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Abstract: Phosphorus is an essential mineral for all living organisms and a limited resource worldwide.
Variation and heritability of phosphorus utilization (PU) traits were observed, indicating the general
possibility of improvement. Molecular mechanisms of PU, including host and microbial effects, are
still poorly understood. The most promising molecules that interact between the microbiome and host
are microRNAs. Japanese quail representing extremes for PU were selected from an F2 population
for miRNA profiling of the ileal tissue and subsequent association with mRNA and microbial data of
the same animals. Sixty-nine differentially expressed miRNAs were found, including 21 novel and
48 known miRNAs. Combining miRNAs and mRNAs based on correlated expression and target
prediction revealed enrichment of transcripts in functional pathways involved in phosphate or bone
metabolism such as RAN, estrogen receptor and Wnt signaling, and immune pathways. Out of
55 genera of microbiota, seven were found to be differentially abundant between PU groups. The
study reveals molecular interactions occurring in the gut of quail which represent extremes for PU
including miRNA-16-5p, miR-142b-5p, miR-148a-3p, CTDSP1, SMAD3, IGSF10, Bacteroides, and
Alistipes as key indicators due to their trait-dependent differential expression and occurrence as
hub-members of the network of molecular drivers of PU.
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1. Introduction

Phosphorus (P) is an essential mineral for all living organisms. Feed phosphates are produced
from rock P stores that are a limited resource globally. On the other hand, the excessive use of P as
fertilizer and feed supplement in agriculture has created environmental problems. The majority of P in
animal feed comes from plant seeds. Up to 80% of P contained in plant seeds is in the form of inositol
phosphates (InsPx), which cannot be efficiently utilized by monogastrics due to the lack or scarcity of
endogenous phytase. Therefore, mineral feed phosphates are supplemented in diets of monogastric
farm animals such as poultry and pigs. Measures to improve the utilization of InsPx and mineral P

Int. J. Mol. Sci. 2020, 21, 2818; doi:10.3390/ijms21082818 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-4714-1057
https://orcid.org/0000-0001-6470-0434
https://orcid.org/0000-0002-3214-2498
https://orcid.org/0000-0002-6835-7562
https://orcid.org/0000-0002-3939-6255
https://orcid.org/0000-0003-3156-7889
https://orcid.org/0000-0001-7814-6569
https://orcid.org/0000-0001-6450-1160
https://orcid.org/0000-0002-9523-6790
http://www.mdpi.com/1422-0067/21/8/2818?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21082818
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 2818 2 of 18

are needed to decrease the environmental load from animal production and preserve this valuable
mineral resource.

In monogastric vertebrates, blood P homeostasis is maintained by tight regulation of enteral
absorption, ostial mobilization, and renal excretion rates involving a number of known and yet to
be elucidated regulators, transporters, endocrine, and paracrine signals. Phosphorus utilization
(PU = P-accretion/P-intake) is a heritable trait. In broilers and laying hens, considerable heritability for
P utilization was estimated [1,2]. In Japanese quail, a heritability of 0.14 was estimated for PU and
quantitative trait loci (QTL) related to P utilization were identified [3]. A recent study showed that
bone ash data are genetically correlated with PU and thus might be used as proxy traits to breed for
an improved PU [4]. In pigs, genome-wide association study (GWAS) of inorganic phosphorus (IP)
and alkaline phosphatase activity (ALP) in blood was reported and revealed candidate genes in the
significantly associated genomic regions [5]. Furthermore, a remarkable change in the transcript level
in response to P supply was identified in the porcine jejunum and kidney [6].

The absorption of mineral P and P from the cleavage of InsPx, which occurs mainly in the small
intestine, is mediated by passive paracellular and active transcellular mechanisms. P absorption is
driven by gut properties, microbiome composition, and interactions between the gut tissue and the
microbiota. The interplay of host tissue function and microbiota composition can be obtained in a
more detailed picture at molecular levels based on available high-throughput “omics” technologies. In
particular, microRNAs (miRNAs) are promising candidates for regulatory interactions between the
host and the gut microbiota due to their strong evolutionary conservation. Small non-coding RNAs,
21–25 nucleotides in size, are known as miRNA and are important for the regulation of gene expression.
A recent study showed that fecal miRNA-mediated inter-species gene regulation facilitates host control
of the gut microbiota [7]. Evidence of cross-kingdom regulation by miRNA was demonstrated by
the ability of an exogenous plant-derived miR-168a to specifically downregulate the mammalian
low-density lipoprotein receptor adapter protein 1 (LDLRAP1) mRNA and protein expression [8].
A wide range of dietary components such as amino acids, carbohydrates, fatty acids, and vitamins
appear to affect expressions of miRNAs [9]. A few studies observed the relationship between diet and
intestinal microbial activity. Broiler-fed diets differing in P, calcium (Ca), and phytase led to a shift
in gut microbiota composition [10]. Furthermore, diets with high starch or high protein levels not
only shifted the microbial composition but also changed miRNA expression [11]. In fact, molecular
adaptations to low-P diets might contribute to the cleavage of P from InsPx and increase P absorption
along the gastrointestinal tract [12].

MiRNAs also play important roles in bone metabolism, bone-related diseases, and bone cell
development and function [13–16]. Previous studies demonstrated that mRNA–miRNA regulatory
networks affect different phenotypes, including endometrial receptivity in cattle, divergent muscle
properties such as muscle fiber type, metabolic enzyme activity, and ATP production both in vivo pigs
and in vitro in cell culture [17–19]. In the context of PU, the miRNA(s) involved and the role of host
miRNA–mRNA and microbiota interactions remain unclear.

Gut properties, the microbiome composition and interactions between the gut tissue and microbiota
play a significant role in digestive capacity and need to be understood for improvement of PU. In
this context, the objective of this study was to identify the gut miRNA and related mRNA targets
associated with PU in the Japanese quail (Coturnix japonica). Phenotypically divergent Japanese
quail representing extremes for the trait PU of an experimental population were selected for miRNA
profiling of ileum tissue. Moreover, the mRNA expression and microbiota data were integrated with
the miRNA readouts. Host mRNA–miRNA and microbiome regulatory networks in the ileum and
their contribution to PU were characterized.



Int. J. Mol. Sci. 2020, 21, 2818 3 of 18

2. Results

Discordant quail pairs representing extremes (low vs. high) for the PU traits were selected
from the 887 F2 quail population. In total, 21 quails with high P utilization (means ± SD (standard
deviation) = 79.5 ± 3.5, n = 10) and low P utilization (means ± SD = 39.9 ± 11.1), n = 11) were
selected for miRNA profiling of ileum tissue. Tissue samples of the ileum were collected and subjected
to small RNA deep sequencing. Two outliers were excluded during data analysis based on the
extremely low counts. The number of total reads was 110.4 Million of which 76.9 Million were
clean reads. About 70% of the clean reads were mapped to the C. japonica 2.0 genome—Genome
(https://www.ncbi.nlm.nih.gov/assembly/GCF_001577835.1/). The number of total reads, clean reads,
and mapped reads obtained from sequencing are listed in Table 1 for all 19 libraries. About 49.6% of
the clean reads were mapped to miRNA by using miRDeep2.

2.1. Differential Expression Analysis between PU Groups

In total, 1118 miRNAs sequences were used for downstream analyses. miRDeep2 was used to
identify novel miRNA with chicken as the reference species since there was no miRNA reference
information available for the quail. Our data showed the presence of 509 novel miRNA and 609 miRNAs
conserved between chickens, mice, or humans. Figure 1 shows a volcano plot of the results of all
1118 miRNAs.

This volcano plot illustrates the association of 69 miRNAs with the PU group (red dots) at
s < 0.10. Of these, 21 out of 69 were novel miRNA and 48 were found to be conserved in humans,
mice, or chickens (Table S1). The top 10 significantly different known miRNA between PU groups
were miR-22, miR-148a-3p, miR-146b-5p, let-7f-3p, miR-16, let-7j-3p, miR-2131-3p, miR-142-5p, let-7k,
and miR-190a-3p. Plots of the normalized read counts are shown in Figure 2 for the top 10 known
miRNAs with the lowest s-values between PU groups. The highest s-value among the 10 miRNAs was
approximately 0.004. Those plots confirm that the ranking of the miRNAs by s-value is meaningful as
most of the miRNAs show differential expression patterns between the “low” and the “high” PU group.

https://www.ncbi.nlm.nih.gov/assembly/GCF_001577835.1/
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Table 1. Read counts in million (M) and mapping statistics, obtained from all samples.

Probe Family Sex P-Utilization Groups Total Reads
Counts (M)

Mapped
Reads (M)

Unmapped
Reads (M) % Mapped % Unmapped

2063 1 Female 79.67 High 4,643,858 3,152,958 1,490,900 67.90 32.11
4002 1 Female 50.81 Low 3,905,920 3,002,397 903,523 76.87 23.13
5039 2 Female 76.20 High 7,514,630 4,940,662 2,573,968 65.75 34.25

10,006 2 Female 43.06 Low 6,148,717 4,457,473 1,691,244 72.49 27.51
5026 3 Female 83.43 High 6,311,029 3,986,110 2,324,919 63.16 36.84
7023 3 Female 52.59 Low 3,977,952 2,849,897 1,128,055 71.64 28.36
3025 4 Male 79.16 High 4,625,821 3,029,840 1,595,981 65.50 34.50

10,017 4 Male 39.75 Low 4,229,818 2,847,346 1,382,472 67.32 32.69
5055 4 Male 44.71 Low 5,273,807 4,082,562 1,191,245 77.41 22.59

11,042 5 Male 79.00 High 7,237,297 4,880,845 2,356,452 67.44 32.56
3070 6 Male 86.77 High 9,339,712 6,706,669 2,633,043 71.81 28.19

12,030 6 Male 21.49 Low 4,751,504 3,588,653 1,162,851 75.53 24.47
12,054 7 Male 77.83 High 5,903,443 3,990,231 1,913,212 67.60 32.41
6039 7 Male 27.77 Low 3,881,743 2,581,642 1,300,101 66.51 33.50
4059 8 Female 77.02 High 9,276,166 6,402,170 2,873,996 69.02 30.99
2022 8 Female 45.65 Low 5,061,335 3,524,773 1,536,562 69.64 30.36

10,090 9 Female 48.29 Low 4,239,513 2,835,088 1,404,425 66.87 33.13
8017 10 Male 76.26 High 7,515,392 5,416,718 2,098,674 72.08 27.93
6035 10 Male 24.93 Low 5,011,594 3,633,621 1,377,973 72.50 27.49
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Figure 1. Differential miRNA expression for the phosphorus utilization (PU) group (“high” vs. “low”
n = 19): Volcano plot showing − log10(s) (with s denoting the s-values) versus the shrunken log2 fold
changes (LFCs; calculated using the “apeglm” method in the function IfcShrink() from R package
DESeq2). Red dots denote miRNAs having an s-value below the threshold of 0.10 and an absolute
shrunken LFC above the threshold of log2(1.25) ≈ 0.322. Blue dots denote miRNAs having an s-value
above the threshold of 0.10 and an absolute shrunken LFC above the threshold of log2(1.25) ≈ 0.322.
Gray dots denote miRNAs having an s-value above the threshold of 0.10 and an absolute shrunken
LFC below the threshold of log2(1.25) ≈ 0.322. Dashed lines also show the thresholds.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 20 
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2.2. Correlation between miRNA and mRNA

The mRNA expression data of the same samples from our previous study [20] were used for
pairwise correlation analysis. The threshold for differential expression was set at an s-value of 0.10 for
miRNA and a q-value of 0.10 for mRNA for the pairwise correlation analysis. In total, 4378 pairs with
a negative correlation between miRNA (70 miR sequences) and mRNA (1298 genes) were identified.
Negative correlations between differentially expressed miRNA and mRNA ranged from |0.82| to
|0.45| (p < 0.05). A highly significant negative correlation pair identified in the context of PU was
of miR-146b-5p and PLS3 (r = −0.77, p < 0.0001). The negatively correlated genes were subjected to
functional analysis and found to be highly enriched in (Figure 3).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 20 
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WNT5A, NFAT5, and PLCB1. Other pathways identified were related to osteoarthritis, RAN 
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Figure 3. Heatmap showing enriched canonical pathways derived from analyses of miRNAs and
corresponding mRNAs based on (1) negative correlation of expression in the same samples (All_1298), (2)
negatively correlated expression and target prediction, and (3) negative correlated and predicted target
transcripts of let-7i-3p, miR-638, miR-1388-3p, miR-1788-3p, miR-16-5p, miR-140-5p, novel-3-17205,
novel-2-9160, novel-5-23875, and novel-7-27760. The intensity of color indicates significance from light
to dark.

2.3. Prediction of miRNA Targets in Japanese Quail

Japanese quail genome version “Coturnix_japonica 2.0” was used for predicting miRNA targets.
Functional network analysis was done to gain biological insights into their predicted targets. After
combining the correlation analysis and target prediction results, 945 miRNA-mRNA pairs containing
609 genes and 54 mature miRNA sequences were retained. All 609 genes were enriched in the PCP
pathway, TR/RXR activation, and cholecystokinin/gastrin-mediated signaling. Some miRNAs like
NW_015440444.1_47932_mature (corresponding to ppy-miR-638 with two mismatches) and let-7i-3p
had multiple targets, 281 and 183 genes, respectively. About 10 miRNAs were predicted to target
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more than 20 genes and these were subjected to functional analysis. The significant canonical
pathways (p < 0.01) are shown in Figure 3. The predicted target transcripts of miR-638, miR-1388,
novel miRNA 5_23875, and miR-16-5p belong to the PCP, Wnt/Ca+, and Wnt/β-catenin signaling
pathways including the genes ATF2, LGR4, PRICKLE1, ROCK1, RSPO3, WNT5A, NFAT5, and PLCB1.
Other pathways identified were related to osteoarthritis, RAN signaling, estrogen receptor signaling,
D-myo-inositol-5-phosphate metabolism, or pyridoxal 5’-phosphate salvage pathway. Interestingly, the
genes in these pathways are the targets of many miRNA including miR-1788-5p, miR-140-5p, let-7i-3p,
or novel miRNA 3_17250. INPP5F and ITPK1, which belong to 1D-myo-inositol hexakisphosphate
biosynthesis II, were predicted to be targets of let-7i-3p. ADAMTS5, NOTCH1, SMAD9, and SOX9
genes, enriched in the osteoarthritis pathway, were predicted as targets of a novel miRNA (3_17250). In
addition, immune pathways like IL-8 Signaling, IL-15 production, and P13K Signaling in B Lymphocytes
were also identified from correlated and predicted targets.

2.4. Differences in Gut Microbiota Composition among PU Group

The microbiota data from ileum digesta samples were used. Operational taxonomic units (OTUs)
were grouped at the genus level and very low occurring taxa were removed from the microbial data
set. Following this, 55 genera were further included in the analysis. The taxonomic characterization
of the microbiota including the top 10 genera is shown for all individual quail samples in Figure 4A.
The most abundant genera were Lactobacillus and Candidatus arthromitus. Seven out of 55 genera were
found to be differentially abundant between PU groups at q < 0.05. These include Alistipes, Enterobacter,
Bacteroides, Anerostipes, Ureibacillus, Tepidimicrobium, and Planifilum. The differences between PU groups
of the top five of these genera are shown in Figure 4B.
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Figure 4. Characterization of microbial community composition and phosphorus utilization (PU;
n = 17). (A) Microbiota variation at the genus level of ileum digesta samples of Japanese quail with high
and low PU. Displayed is the relative abundances of the 10 most prevalent genera. (B). Significantly
different (q < 0.05) genera between high and low phosphorus utilization samples. X-axis indicates the
normalized operational taxonomic units (OTU) using DESeq2. Each point represents a normalized OTU.
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2.5. Identification of the Molecular Drivers of Host–Gut Microbiome-Based PU

The omics datasets (miRNA, mRNA, and microbiota) measured on the same samples were
normalized and filtered. In total, 12,428 transcripts, 926 miRNA, and 55 microbial genera from the
same samples were used as input for the analysis of a host–gut biomarker panel linked to PU. DIABLO
is a multivariate approach used to integrating a complex dataset with a small number of samples and
heterogeneous data. The software constructs components, i.e., linear combinations of miRNA, mRNA,
and microbiota, which are maximally correlated across all input data types with a specific outcome
variable (in this case high and low PU group). Minimal marker selection associated with the outcome
groups is simultaneously performed [21]. The optimal omics bio-signature was identified in this study
consisting of 21 mRNA, 45 miRNA, and 27 microbial genera over two component sets. The contribution
to Components 1 and 2 of block mRNA, miRNA, and microbiome is shown in Figure 5). Interestingly,
in the microbiota block1, only Candidatus arthromitus was positively associated with the high PU group.
A CircosPlot demonstrating the correlation among different omics block is shown (Figure 6, correlation
cutoff: r > |0.75|). The heat map of the gut biomarker panel showed that the “low” PU group clustered
together whereas the “high” PU group was distinct (Figure 7). The network of top molecules with
correlation levels greater than 0.8 is demonstrated in Figure 8. Five miRNAs in the let7 family including
let-7j-3p, let-7g-5p, let-7k-3p, let-7a-3p and let-7f-3p belonged to the top biomarkers panel for PU. In
addition, miRNAs, which were also found among the top differentially expressed miRNAs between
PU groups, such as miR-2131-3p and miR-190a-3p as well as miR-142-5p, miR-148a-3p, miR-16-5p and
miR-23a-3p were elements of the network with the latter four being highly connected hubs within the
network of panel elements (Figure 8). Microbial variables like Sellimonas, Butyricicoccus, Bacteroides,
Alistipes, and Anaerostipes were identified in this panel. Transcripts including RNF113A, LOC107318438
(zinc finger protein 664-like), IGSF10, LOC107323342 (neuroblastoma suppressor of tumorigenicity 1,
NBL1), CTDSP1, SMAD3, and LOC107324518 (C-reactive protein-like) were strong biomarkers linked
to PU groups.
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minimal set of features selected by DIABLO across data types could discriminate between high and low
PU groups in DIABLO Components 1 and 2. Blue indicates a high PU group and orange indicates a low
PU group. (DIABLO: Data Integration Analysis for Biomarker discovery using Latent cOmponents).
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map. The vertical cluster shows samples with high PU and low PU (n = 15). The horizontal cluster
shows the multi-omics biomarker panel.
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3. Discussion

Phenotypic variation and heritability of PU were observed in the broiler, laying hens, and Japanese
quail [1–3]. Complex traits such as PU result from the interplay of genetic or non-genetic factors and
effects of microbial communities in the gut. Our aim was to identify novel molecular routes affecting
PU by detecting differentially expressed miRNAs in the ileum of PU divergent Japanese quail. Gut
miRNAs regulate mRNA expression of the host intestine and may shape the gut microbiota. Therefore,
mRNA expression and microbiome data were correlated with the miRNA expression data in this study.

Change in dietary P prompts an altered gene expression in the intestine and kidney and also led to
a shift in gut microbiota composition [10,22]. In addition, a low P diet induced negative effects on feed
intake and body weight gain [23]. Taken together, P change in the diet leads not only to the phenotype
change but also to shifts at the molecular level. In this study, the birds were fed with a low-P diet
in order to stimulate their full genetic potential of PU. Extremes for PU were selected out of an F2
population for miRNA profiling of the ileal tissue. Accordingly, we found that low PU was associated
with lower body weight gain and changes at the molecular level including miRNAs, mRNA targets,
and gut microbiota. Finally, a number of biomarker panels associated with the PU were provided,
which may have the potential to improve the PU by breeding.

Many factors play a significant role in the regulation of P homeostasis including parathyroid
hormone, vitamin D, calcitonin, and calcium metabolism. Differential expressions of miRNA or its
targets between PU groups were enriched in functional pathways involved in phosphate or bone
metabolism such as RAN, estrogen receptor, and Wnt signaling.

The regulation of bone metabolism and Wnt signaling is well studied [24,25]. A number of
molecular pathways respond to the modulation of P supply and are related to processes affecting bone
mineral density and microarchitecture [26,27]. Enrichment analysis pointed out immune pathways
like IL-8 Signaling, IL-15 production, and P13K Signaling in B Lymphocytes. This is in line with our
previous study that showed a close association between dietary P supply and transcripts enriched in
the immune system [23]. The current study shows the role of miRNAs in linking transcripts enriched
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in bone metabolism and immune functions. Many miRNAs are known to regulate bone metabolism,
host-microbiome interaction, and inflammatory and immune processes [16,28,29]. MiR-146a affects
osteoblast and osteoclast formation in vitro and in vivo miR-146a+/−mice [16,30]. Using computational
analysis and an in vitro cell culture system, miR-146b levels were shown to be significantly associated
with chronic kidney disease and mineral bone disorder [31]. MiR-146a was reported as a key molecule in
the interaction between intestinal epithelial cells, microbial components, and inflammatory stimuli [29].
In our study, miR-146b, one of the top 10 differentially expressed miRNAs between PU groups was
found to show a significant negative correlation with PLS3, CST7, GAL3ST1, ENPP6, ALOX5AP, and
CD8A. These differentially expressed genes between PU groups were associated with bone metabolism
or immune responses. For instance, mutations of the gene encoding plastin-3 (PLS3) were associated
with severe primary osteoporosis [32,33] and shown to affect bone mineral homeostasis through
regulation of osteoclast activity [34]. CST7 was upregulated by the induction of Runx2, an osteoblast
master transcription factor, in C4-2B cells [35]. ENPP6 activities mediate bone mineralization which is
a key process in the formation of bone [36]. ALOX5AP (encoding leukotriene-synthesis enzymes) and
CD8A (encoding the T-cell surface glycoprotein CD8 alpha chain) are both involved in inflammatory
and immune responses [37].

MiR-148a, another differentially expressed miRNA between PU groups, is a well-known miRNA
associated with osteoporotic osteoclasts [38], affecting osteogenic differentiation [39], and involved in
bone remodeling [40] and bone homeostasis and metabolism [41]. Another top differentially expressed
miRNA between PU groups was miR-142-5p, which is known to induce osteoblastogenesis during the
bone healing process [15] and regulate inflammation by influencing T cell differentiation [42]. It is
also associated with gut diseases [43,44]. Jun dimerization protein 2 (JDP2) is negatively correlated
with three novel quail miRNAs (8_28985_mature, 2_12370_mature, and Z_45830_mature), which were
highly differentially expressed between PU groups. Interestingly, JDP2 is a critical regulator in bone
mineral homeostasis and osteoclastogenesis [45].

The relationship between microbiota composition and bone metabolism has been reported [46,47].
Attempts have been made to explain how the microbiome can affect bone homeostasis either though
the immune system’s response [48] or influence on hormone levels such as parathyroid hormone
(PTH) or vitamin D metabolites [49]. Recent evidence suggested communication between the gut
microbiome and host can take place via miRNA which is conserved between species and can regulate
transcripts across species [7,50]. In this study, the integration analysis of mRNA, miRNA, and
microbiota provided molecular drivers of host–gut microbiome under different PU groups. The
deduced molecule panels showed the possible interactions occurring in the gut of animals which
represent extremes for P utilization. Interestingly, microbes like Alistipes, Anaerostipes, Enterobacter and
Bacteroides which were differentially regulated between PU groups were also identified in the omics
panel. Bacteroides, Butyricicoccus, and Sellimonas were highly correlated with miR-142-5p, miR-16b-5p,
miR-23a, and miR-148-3p, and the transcripts of RNF113A, IGSF10, LOC107323342 (neuroblastoma
suppressor of tumorigenicity 1(NBL1)), CTDSP1, and SMAD3. These miRNAs are involved with bone
metabolism or as key molecules in the interaction among intestinal epithelial cells, microbial components,
and inflammatory stimuli [29]. MiR-23a belongs to this molecular panel and links LOC107323342
(neuroblastoma suppressor of tumorigenicity 1, NBL1) and Butyricicoccus. Suppression of miR-23a-3p
promoted osteoblast proliferation and differentiation, and alkaline phosphatase activity by targeting
the PGC-1α/WNT/β-catenin signaling pathway in osteoporotic rats [51]. Bone morphogenetic proteins
(BMPs) which play an important role in post-natal bone formation were antagonized through the action
of numerous extracellular proteins, including NBL1 [52], SMAD2/3, and CTDSP1/2 [53]. Butyricicoccus,
a butyrate-producing bacterium belonging to the class Clostridia, is decreased in the high PU quail.
Butyricicoccus is a mucosa-associated bacterial genus reported to be under-represented in the colonic
mucosa of patients with active ulcerative colitis [54]. Five miRNAs of the let-7 family belong to the
molecular panel for PU. Previous studies found that the expression of the let-7 family correlated
significantly with glucose levels and regulates glucose metabolism [55,56]. IGSF10 was negatively
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correlated and predicted as a target of miR-148a-3p and miR-142a-5p in this study. This molecule was
found again in the panel and direct and directly linked to Butyricicoccus, Bacteroides, and Sellimonas.

In conclusion, differentially expressed miRNAs were found in the ileum of Japanese quail with
high or low PU. The miRNAs identified including miR-148a-3p, miR-146b-5p, miR-142-5p, miR-16-5p,
and miR-23a, were previously reported to be involved in bone metabolism, immune system regulation,
and modulating the microbiome. Negative correlation and target prediction of differentially expressed
miRNAs and mRNAs in Japanese quail revealed enriched pathways including Wnt signaling, RAN
signaling, and estrogen receptor signaling that relates to P metabolism. Indeed, pathways and signaling
events between tissues attributed to mineral homeostasis in PU. Integration of host omics and gut
microbiome data provided a list of molecular drivers that influence PU in Japanese quail. Our study
of Japanese quail gut microbiota, mRNA and miRNA shows molecular interactions occurring in the
gut of quail with high or low PU. In particular, the study reveals miRNA-16-5p, miR-142b-5p, and
miR-148a-3p as key indicators of PU due to their trait-dependent differential expression and occurrence
as hub-members of the network of molecular drivers of PU.

4. Materials and Methods

4.1. Experimental Design and Samples Selection

The F2 cross of Japanese quail (Coturnix japonica) used in this study originated from a previous
study [3,4]. The experiment was conducted in accordance with the German Animal Welfare Legislation
approved by the Animal Welfare Commissioner of the University of Hohenheim. An F2-design using
two Japanese quail lines divergently selected on social reinstatement behavior was established with 12
males from Line A and 12 females from Line B of the F0-generation. A total of 17 roosters and 34 hens
were randomly selected from the F1-birds to generate F2-animals [3]. Quail hatchlings were raised
in groups in floor pens on wood shavings until they were transferred to metabolic boxes and kept
individually when they were 8 days old. The floor of the boxes was covered with a P-free filter paper to
facilitate excreta collection. The room temperature was adjusted to 35 ◦C at the day of placement and
gradually reduced to 25 ◦C on day 15 of age. Housing conditions and feed composition were explained
in more detail by Beck et al. [3]. In order to let the birds express their full genetic potential of PU, the
F2-animals were fed with a low-P diet (4.0 g/kg DM) without a mineral P supplement or phytase. PU
was calculated from the ratio between total P intake and P excretion for each individual [3].

The discordant quail sib pair representing extremes (low vs. high) for the PU traits was selected
from the 887 F2 quail population. Animals from 10 families with significant differences in PU were
selected. In addition, the same sexes of birds in the PU groups of the family were considered. In total
21 quails with high PU and low PU were selected for miRNA profiling of ileum tissue. After filtering
outlier animals in terms of their miRNA expression, 19 quails still remained.

4.2. RNA Extraction

Japanese quail were humanely sacrificed to collect tissue samples. For this experiment, a 1.5 cm
long section of the intestine was dissected out of the ileum, cut open, and rinsed with a sterilized
saline buffer to remove digesta residue. The whole tissue samples were immediately submerged
in a solution of RNAlater (Sigma-Aldrich, Taufkirchen, Germany) and stored at −80 ◦C until RNA
extraction. Total RNA was extracted from approximately 50 mg of the sample using TRIzol Reagent
(Invitrogen) and the RNeasy Mini kit (Qiagen, Hilden, Germany) and further enriched for small RNA
fractions using the miRNeasy Mini kit (Qiagen, Hilden, Germany). The integrity of total RNA was
assessed using an Agilent RNA 600 Nano kit and the enrichment and concentration of miRNAs were
determined using the Agilent Small RNA kit and the 2100 Bioanalyzer system (Agilent Technologies,
Waldbronn, Germany).
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4.3. Small RNA Library Preparation and Sequencing

Small RNA sequencing libraries were generated from 1 µg enriched small RNA using the SMARTer
smRNA-Seq Kit for Illumina (Takara Bio Europe SAS, Saint-Germain-en-Laye, France). Essentially,
small RNAs were polyadenylated at the 3′-end to provide a priming site for the 3′smRNA dT primer and
reverse transcribed into first-strand cDNA using the Moloney murine leukemia virus (MMLV)-derived
PrimeScript reverse transcriptase (RT). The SMART smRNA oligo was added to the 5-end via the locked
nucleic acid (LNA) technology. Illumina indexing adapters were incorporated during an additional
PCR amplification to enable sample multiplexing. The smRNA-seq libraries were quality assessed for
the expected fragment length (major peak at about 175 bp) using the Agilent High Sensitivity DNA kit
and the 2100 Bioanalyzer (Agilent Technology, Waldbronn, Germany). Size-selection was performed
using the BluePippin System and 3% agarose gel cassettes with an internal Q2 DNA marker and
size-selection parameters of 148–185 bp (Sage Science, Beverly, MA, USA). The molar concentration of
the libraries was determined using the Qubit dsDNA HS assay kit (Invitrogen, Darmstadt, Germany).
Sequencing reads were cluster-generated using the cBot system and sequenced for 50 bp single-end
reads on the HiSeq2500 sequencing platform at the Institute of Genome Biology, FBN Dummerstorf,
Germany. The base call (BCL) files from the sequencing run were de-multiplexed and converted into
the FASTQ files using the bcl2fastq2 conversion software, v. 2.19 (Illumina, San Diego, CA, USA). The
raw fastq files were quality-checked using FastQC, version 0.11.5. The raw data was submitted to a
public database, ArrayExpress with the accession number E-MTAB-8587.

4.4. Pre-Processing—Adapter Trimming, Quality Control, and Read Collapsing

Short RNA library raw reads were obtained from the ileum tissue samples using Illumina HiSeq
sequencing. In the first step, adapter trimming and quality control were applied using flexbar and
fastqc to filter out contaminated sequences.

We identified and quantified known and novel miRNAs using miRDeep2 [57]. The chicken was
used as the reference species since there are no known miRNAs for the quail. Humans and mice were
used as related species. Since the resulting read count matrix included multiple rows with the same
miRNA identifier, but different mature miRNA sequences, the mature miRNA sequences were used to
identify the miRNAs (instead of their identifiers given by miRDeep2). Afterwards, there were still
duplicated miRNAs (now identified by their mature sequence) in the read count matrix. To solve this
issue, the maximum number of reads per mature miRNA sequence was taken as the read count for the
subsequent analyses. This was done for each sample separately. The result showed 5963 miRNAs
among which 526 were novel. As a pre-filtering step, we only kept miRNAs where the 75% quantile
of the log counts per million (log CPM) transformed read counts was greater than − log2

(
Lmin ∗ 10−6

)
with Lmin = 2 686 672 denoting the minimum library size in our data, i.e., − log2

(
Lmin ∗ 10−6

)
≈ −1.426.

The log CPM values were calculated using the function cpm() from the R package edgeR [58] with a
prior count of 1. The number of miRNAs kept after applying this filtering rule was 1118. These 1118
miRNAs were used for downstream analyses.

4.5. Data Analysis miRNA

Before analyzing the read count data, the two outlier samples with outstanding low counts (more
than 2 SD lower) were removed and their families pooled to yield a common family. Since the data
still exhibited batch effects even after adjusting for family, PU group, and sequencing lane, we used
the function RUVr() from the R package RUVSeq [59] to estimate batch variables (BVs). The function
RUVr() required the calculation of residuals from the model fit with all desired predictors, in our case,
“family”, “PU group”, and “sequencing lane”. We followed the approach given in RUVSeq’s vignette
(package version: 1.18.0) for calculating the corresponding deviance residuals. After estimating all
possible BVs using RUVr(), we decided to include the first 2 BVs (BV1 and BV2) in the final model.
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The R package DESeq2 [60] was used for the differential expression analysis. The following
predictors were used in the DESeq2 model: family, PU group (“high” versus “low”), sequencing
lane (BV1 and BV2). The default settings of DESeq2 function DESeq() were used. In order to decide
for interesting miRNAs (i.e., those that are differentially for the PU group), we calculated s-values
using the DESeq2 function lfcShrink() with the “apeglm” method [61]. The “independent filtering”
that is by default applied by DESeq2 was turned off. We used s-values instead of q-values since
the p-value distribution showed an outstanding peak at high p-values, violating the assumption of
uniformly distributed p-values under the null hypothesis that is necessary for q-values. Since we
supplied a threshold for the log2 fold change (LFC) of log2(1.25) ≈ 0.322, the s-value represents here
not the false sign rate, but the false sign or small rate, where “small” denotes an LFC in the interval[
− log2(1.25), log2(1.25)

]
. Thus, the s-value of a given miRNA is the average error probability (more

precisely: the average local false sign or small rate) among the miRNAs with lower or equal s-value
which is, in our opinion, quite an intuitive interpretation compared to quantities based on p-values.

4.6. Prediction of miRNA Targets and Correlation between miRNA and mRNA Profiles in Japanese Quail

Based on ensEMBL annotation version 97, 5106 3’UTR sequences, 5662 5’UTR sequences, and
15,732 coding sequences were extracted from the Japanese quail (C_japonica) genome. Next, these
sequences were split into 2 kb fragments with a 50-base overlap. Finally, the outputs were investigated
as being potential linkage targets to the given miRNA using RNAhybrid version 2.1.2 with binding
energy cutoff –25 k, helix constraint 2 to 7, and one hit per target. Each potentially hybridizing
miRNA-mRNA pairing is summarized by its minimum free energy and its p-value.

DESeq2 was used for calculating variance-stabilizing transformations of the miRNA and the
mRNA count matrices derived from the same animals in a complementary study [20]. Afterwards, the
function removeBatchEffect() from the R package limma [62] was used to remove the batch effects of
sequencing lane, BV1, and BV2 from the transformed miRNA expression matrix. For the transformed
mRNA expression matrix, the 2 samples that were outlier samples for the miRNA data were removed.
Finally, Pearson correlations between miRNA and mRNA profiles (access number E-MTAB 8587)
were calculated.

In order to identify the functional potential of miRNA target genes, IPA software (Ingenuity
System, https://www.ingenuity.com) was used. It categorizes genes based on annotated gene functions
and statistically tests for over-representation of functional terms within the gene list using Fisher’s
Exact Test (p < 0.05).

4.7. Microbiome Data Analysis

Operational taxonomic units (OTUs) deduced from 16S rRNA sequencing of the same animals
were obtained from a recent study (access number PREJB37544) [63]. Initially, OTUs were assigned to
taxa at the genus level and OTU counts belonging to the same genera were summarized. Moreover,
the dataset was filtered so that only taxa with more than one observation in at least half of the samples
were considered. To identify differentially abundant taxa between high and low PU groups, data were
analyzed at the genus level using the DESeq2 package in the R environment [60]. Therefore, a negative
binominal Wald test was applied considering family and PU group in the statistical model. Genera
that differed between PU groups with q < 0.05 were considered significant.

4.8. Data Integration of the Microbiota, mRNA, and miRNA

The normalized OTU abundances of microbiota, mRNA read counts, and miRNA read counts were
transformed using a variance-stabilizing transformation method implemented in DESeq2 and used as
input for further analysis. In order to identify a highly correlated multi-omics signature discriminating
between PU groups, the multi-block discriminant analysis with DIABLO (Data Integration Analysis
for Biomarker discovery using Latent cOmponents) embedded in R package “mixOmics” (version

https://www.ingenuity.com
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6.6.2) [21,64] was used. Host mRNA, miRNA, and microbial data were used as input for identifying
the molecular drivers for Japanese quail PU.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/8/2818/
s1. Table S1. A list of differentially expressed miRNA derived from ileal tissue of quails discordant for phosphorus
utilization. Associated statistics (p-value, s-value, log2Fold change) are provided.
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