways, leading to osteoclastogenesis [50].

IGF-1 and fibroblast growth factor 2 (FGF-2), two well-
known osteogenic factors that are abundant in homoge-
nized muscle tissue [12, 51], are localized at the muscle-
bone interface [52]. IGF-1 is predominantly synthesized by
the liver and is expressed in multiple extrahepatic tissues,
including bone and skeletal muscle. IGF-1 is necessary for
osteoblasts, osteoclasts and osteocytes and maintains the
balanced interaction between osteoblasts and osteo-
clasts [53, 54]. It positively regulates osteoblast function
through theWnt/β-catenin pathway [55] and stimulates the
survival of osteocytes and osteoblasts [56]. On the other
hand, IGF-1 induces osteoclastogenesis by enhancing
RANKL synthesis [57]. FGF-2 is localized to the muscle–
bone interface and could be a bone formation inducer
factor released by muscle [52, 58]. Moreover, FGF-2 targets
sclerostin in bone and myostatin in muscle to reduce the
damage of glucocorticoids on musculoskeletal degrada-
tion, suggesting a tight connection between bone and
muscle [59].

Crosstalk between bone and brain

The brain has long been known as the main coordinator
for the activities and hormonal secretion of other organs.
An increasing number of studies have revealed that
the reciprocal effects on the brain are dependent on

peripheral organs, especially the bone. The central nervous
system (CNS) directly regulates bone tissues via efferent
neural connections. In particular, osteoporosis has been
associated with multiple brain dysfunctions as well as
major neurodegenerative diseases, including stroke [60],
Alzheimer’s disease (AD) [61] and Parkinson’s disease [61].
Bone cells contain the innervation and receptors for several
neural peptides, and the neural tracts from the bone
marrow link the central nervous system. Similarly, skeletal
disorders are associated with changes in brain activity,
potentially shared with interconnecting molecular mech-
anisms to some extent.

Bone to brain

Undercarboxylated, bioactive OCN, initially considered
as a regulator in bone remodeling [62] and meta-
bolism [63], and promotes testosterone synthesis of the
testis and the fertility of male mice [64, 65]. Inchoately,
OCN is C-carboxylated (Gla-OCN) and secreted by osteo-
blasts into the bone extracellular matrix [66]. Then,
carboxylase γ-glutamyl carboxylase decarboxylates Gla-
OCN into undercarboxylated active OCN (Glu-OCN). With
the help of osteoclasts during the progress of bone
resorption, the affinity of OCN for the bone matrix de-
creases and Gla-OCN is promoted to entry into the circu-
lation to act as a hormone for other organs [67, 68]
(Figure 3). Glu-OCN regulates energy metabolism by
binding to the receptor GPRC6A in the testis, liver,
pancreas andmuscle [69].While in brain, GPR158 acts as a
receptor for OCN, which expresses in the CA3 region of the
hippocampus in pyramidal neurons (Figure 3) in part
through inositol 1,4,5-trisphosphate and brain-derived
neurotrophic factor [70]. Kandel further found that
RbAp48 is a critical component of GPR158/OCN signaling.
Activation of the OCN/GPR158 pathway increases the
expression of RbAp48 rescues age-related memory
loss [71].

OCN is not expressed in any part of the brain, but it can
cross the blood-brain barrier and bind with brain regions,
such as the hippocampus, the ventral tegmental area, the
substantia nigra, and the brainstem to regulate neuro-
transmitters content. As a result, maternal OCN prevents
depression and anxiety and crosses the placenta to influ-
ence the brain development of fetus during embryogenesis
(Figure 3). The above phenomenon may be explained by
the fact that the content of monoamine neurotransmitter
increased with sufficient OCN, including norepinephrine,
dopamine and serotonin [72]. Deficiency of OCN impairs
the functions of memory in the offspring as evidenced by
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anatomical defects in the hippocampal region observed
with an increase in the number of apoptotic cells [73].

Similar to OCN, lipocalin 2, another osteoblast-derived
mediator [74], is a glycoprotein that regulates energy
metabolism by mediating insulin secretion and improving
glucose tolerance and insulin sensitivity. It can also cross
the blood-brain barrier to activate the anorexigenic
pathway by binding to the melanocortin 4 receptor in the
hypothalamus [75]. Lipocalin 2 KO mice showed increased
gonadal fat weight, total fat mass and body weight and
exogenous lipocalin 2 exerted a sustained anorexigenic
effect, leading to a decreased fat mass, body weight and
body-weight gain [75].

In addition, osteocyte-specific sclerostin also plays
important roles in brain function. Sclerostin binds to the
Lrp4/5/6 to further antagonizeWnt signaling [76], resulting
in reducing bone formation and promoting bone resorp-
tion [77] and further associated with the pathophysiology
of brain diseases, such AD [78].

Bone and bonemarrow are regarded as a single unit or
two perspectives of one organ. In addition to the factors

secreted by bone, bonemarrow-derived cells can also enter
the systemic circulation and migrate into the brain [79].
It has been reported that bone marrow-derived microglia-
like cells improve cognitive impairment by restricting Aβ
plaque formation and supporting Aβ plaque clearance in
amyloid pathology [80].

Brain to bone

The sympathetic nervous system functions by releasing
norepinephrine, which can activate α-adrenergic receptors
(ARs) in presynaptic cells and activate β-adrenergic
receptors in postsynaptic cells. Sympathetic postganglionic
neurons project to most tissues of the body, including
bone [81]. Sympathetic periosteal fibers branch in the
compact bone and bone marrow and secret factors, such as
the sympathetic nerve markers: tyrosine hydroxylase [82],
dopamine β-hydroxylase [83], neuropeptide Y and norepi-
nephrine transporter [84]. The parasympathetic nervous
system postsynaptic neurons mainly supply cholinergic

Figure 3: Endocrine roles of osteocalcin. Carboxylase γ-glutamyl carboxylase facilitates the posttranslational modification of C-carboxylated
OCN into undercarboxylated active OCN. Bone resorption of osteoclast decreases the OCN affinity for the bonematrix and promotes the entry of
Gla-OCN into the circulation to act as a hormone by binding to its receptor. Gla-OCN crosses the blood-brain barrier and the placenta to affect
the development of brain and memory and crosses the blood-placenta barrier to affect the spatial learning-like behavior of fetus. In addition,
Gla-OCN regulates themetabolismofmuscle, liver, testis andpancreas.OCN, osteocalcin; GGCX, Carboxylase γ-glutamyl carboxylase;Gla-OCN,
C-carboxylated; Glu-OCN, undercarboxylated active OCN; OC, osteoclast; BBB, blood-brain barrier; BPB, blood-placenta barrier.
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terminals for excretory and reproductive functions. The
neurotransmitter acetylcholine plays important roles in the
functions of parasympathetic nervous system by activating
muscarinic and nicotinic cholinergic receptors. The vesicu-
lar acetylcholine transporter [84] and choline acetyl-
transferase [85] have also been detected in bone. If we
consider the skeleton in the dimension of the internal
organs, it is easier to understand the skeletal innervation,
especially the autonomic nerve innervation of the skeleton.
The brain is a powerful regulator of skeletal homeostasis.
The CNS regulates bone mass by the direct action of neu-
rotransmitters or by acting as a mediator in mediating
peripheral hormonal signals, such as leptin.

Leptin was first cloned in 1994 [86], and it is a verte-
brate invention, suggesting that bone may be its major
target [87]. On the one hand, leptin regulates appetite,
energy expenditure and fertility regulated by brain. On the
other hand, leptin links to bone remodeling: mice deficient
in leptin (ob/ob) or its receptor (db/db) display a low bone
mass phenotype [88, 89]. The function of leptin in bone
formation through the hypothalamus reveals completely
opposite effects. Leptin exerts a catabolic effect on bone
mass via activation of the sympathetic nervous system [90].
Once leptin binds to the leptin receptor and activates the
tyrosine kinase Jak2, resulting in the phosphorylation of
the residues on the leptin receptor [91]. Next, the expres-
sion of tryptophan hydroxylase 2 decreases. Tryptophan
hydroxylase 2 encodes the initial enzyme for the biosyn-
thesis of serotonin, which in ventromedial neurons
decreases the activity of sympathetic nervous system and
reduces bone mass.

ARs belong to the G protein-coupled receptor super-
family. They regulate presynaptic sympathetic nerve termi-
nal signals, release the neurotransmitter norepinephrine
and participate in brain and peripheral nerves and in target
tissues, such as bone. ARs consist of two subtypes, αARs
and βARs. Both osteoblasts [92] and osteoclasts [93] express
αAR. βARs may be the main AR that regulates the effects of
sympathetic nerves on bone remodeling. βARs are sub-
divided into three groups: β1ARs, β2ARs, and β3ARs. Oste-
oblasts mainly express the β2AR subtype [84, 94, 95]. While
β1ARsand β3ARswere found tobeweakly expressedor even
undetectable in osteoblasts and osteoclasts [96].

Additionally, silencing IL-1 receptor signaling in
the central nervous system leads to very low skeletal
vesicular acetylcholine transporter expression, acetyl-
choline levels, and low bone mass. These results suggest
that the “central IL-1-parasympathetic-bone” axis antag-
onizes skeletal sympathetic tone and promotes bone
mass accrual [97]. Semaphorin 3A is the first identified
vertebral semaphorin and is characterized as a diffusible

axonal chemorepellent that guarantees the growth and
branching of axons into appropriate areas [98]. Currently,
Semaphorin 3A is recognized to play important roles in
bone remodeling. It regulates osteoclast differentiation by
binding to neuropilin-1, and Semaphorin 3a KO mice
exhibit severely low bone mass due to the increased
numbers of osteoclasts and the decreased numbers of
osteoblasts [99].

Crosstalk between bone and
immune system

Osteoimmunology is an interdisciplinary research field
that explores the shared molecules and interactions
between the bone and immune systems. In 1972, Horton
first reported the interaction between immune cells and
bone cells and found that bacterial antigen-stimulated
immune cells produce osteoclast activating factors [100].
In 2000, Arron and Choi proposed the term ‘osteoimmu-
nology’ [101], which provides a conceptual bridge to
understand the novel biological framework and a molec-
ular basis for the exploration of therapies for diseases of
bone and/or the immune system. The bone and immune
systems share a variety of molecules, such as cytokines,
chemokines, transcription factors and signaling mole-
cules. Furthermore, accumulating evidence has shown
that bone cells reciprocally regulate immune cells and
hematopoiesis [102, 103]. Bone remodeling is closely con-
nected with lymphohematopoietic homeostasis because
the bone marrow is formed by trabecular bone structures
that provide a solid niche for the maintenance and differ-
entiation of hematopoietic stem cells (ancestors of blood
lineage cells and osteoclasts) and mesenchymal stem cells
(ancestors of chondrocytes, adipocytes and osteo-
blasts) [104]. Here, we summarize the recent advances in
the regulation of immune cells by bone cells and the effects
of the immune system on bone cells, and discuss the
application of osteoimmunology in treating diseases.

Bone to immune system

Bone is not only a crucial element of the skeletal-locomotor
system, but also functions as an immunological organ.
Skin is a physical immune organ that acts as a barrier to
protect us from harmful exposure to external and internal
environments [105]. From an evolutionary point of view,
bone originates as mineralization around the basal mem-
brane of the throat or skin [106]. Bone is specific to
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vertebrates, whose evolution is dependent on exposure
to sunlight and photosynthesis of vitamin D3 in the
skin [107]. Voisin proposed that the skin langerhans cells
and osteoclasts likely evolved from a common ancestor
fromagenetic and a functional point of view [108]. Besides,
bone cells and immune cells share the samemicromilieu in
bonemarrow,where hematopoietic stem cells and immune
progenitor cells ultimately migrate during mammalian
development [102, 109].

RANKL is one of the most important factors linking the
two systems. It plays multiple roles in the immune system,
includingmediating immunological responses and immune
organ development. RANKL was originally identified as a
T-cell-derived cytokine that regulates the function of den-
dritic cells. Further studies show that RANKL secreted from
osteoblasts and osteocytes participates in the maturation of
dendritic cells [110, 111]. The studies of TNF receptor
superfamily member (Tnfrsf)11a or tumor necrosis factor
superfamily 11 KOmice reveal that the RANKL/RANK system
is essential for the development of immune organs, such as
the thymus (Figure 4). RANKL is essential for the develop-
ment and function of the secondary lymphoidorgans,where
immune responses take place and lymph node is one such
organ (Figure 4). RANKL on lymphoid tissue organizer cells
and marginal reticular cells binds to RANK on lymphatic
endothelial cells, resulting in the recruitment of macro-
phages [110, 112]. Additionally, RANKL shows immunosup-
pressive effects in the immunotherapies in cancers. It has
been reported that treatment with denosumab in premeno-
pausal early-stage breast cancer patients inhibits RANK
pathway and increases tumor infiltrating lymphocytes and
CD8+ T cells on the one hand [113]. On the other hand,
RANKL shows the opposite effects on autoimmunediseases,
including rheumatoid arthritis [114], experimental autoim-
mune encephalomyelitis [115] and Crohn’s disease [116].
Thus, the anti-RANKL treatment would be a potential
strategy for autoimmune diseases. In addition, RANK on
lymphatic endothelial cells is important for the retention
of lymphoid tissue inducer cells in the lymph node
anlagen [117]. Blockade of theRANKL signal by theRANK-Fc
protein decreases the number of regulatory T (Treg) cells
and promotes the differentiation of CD8+ T cells into cyto-
toxic T lymphocytes, leading to type 1 diabetes [118]. Lack
of RANKL impairs B-cell development, reducing the
immunoglobulin-secreting B cells (Figure 4) [119]. However,
conditional knockout of Tnfrsf11a in B cells does not affect
B-cell development or antibody production [120].

Osteoblasts participate in the differentiation of T cells
and B cells in the bone marrow through other factors, such
as the Notch ligand delta-like 4. Osteoblasts express Notch
ligand delta-like 4 to support the development of T cell

progenitors [121]. Deletion of C-X-C motif chemokine
ligand 12 from osterix-expressing stromal cells in osteo-
blasts reduces the number of B-lymphoid progenitors [122].
In addition, bonemarrow stem cells secrete IL-7 to promote
T cells and B cells development [123].

Immune system to bone

Immune cells play a critical role in postmenopausal oste-
oporosis. Ovariectomy could not induce cortical and
trabecular bone loss in T cell deficient nude mice, sug-
gesting that T cells exert protective effects on bone struc-
ture [124, 125]. Specifically, both CD4+ T cells, including
type helper (Th)1, Th2, Th17 and Treg subsets, and CD8+

T cells play key roles in ovariectomy-induced bone
loss [126]. The IgG immune complex secreted by B cells
regulates osteoclast differentiation via promoting TNF, IL-1
and IL-6 secreted by innate immune cells, such as mast
cells, neutrophils and macrophages [127] (Figure 4).
Th17 cells are the main cells causing osteoclastogenesis by
producing higher levels of IL-17, RANKL and TNF-α and
lower levels of IFN-γ [128, 129]. While Treg cells suppress
the effector functioning of Th17 cells via their production of
IL-4, IL-10 and TGF-β1 and suppress bone loss by inhibiting
the differentiation of monocytes into osteoclasts [130].

Butyrate stimulates bone formation via Treg cells and
regulates Wnt10b production by CD8+ T cells [131]. In
addition, Treg cells play a role in bone formation by
directly promoting the differentiation of osteoblasts [132].
On the contrary, Treg cells, driven by Th17 cells, prevent
the excessive differentiation of osteoclasts. While Th17
cells are a pathogenic subset of CD4+ T cells that produce
IL-17 to promote osteoclastogenesis [104].

High expression of RANKL in T cells enhanced the
survival of intestinal CD11c+ dendritic cells in mice lacking
IL-2, resulting in bone loss [133]. Macrophages and den-
dritic cells, which exert pro-inflammatory effects, directly
activate RANK signaling to promote osteoclastogenesis via
secreting IL-1, IL-6 and TNF-α [31, 134], directly and mac-
rophages and dendritic cells promote cytokines, such as
IL-23 to induce osteoclast activation indirectly mediated by
lymphocytes [135]. Macrophages and dendritic cells secrete
IL-23 to inhibit osteoclast formation, blocking RANK
dependent osteoclastogenesis through STAT1-dependent
inhibition of c-Fos [136].

Osteoimmunology and cancer

Immune response determines the tumorigenesis and
development of cancer. The bone nichewith immune cells is
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a real “place of call” for tumor and cancer stem cells [137].
Both bone cancers and bone metastases are frequent com-
plications of many cancers that cause bone complications,
including fractures, bone pain and disability [138]. Bone is
one of themost preferentialmetastatic target sites for certain
cancers [139]. Stephen Paget proposed that bone is an
exclusively favorable environment for tumor metastasis,
namely the “seed and soil theory” [140].

The tumor microenvironment influences the behavior
of cancer cells and immune cells, which further regulates
cancer progression. In the tumor microenvironment, can-
cer cells and immune cells produce various cytokines or
factors, such as PGE2, IL-6, IL-8, IL-11, andTNF-α, to induce
the expression of RANKL in osteoblasts and osteocytes,
resulting in osteoclastogenesis and bone resorption. This
bone resorption subsequently releases calcium and growth
factors such as TGF-β and IGFs from the degraded bone
matrices, which further leads to tumor progression [141].

On the other hand, soluble RANKL promotes the homing of
tumor cells to bone by interacting with RANK in tumor
cells. Besides, chemokines derived from bone marrow
stromal cells and bone marrow endothelial cells, such as
C-X-C motif chemokine ligand 12, CX3C chemokine ligand
1, and C-Cmotif chemokine ligand 2, bind to their receptors
in cancer cells and attract cancer cell migration to bone
(Figure 4) [142, 143]. The above activities are referred to as a
“vicious cycle”. NK cells promote the proliferation of can-
cer cells in the bone niche [144].

Crosstalk between bone and blood
vessel

Cells expressing early cardiac markers are known to reside
in the bone marrow and these progenitor cells not only act

Figure 4: Crosstalk between bone and immune system. Receptor activator for nuclear factor-κ B ligand is one of the most important factors
linking bone and immune system. RANKL produced and released by osteoblast promotes osteoclastogenesis and regulates the function of
B cells, T cells, Treg cells and dendritic cells. In addition, it affects the development of thymus and lymphoid organs. RANKL promotes the
differentiation of CD8+ T cells into cytotoxic T lymphocytes to suppress cancer development. Stromal cells and endothelial cells in bone
marrow produce C-X-C motif chemokine ligand 12, CX3C chemokine ligand 1, and C-C motif chemokine ligand 2 to bind to their receptors on
cancer cells and attract cancer cell migration to bone. In turn, T cells, B cells, dendritic cells and macrophages also promote the osteo-
clastogenesis. RANKL, Receptor activator for nuclear factor-κB ligand;OB, osteoblast; CXCL12, C-X-Cmotif chemokine ligand 12; CX3CL1, CX3C
chemokine ligand 1; CCL2, C-C motif chemokine ligand 2.

338 Yuan and Song: Crosstalk between bone and other organs



as markers of disease, but also contribute to myocardial
healing in the setting of ischemic injury [145]. Recent work
has demonstrated that regulatory hierarchies active in
developing bone are also important in heart valve matu-
ration [146]. The bone-vascular axis calcification paradox
serves as a bridge between bone (osteoporosis) and
vascular diseases (cardiovascular disease, CVD) [147]. CVD
and cardiovascular mortality are associated with reduced
bone mineral density and bone fractures. These two con-
ditions may be sustained by similar mechanisms.

Bone to blood vessel

Osteoprotegerin (OPG) is a glycoprotein that belongs to the
tumor necrosis factor superfamily. It ismainly expressed in
osteoblasts, inhibits osteoclastogenesis, and inhibits bone
loss by blocking the connection between RANKL [148] and
its receptor RANK [149]. Clinical observations show that
OPG participates in cardiovascular diseases. The concen-
tration of plasmaOPG in CVDpatients is higher than that in
the healthy volunteers [74]. These high concentrations of
OPG are also associated with a greater range of athero-
sclerotic lesions in the coronary arteries and a higher risk of
death [150]. Moreover, high concentrations of OPG are a
predictor of a higher frequency of hospitalizations due to
exacerbated ischemic heart failure with a reduced ejection
fraction [74], and OPG concentrations in plasma were also
related to patients with unstable angina and acute
myocardial infarction [151]. There is increasing evidence
that OPG not only is a marker of an unfavorable prognosis
in CVDs, but also plays an important pathogenetic role in
the development of cardiovascular diseases.

Blood vessel to bone

Osteogenesis and angiogenesis are intimately connected
during bone formation and regeneration in the mammalian
skeletal system [152]. Blood vessels provide bone tissues
with the necessary nutrients, oxygen, growth factors, and
hormones, and play an essential role in the regulation of
bone formation [153]. Type H vessels induce bone formation
by producing factors that stimulate the proliferation and
differentiation of osteoprogenitors in the bonemarrow [154].

Type I collagen, proteoglycan, osteopontin, osteo-
nectin and OPG are found in bone and vascular matrix
components and play important roles in bone formation
and the development of atherosclerosis. Cytokines, such as
IL-1, IL-6 and TNF-α also play roles in both CVDs and
osteoporosis. Recently, Xie’s group uncovered an

explanation for the calcification paradox. They found that
the extracellular vesicles derived from aged bone matrix
act as messengers and favor the adipogenesis of bone
marrow stem cells rather than osteogenesis and augment
calcification of vascular smooth muscle cells during bone
resorption by transferring miR-483-5p and miR-2861 [155].

Crosstalk between bone and
pancreas

Bone and pancreas also have tight connections. Dysfunc-
tion of the pancreas usually induces diabetes melli-
tus [156], which is a chronic metabolic derangement and
leads to serious complications that may affect multiple
organs, including bone. Moreover. diabetes mellitus is
associated with an increased risk of fractures [157].

Bone to pancreas

Osteoglycin is a proteoglycan rich in leucine that derives
from bone, cartilage and myocytes [158]. It enhances bone
mineralization and formation by upregulating alkaline
phosphatase and OCN in osteoblasts. Besides, the addition
of active vitamin D upregulates osteoglycin expression in
myoblasts. Osteoglycin is hypothesized to exert endocrine
effects on bone and pancreas. Osteoglycin knockout mice
revealed increasedwhite adipose tissues, impaired glucose
tolerance independent of diet consumption [159], higher
femoral bone mineral contents and abnormally increased
size of collagen fibrils [160].

OCN also connects the bone and pancreas (Figure 3).
Clinical data show that the uncarboxylated OCN in serum
negatively correlates with insulin resistance, obesity, dia-
betes, or markers of metabolic syndrome [161]. Moreover,
weight loss causes a decrease in insulin resistance aswell as
an increase in OCN levels in obese children [162], and
exercise-induced body fat reduction and improved insulin
sensitivity were accompanied by increasing serumOCN and
leptin levels [163]. OCN increases insulin sensitivity in liver,
muscle, and adipose tissue by upregulating adiponectin
expression in adipocytes [164].OcnKOmice reveal impaired
glucose metabolism, including increased blood glucose,
impaired glucose tolerance test and insulin tolerance test,
and reduced β-cell mass and insulin content in the
pancreas [68]. The uncarboxylated OCN enters the circula-
tion and regulates the secretion and sensitivity of insu-
lin [68]. In turn, the impaired glucose metabolism by
dephosphorylating the insulin receptor (InsR) and
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inhibiting insulin signaling in osteoblasts leads to a reduc-
tion in bone resorption and uncarboxylated OCN [165].

In addition, osteocyte dysfunction also contributes to
bone fragility in diabetes patients. Elevated serum sclero-
stin levels secreted by osteocytes were associated with
prevalent vertebral fractures in type 2 diabetes mellitus
patients [166]. In contrast, there are inconsistent voices
about the function of osteoclasts in diabetes mellitus
patients. Several studies revealed that bone resorption
markers were higher in diabetes mellitus patients than
those in non-diabetes donors [167]. While other studies
showed opposite results that bone resorptionmarkers were
lower in diabetes mellitus patients [168, 169]. Thus, the
roles andmechanisms of osteoclasts in diabetes need to be
further clarified.

Pancreas to bone

Glycometabolism regulates bone metabolism and impairs
bone microstructure. Diabetes (both type 1 and type 2
diabetes) or impaired glucose metabolism affects bone
health, leading to decreasing bone formation, increasing
bone marrow adiposity and the risk of fracture [170].
Osteoporosis is recognized as a diabetic complication [171].
It has been reported that the increased risk of fracture in
diabetes is independent from the reduction of bonemineral
density [172], suggesting that diabetes-induced fracture is
mainly caused by deterioration of bone quality. Moreover,
the higher prevalence of insulin resistance andworse β-cell
function were associated with decreased bone turnover
biomarkers, such as β-C-terminal telopeptide, N-terminal
pro-peptide of type I collagen and OCN in dysglycemia
patients [167].

Diabetes mellitus patients have higher levels of
advanced glycation end products (AGEs) than non-diabetic
subjects. The high levels of AGEs further affect bone meta-
bolism [173]. Hyperglycemia increases the expression of the
receptor for AGEs [174], which is expressed in osteoblasts
and osteocytes [175, 176]. High glucose and AGEs inhibited
the mineralization of osteoblasts [177], and AGEs inhibited
osteoblastic differentiation or mineralization [178].

Insulin is a key growth hormone that plays an impor-
tant role in glucose regulation by promoting glucose uptake
in adipose tissue and muscle and coordinates the appro-
priate growth and development of the skeleton [179].
Pancreatectomy causes hypoinsulinaemia, hyperglycaemia
and growth retardation, which further causes growth
retardation of the axial and appendicular skeleton, and
delayed ossification of limb bones [180]. Impairments
in glucose and insulin metabolism affect bone quality

directly by impacting on osteoblasts and osteoclasts, and
affect bone remodeling activity indirectly via regulating
bone vasculature, which is critical for bone growth,
remodeling and injury healing. Ultimately, the indirect and
direct effects lead to an increased risk of fractures [181].
Osteoblasts express abundant InsR [182] to promote cell
proliferation [183] and collagen synthesis [184]. Specific
knockout of InsR in osteoblasts decreases the number of
osteoblasts and bone formation by suppressing the Runx2
inhibitor Twist2 [185]. In addition, knockdown of InsR by
shRNA effectively suppressed osteoclast differentiation via
the ERK1/2 signaling pathway [186]. InsR signal decreases
the ability of the forkhead box O1 transcription factor to
activate the OPG promoter, resulting in reducing
osteoclastogenesis [187].

Crosstalk between bone and kidney

Bone and kidney connection. Chronic kidney disease-
mineral and bone disorder (CKD-MBD) is a complex syn-
drome of renal osteodystrophy, mineral disturbances and
cardiovascular disease that has become a global health
crisis with very limited therapeutic options. Sclerostin,
DKK1, FGF23 andOCNhave recently been presented as new
therapeutic targets for CKD-MBD [188].

Bone to kidney

Sclerostin and DKK1 are two powerful inhibitors of the
canonical Wnt pathway that play a role in CKD-MBD [189].
The increased circulating levels of both sclerostin and
DKK1 impaired kidney function, even inducing end stage
renal disease as a result [1, 190]. FGF23 has become one of
the most important osteocyte-secreted endocrine fac-
tors [191]. It is secreted by osteoblasts and osteocytes and is
the first hormone found in bone tissue that regulates the
systemic phosphate and vitamin D [192]. Sclerostin stimu-
lates FGF23 synthesis and exerts indirect effects onmineral
metabolism [193]. The high levels of serum sclerostin
observed in CKD might promote resistance to parathyroid
hormone (PTH), leading to adynamic bone disease.
Furthermore, the levels of sclerostin are highest in those
with vascular calcification and kidney failure compared to
those with normal renal function and calcification [194].
Bone biopsy revealed a negative correlation between
serum sclerostin and PTH in patients on dialysis [195].
DKK1 is also involved in FGF23/α-Klotho-mediated bone
loss in CKD [196]. A significant decrease in DKK1 was
associated with a decline in renal function [197].
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Kidney to bone

FGF23 inhibits renal tubular reabsorption of phosphate by
reducing the production and secretion of PTH and is a
completely new player in CKD-MBD [198]. Circulating
FGF23 represents the biochemical substrate of the inter-
organ communication between bone and kidney and reg-
ulates P handling and vitamin D synthesis in renal tubular
cells by binding to FGF receptors, which requires the type I
transmembrane proteinα-Klotho, a co-receptor. α-Klotho is
mainly produced in the kidney [199], parathyroid gland,
and choroid plexus [199]. FGF23 levels increase dramati-
cally as an extreme bone response to the burden of P load
and altered catabolism in the end-stage renal disease [200].
Intermittent administration of PTH in the early CKD stage to
avert the increase in serum phosphorus and FGF-23may be
able to prevent CKD–MBD development.

Crosstalk between bone and liver

Liver is the site of glucose storage, which is initiated by
insulin [201]. There is increasing evidence for the bone-
liver axis [202]. Interaction between liver and bone is also
bidirectional: metabolism of liver may affect and be
affected by bone metabolism. Nonalcoholic fatty liver
disease (NAFLD) is a global public health problem char-
acterized by inflammation and/or fibrosis [203], ranging
from nonalcoholic simple steatosis to nonalcoholic stea-
tohepatitis [204]. Moreover, NAFLD is closely linked to
osteoporosis [205].

Bone to liver

Hepatic osteodystrophy is another metabolic bone disease
marked by bone loss and is associated with chronic liver
disease [206]. Ehnert’s group showed that hepatic expres-
sion of the phosphatase PP2Acα is upregulated during
hepatic osteodystrophy, leading to the downregulation of
expression of the hepatokine, which significantly exacer-
bates the bone loss phenotype of hepatic osteodystrophy.
Additionally, lecithin-cholesterol acyltransferase improves
liver function and relieves liver fibrosis hepatic osteodys-
trophy by promoting reversal of cholesterol transport from
bone to the liver [207]. This study demonstrates that defects
in a liver-bone axis can be effective treatment targets to
ameliorate HOD progression.

Sclerostin and DKK1 inhibit osteoblast differentiation
and bone formation via suppressing the Wnt/β-catenin
signaling pathway [208, 209]. Moreover, sclerostin levels in

serum were lower in nonalcoholic steatohepatitis patients
than in healthy donors, and DKK1 levels were indepen-
dently associated with nonalcoholic steatohepatitis in
NAFLD patients [210]. Circulating OCN is negatively asso-
ciated with NAFLD [211] and uncarboxylated OCN amelio-
rates histological hepatic steatosis via activating the
insulin signaling pathway [212]. It was further shown that
the OCN receptor GPRC6A is highly expressed in liver
hepatocytes (Figure 3) [213], suggesting that OCN might
directly regulate liver lipid homeostasis.

Liver to bone

Growth hormone (GH) is secreted by the pituitary gland
and acts upon the liver. GH binds to the GH receptor and
activates the downstream JAK2/STAT5 signaling [214].
Furthermore, activated STAT5 targets the IGF-1 gene in the
nucleus of the liver and secrets IGF-1 to ultimately
contribute to bone remodeling by regulating osteoblasts
and osteoclasts [215]. Besides, there is a positive correlation
between bone mineral density and circulating levels of
IGF-1 [216]. It has been reported that deficiency of IGF-1 in
the liver results in a 25% reduction in bone volume [217],
and decreased levels of circulating IGF-1 are strongly
associated with a 40% increase in fracture risk [145].

Crosstalk between bone and gonad

The sex steroid hormones testosterone and estrogen
secreted by reproductive organs are essential determinants
not only of reproductive functions, but also for bone
growth and bone balance. This theory is best exemplified
by the fact that osteoporosis always occurs in post-
menopausal women. The crosstalk between bone and
gonad owe to OCN, which promotes testosterone biosyn-
thesis, principally. Ocn KO mice exhibit an elevated
adiposity, impaired glucose tolerance and a low survival
rate during embryonic periods.

Bone to gonad

In the last decade, the disclosure of systemic roles of the
undercarboxylated form of OCN contributed to switching
the concept of bone from amerely structural apparatus to a
fully endocrine organ participated in the regulation of
systemic functions. Male Ocn KO mice were rather poor
breeders [65]. Specifically,Ocn KOmice showed a decrease
in testes, epididymides and seminal vesicle weights and a
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50%decrease in sperm count [218]. Similarly, OCN secreted
by bone cells binds to GPRC6A expressed in Leydig cells of
the testes (Figure 2). Furthermore, OCN promotes testos-
terone production by the testis in a cAMP response element
binding-dependent manner.

Gonad to bone

It is easy to understand how sex steroid hormones influ-
ence bone metabolism, because menopause causes bone
loss. Sex steroids play a crucial role during the bone growth
spurts of puberty and for the maintenance of bone mass.
During puberty, gender differences in bone growth become
apparent withmen reaching higher peak bonemass, which
is attributed to a stimulatory androgen effect on periosteal
bone formation in men, but estrogen shows an inhibitory
role in bone formation in women. Testosterone and estro-
gens also participate in the maintenance of bone mass
integrity during adulthood in both female and male. Then,
the decrease in testosterone or estrogen levels with age or
in gonadal dysfunction leads to a decrease in bone mass
and increases the risk of osteoporosis. At the cellular level,
estrogen decrease the generation, lifespan, and functional
activity of osteoclasts via reducing the production of IL-1,
IL-6, TNF-β, RANKL and M-CSF [219] and show an opposite
effect on osteoblasts via the release of reactive oxygen
species [220, 221].

Conclusions

The focus of modern biology is no longer on an isolated
single system, but on an integrated multi-system. Bone is a
conserved and ancient organ that plays important roles in
supporting the body and protecting the viscera. Tradition-
ally, the understanding of bone is simple, mechanical and
rigid. In recent years, the functions of bone with respect to
other organs as an endocrine organhave received increasing
attention. Bone cannot be completely removed, so its func-
tion cannot be utterly studied like other organs, such as the
heart, liver or kidney. With the development of gene tech-
nology, especially bone specific gene knockout technology,
the function of bone has been discovered gradually. The
crosstalkbetweenboneandother organs opens abrand-new
door and provides a new therapeutic target for the treatment
of the systemic diseases.
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