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Abstract: Water stress caused by water scarcity has a negative impact on the wine industry. Several
strategies have been implemented for optimizing water application in vineyards. In this regard,
midday stem water potential (SWP) and thermal infrared (TIR) imaging for crop water stress index
(CWESI) have been used to assess plant water stress on a vine-by-vine basis without considering the
spatial variability. Unmanned Aerial Vehicle (UAV)-borne TIR images are used to assess the canopy
temperature variability within vineyards that can be related to the vine water status. Nevertheless,
when aerial TIR images are captured over canopy, internal shadow canopy pixels cannot be detected,
leading to mixed information that negatively impacts the relationship between CWSI and SWP.
This study proposes a methodology for automatic coregistration of thermal and multispectral images
(ranging between 490 and 900 nm) obtained from a UAV to remove shadow canopy pixels using a
modified scale invariant feature transformation (SIFT) computer vision algorithm and Kmeans++
clustering. Our results indicate that our proposed methodology improves the relationship between
CWSI and SWP when shadow canopy pixels are removed from a drip-irrigated Cabernet Sauvignon
vineyard. In particular, the coefficient of determination (R?) increased from 0.64 to 0.77. In addition,
values of the root mean square error (RMSE) and standard error (SE) decreased from 0.2 to 0.1 MPa
and 0.24 to 0.16 MPa, respectively. Finally, this study shows that the negative effect of shadow canopy
pixels was higher in those vines with water stress compared with well-watered vines.

Keywords: multispectral and thermal automatic coregistration; shadow removal; crop water stress
index (CWSI); UAV; midday stem water potential

1. Introduction

Water availability is a critical limiting factor in the agricultural industry; therefore, a wide
range of new technologies and strategies have been adopted to optimize the agricultural water
consumption [1-4]. Granier et al. [5] argued that the measurements of physiological parameters can
provide better information about the whole-plant-level water use with changing atmospheric water
demands. For example, the water potential has been used to characterize the plant water stress and to
schedule irrigation in vineyards [6-8], as well as for nuts trees [9,10], and olive trees [11,12]. However,
water potential is typically measured on a plant-by-plant basis leading to high costs and requiring a
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considerable time when these measurements are extended to cover a large area [13,14]. This limitation
has motivated the development of cost- and time-effective alternatives to evaluate plant water status.

Multispectral imagery to capture images at the leaf and canopy levels has been proposed as an
effective tool for agricultural applications [15] to indirectly and remotely assess plant water status.
For example, Rapaport et al. [16] reported that estimating the water balance index (WABI-2) using
visible (538 nm) and short-wave infrared (1500 nm) spectrum is a good indicator of water stress in
grapevines. Rallo, et al. [17] suggested that spectral information between the near infrared (NIR)
(750 nm) and short-wave infrared (SWIR) (1550 nm) ranges can improve the prediction of leaf water
potential. In addition, Pégas et al. in [18,19] showed that the wavelength information of visible (VIS)
and NIR spectra can be used to predict water status. Poblete, et al. [20] suggested that artificial neural
networks using information obtained from 500 to 800 nm could be used to predict the stem water
potential (SWP) spatial variability in vineyards.

Furthermore, the Crop Water Stress Index (CWSI) derived from the radiometric temperature of a
plant canopy measured using thermal infrared (TIR) sensors has been suggested as a reliable tool to
assess water stress [21-25] showing good correlations with ground measurements of water potential.
However, as in the case of ground-based water potential measurements, when large crop areas are
to be assessed, the ground-based TIR measurements can still be time-consuming and impractical.
Thus, remotely collected TIR imagery has been suggested as an alternative tool that can provide crop
status information over large regions in a non-invasive manner [26-29]. In particular, unmanned aerial
vehicles (UAV) have become a useful remote sensing tool, having significant advantages in terms of cost,
versatility, and high spatial resolution [30]. The CWSI studies using UAV-borne sensors have achieved a
high correlation with the plant water status measured using ground-based measurements [14,29,31-33].

However, the UAV-borne TIR sensing for plant water stress suffers from the technical issue of the
potential degradation of the canopy temperature information by the pixels of a shaded (or shadow)
canopy; this is because the surface temperature of sunlit canopy is known to better represent the plant
water stress. Existing methods to remove these shaded pixels from remote-sensing images can be
divided into two principal steps: shadow detection followed by a de-shadow process [34]. The first step,
shadow detection, can be conducted by either thresholding or modeling [35]. The thresholding process
is more common as it is less complicated than modeling, because modeling requires prior information
of shadows and mathematical conceptualization; consequently, modeling is applied only to specific
cases. The thresholding process involves finding the optimal threshold value of a digital number
based on histograms to segregate shadow information from other types of information. Previous
studies have used different wavelengths to elucidate thresholds for shadow deletion. For example,
NIR (757-853 nm) [36], the ratio between blue (450-520 nm) and NIR (760-900 nm) [37], Infrared
(10.4-12.5 um) [38], and indices [39-41] have been used to separate undesired information. However,
the TIR information obtained by the commonly used thermal imaging devices (based on an uncooled
microbolometer) does not provide sufficient sensitivity for subtle temperature variation [15]; therefore,
this method often fails to distinguish shadow canopy pixels from shadow soil pixels. Considering the
issues with the shadow canopy pixels, an important process in thermal image processing is shadow
pixel removal to improve the resampling of the sunlit canopy information [42]. Zarco-Tejada et al. [43]
and Sudrez et al. [44] highlight the importance of resampling sunlit canopy pixels using hyperspectral
and multispectral imagery, respectively, to assess the plant water stress. Using UAV-borne thermal
imagery, several studies have proposed different methodologies to achieve shadow removal and avoid
the shadow effect in the case of thermal images. For example, Zarco-Tejada et al. [45] suggested
that only the center portion of the canopy row be sampled to minimize the inclusion of shadow
canopy pixels. Gonzalez-Dugo et al. [46] sampled the central 50% of the crown pixels of the canopy.
Santesteban et al. [29] detailed the complexity of avoiding shadow information, especially in thermal
imageries, and proposed a Digital Elevation Model (DEM) and Otsu [47] combined methodology to
filter shadows using height differences presented in the ground.
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Despite the proposed methodologies of shadow removal for UAV-borne images and, even if
capturing images in overcast conditions can minimize the intensity of shadowing [48], the identification
of shadow canopy pixels produced by the canopy over itself as information to be deleted in thermal
images is not considered. For a drip-irrigated vineyard, Figure 1 shows an example of a thermal image
in which the shadow canopy pixels cannot be identified on comparing with the visible imagery VIS
(490 nm).

(A) (B)

Figure 1. Comparison between the thermal and visible (490 nm) canopy shadow information for a
drip-irrigated vineyard: (A) thermal image; (B) VIS (490 nm) image; and (C) VIS (490 nm) image
without shadow pixels (represented in red).

Considering the effect of shadow on water stress estimation, it is crucial to determine shaded
pixels and remove them [49-51]. Moller et al. [23] proposed a methodology to detect grapevine crop
water status using thermal and visible images collected using truck-mount sensors at 15 m above the
ground to sample the sunlit canopy information; they used Ground Control Points (GCP) made of
cross-marked aluminum plates to geo-reference, align, and coregister the images from two different
sensors. Leinonen and Jones [42] also proposed a methodology to assess water stress in grapevine
and broad bean fields using ground-obtained thermal and visible images; their methodology was
based on non-automatic (by expert user) selection of GCP to overlay the images and later warp and
resample the images to obtain the sunlit canopy information. Finally, Smith et al. [52] proposed a
methodology to detect regions of soil moisture deficit from a spinach plantation using thermal and
visible images. Bulanon et al. [53] proposed a methodology for fruit detection using thermal and
VIS imagery in which four corners of a ground-marked region of interest were used to coregister
VIS and TIR images and perform shadow removal. However, in all of these studies, challenges in
coregistering optical and TIR images were reported when the images were combined for shadow
removal [54] using non-automatic coregistration. Considering this, our study proposes an automatic
scheme based on Scale Invariant Feature Transformation (SIFT) computer vision algorithm and an
improved matching pairs point selection to remove shaded pixels in a UAV-borne thermal image to
improve the estimation of the CWSI for a drip-irrigated Cabernet Sauvignon vineyard grown under
Mediterranean climate conditions.

2. Materials and Methods

2.1. Site Description and Experimental Design

The study site has a predominant typical Mediterranean climate with a summer period from
December to March that is usually dry (2.2% of annual rainfall) and hot with an average daily
temperature of 21 °C, and spring that is usually wet (16% of annual rainfall). Average annual rainfall
in the region is about 500 mm, which falls primarily during April to August.

Flight campaigns and climate measurements were carried out in a drip-irrigated Cabernet
Sauvignon vineyard located in the Pencahue Valley, Maule Region, Chile (35°20' L.S; 71°46' L.W).
The three-year-old wine grapes were trained on a vertical shoot positioned (VSP) system. The vineyard
fractional cover, which represents the dimensionless parameter of ground covered vegetation over
uncovered ground [55], was 19%. In addition, the vineyard with east-west oriented rows (at 1 m x 2 m)
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was irrigated daily using 2 L-h~! drippers spaced at intervals of 1 m. The soil is las doscientas type
with a compact arsenic soil texture with high levels of Fe and Mn.

The experimental design consisted of two completely randomized treatments (well-watered and
deficit-irrigated vines) with four replications (six vines per replication). The SWP for well-watered
vines showed values that ranged between —0.6 and —0.8 MPa and the deficit-irrigated vines showed
values that ranged between —0.9 and —1.25 MPa. The SWP was measured at the time of UAV
overflight [56] using a pressure chamber (PMS 600, PMS Instrument Company, Corvallis, OR, USA)
from the middle vines for each repetition. A total of 32 leaves from the middle zone of the canopy
were measured corresponding to two mature and healthy sun-exposed leaves that were previously
covered with plastic bags and coated with aluminum foil for at least 1 h before measurements [6].

2.2. Cameras and Image Processing Description

A multispectral camera was used to collect VIS-NIR images for shadow identification. The images
were obtained from a Micro MCA-6 camera (Tetracam’s Micro Camera Array), which has an
array of sensors with band-path filters whose center-wavelengths are 490, 550, 680, 720, 800, and
900 nm with a resolution of 1280 (H) x 1024 (V). For thermal infrared imaging, the FLIR TAU2
640 (FLIR Systems, Inc., Wilsonville, OR, USA) was used. This camera consists of an uncooled
microbolometer of 640 (H) x 512 (V) with a pixel pitch of 17 pm and spectral band ranging between
7.5 and 13.5 pm. The thermal calibration was conducted using the methodology proposed by
Ribeiro-Gomes et al. [57], in which an artificial neural network is used with the sensor temperature
and the digital response of the sensor as input and a Wallis filter to improve the photogrammetry
process. Further, the multispectral calibration was performed using the methodology proposed by
Poblete et al. [20] in which normalization of the reflectance was performed using a “white reference”
Spectralon panel (Labsphere Inc., Sutton, NH, USA) and compared comparison was made with
that obtained using a spectroradiometer (SVC HR-1024, Spectra Vista Cooperation, Poughkeepsie,
NY, USA) to account for any relative spectral response of each band of the camera as proposed by
Laliberte et al. [58].

All images from both sensors were processed using a photogrammetric software PhotoScan
(Agisoft LLC, Saint Petersburg, Russia) to stitch the images together to increase the Field of View (FOV)
while maintaining the intrinsic characteristics of both cameras [59]; the same software parameters
proposed by Ribeiro-Gomes et al. [57] for the same type of sensor were used for stitching.

Finally, the meteorological conditions and flight description on the day of SWP are detailed in
Table 1.

Table 1. Day of the year (DOY), Air temperature (Ta), relative humidity (RH), wind speed (u), Radiation
(Rn) and phenological stage (PS) at the time of the UAV overpass during the 2016-2017 growing season;
Flight and UAV description.

Meteorological Conditions
DOY Flight Time Ta °C) RH (%) u (Km/h) Rn (W/m?) ]
(hh:mm)
6 15:00 30.81 20.2 11.3 986.7 Berry development
19 14:45 31.71 19.19 9.13 969.6 Berry development
Flight Description
Camera Wavelenght R?;?i:lt;;m Altitude (m) Flight Speed (m/s)  Overlapping (%) Sidelapping (%)
490, 550, 670,
uMCA-6 720, 800, 900 nm 1280 x 1024 30 2 90 75
Tau-2 7.5-13.5 um 640 x 512 30 2
UAV description
Model Navigation Motors model Number of P'ropell'ers
controller propellers dimension
Mikrokopter it iNav 2.1 MK3638 8 12" x 3.8"

Okto XL
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2.3. CWSI Calculation

The calculation of the CWSI was first proposed by Jones [60] and was described as follows:

Tcunopy — Tuwet

CWSI = (1)

Tdry — Tuwet

where Teanopy represents the canopy temperature obtained using the UAV-borne TIR. Ty, represents
the temperature of a fully transpiring canopy and Ty, represents the temperature of a non-transpiring
fully stressed canopy. As proposed by King et al. [21] and Grant et al. [51], these values do not
necessarily need to be an absolute canopy temperature limit value, but serve rather as indicator
temperature to scale measured canopy temperatures to the environment for calculating relative water
stress. The process for obtaining the values of T, and Ty, was based on the methodology proposed
by Park et al. [31]. The process involved using an adaptive approximation based on the TIR histograms
derived from the images, and then, identifying the Ty and Ty, values after the shadow filtering
process by considering the highest and the lowest parts of the histograms, respectively.

2.4. Scale Invariant Feature Transformation (SIFT) and Random Sample Consensus (RANSAC)

This algorithm was originally proposed by Lowe [61] to extract characteristic features from
images in a robust manner, which is independent of variations in scaling, rotation, translations,
and illumination. The algorithm workflow was summarized and explained in detail by Ghosh and
Kaabouch [59]. Based on the study by Ghosh and Kaabouch [59], the five primary steps involved in
this algorithm are discussed briefly in the following lines. The scale-space construction step is based
on applying several Gaussian filters to the image to compute the differences between the adjacent
resulting images. Then, in the scale-space extrema detection, a selection of the highest and smallest
values between each point and the 26 consecutive neighbors is conducted. Further, in the keypoint
localization step, low contrast and edge response points are discarded. For the resulting keypoints,
the orientation assignments based on the gradient directions are computed. To define the keypoint
descriptors, histograms over each keypoint orientation is calculated considering the highest peak and
values under 80% as predominant directions of the local gradients.

After these five steps are performed, the nearest neighbor of a keypoint in the first image is
identified from the keypoints of the second image. To remove the outliers and filtering the incorrectly
matched points, the RANSAC algorithm is applied. The RANSAC algorithm was first proposed by
Fischler and Bolles [62] as a resampling technique for estimating the parameters of a model, using data
that may be contaminated by outliers [63]. As suggested by Derpanis [64], the RANSAC algorithm can
be summarized in five principal steps: (1) randomly selectf the minimum number of points required to
determine the model parameters; (2) solve for the parameters of the model; (3) determine the number
of points under a tolerance value; (4) if the ratio of points resulting from the previous step over the total
number of points exceeds a predefined threshold, estimate the model with a new set of points; and (5)
otherwise, repeat Steps 1-4 (with a maximum of # iterations). Because the value selected for n is high
to avoid mismatching, the RANSAC algorithm is time consuming [63] and has a high computational
complexity when coupled with the SIFT algorithm [65]. In addition, as RANSAC is a non-deterministic
algorithm [66,67], it does not guarantee the return of an optimal solution [68], resulting in different
results for different runs [69]. Furthermore, when computed with few SIFT-derived keypoints, it can
be sensitive to initial conditions [70]. Considering these issues, and because thermal and visible images
have different characteristics with, for most cases, different spatial resolutions, their coregistering
process is complex and the assumption of global statistical dependence is not completely satisfied [71].
The RANSAC algorithm between both images leads to different pairing points, which affects the overall
performance and consistency in results. This statement is consistent with Turner, et al. [72], who, using
RANSAC algorithm, concluded that thermal mosaics showed lower accuracy when coregistered with
multispectral images, compared with visible mosaics. To address this issue, we propose an alternative
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filtering of matching points based on statistical parameters between previous matched pairs. Image
analysis and processing were performed using the MATLAB 2017a (Mathworks Inc., Matick, MA,
USA) based on the methodology proposed by Vedaldi and Fulkerson [73].

2.5. Slope Filtering of Matching Points

As discussed above, in our method, a statistical filtering method was applied to filter previously
mismatched points and our results were compared with those obtained using the RANSAC method.
Our process involved both images (thermal and multispectral) as a continuous image joined by the
resulting matching pair point (Figure 2).

/Descriptor 1 \ Descriptor 1

XY
X, ¥y) I R B .
Descriptor 2 J?7//,,,/—;**”’”’J‘ Descriptor 2
lelz)/ ,,,,,7/—J**””””’////JJJ (X2 Y)
Descriptor n
Descriitorn
(X Y'0)
(X Y)
Multispectral image Thermal image

Figure 2. Slope calculation for previously matched descriptors points as an output of the scale invariant
feature transformation (SIFT) algorithm.

The slope of previous matched points was calculated using the Euclidean formula as follows:
@)

where (x},y]) corresponds to the thermal image descriptor 1 and (x1,y;) corresponds to the
multispectral image descriptor 1.

Then, the statistical parameters were calculated for each matched feature and the filtering was
conducted based on the mode of the slopes. As an example, in Figure 2, the previous matched
descriptor 2 should not be considered because it was identified as a correctly matched feature, but the
slope of both descriptors is different from the mode of all the slopes.

2.6. Shadow Filtering

As proposed by Shahtahmasseb et al. [34], histogram-based thresholding methods are commonly
employed for shadow detection. In this study, with the aim of identifying the optimal wavelength for
shadow detection, histograms for 112 UAV-borne images obtained from the vineyard were analyzed.
The K-means clustering algorithm with k-means++ was used to optimize the thresholding [74];
this process was applied for shadow detection to six multispectral bands (490, 550, 680, 720, 800
and 900 nm) and their relative performance was compared. Five clusters and 200 iterations were
selected for the classification. After performing the previous steps, the classified clusters for shadows
from the six multispectral bands were used to build a mask that was applied to their RGB composition
to evaluate the accuracy of the classification. Using the abovementioned process and the previously
described SIFT algorithm, the resulting mask was coregistered with the thermal images to delete
canopy shadow pixels.
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2.7. Statistical Analysis

For assessing the impact of shadow canopy pixels on the linear correlation between CWSI and
SWPI the coefficient of determination (R?) was calculated. In addition, the root mean square error
(RMSE) and standard error (SE) parameters were calculated for the comparison.

3. Results

3.1. SIFT and Comparison between RANSAC and Slope Filtering for Filtering Matched Features

The comparison between the abovementioned filtering processes was conducted using a complete
orthomosaic obtained from the vineyard built using 112 images. The RANSAC algorithm outputs and
its fluctuation on the filtered points is shown in Figure 3. Figure 3a shows the initial matched points,
while Figure 3b,c shows randomly selected examples after the application of the RANSAC filter for
matched points.

(A)

(B)

©

Figure 3. The RANSAC filtered points obtained at different times for a drip-irrigated vineyard:
(A) initial matched points; (B) first execution; and (C) second execution.

In addition, the statistical parameters of the matching features slope are listed in Table 2.
The selected statistical filter was based on the mode of the slope and its result of filtering is shown in
Figure 4.

Table 2. Statistical parameters of slope matched points using the SIFT.

Statistical Parameter Value
Mode —0.3066
Mean 0.0605
Standard Deviation 0.1690
Max 1.5890
Min —0.9278

Median —0.0514
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Figure 4. Filtered previous matched points considering the mode of the slope as a filter for a
drip-irrigated vineyard.

3.2. Shadow Filtering

Multispectral Band Selection for Shadow Detection

For shadow identification, the histogram distribution was calculated to detect peaks related to
shadow information. An example of one image per band and its distribution is shown in Figure 5 for a
drip-irrigated vineyard.

s 8 100 120 140 160

10000

5000

0 4 6 80 10 120 140 160

05

Figure 5. Six spectral band images and its distribution for a drip-irrigated vineyard: (A) 490 nm;
(B) 550 nm; (C) 680 nm; (D) 720 nm; (E) 800 nm; and (F) 900 nm.
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As mentioned previously, five clusters were selected and 200 iterations were conducted for the
classification of all the images. The K-means++ methodology [74] was used to set the thresholds in
which shadows should be identified for the six bands. After that, each generated mask was applied to
an RGB image composition to identify which better represented the shadow. Figure 6 shows the filtered
images and the five identified clusters per band. As is clear in Figure 6, for each band, the clustering
process allowed the identification of different types of information.

Clusters

| Neil
c2
[oc}
C4
[N

» AR g 3

AT 3

. "

Figure 6. Six spectral clustered images using K-means++ algorithm for a drip-irrigated vineyard:
(A) 490 nm; (B) 550 nm; (C) 680 nm; (D) 720 nm; (E) 800 nm; and (F) 900 nm.

For the 490-nm and 550-nm group of images, cluster 1 (C1) tends to identify both soil and
internal shadows, while cluster 2 (C2) tends to classify vegetation information. On the other hand,
for the 680-nm image, shadow is misclassified, nevertheless C1 allows directly identifying vegetation
information. Finally, the 720 nm, 800 nm, and 900 nm images seem to misclassify shadow, mixing
classified information in both cases with grassy soil and bare soil. To validate our method, a mask was
built from the C1—680 nm image to select just vine canopy which included internal shaded canopy
pixels. The resulting mask was applied over the images and K-means++ algorithm was carried out to
classify vegetation and internal shaded canopy pixels (Figure 7A).

To assess and validate the accuracy of shadow identification, confusion matrices were calculated
for the randomly selected marked winegrapes, as shown in Figure 7B, for the six bands to assess
the percentage of correct shadow classification. The percentages of well classified shadow for 490,
550, 680, 720, 800 and 900 nm were 90%, 68%, 89%, 77%, 66% and 58%, respectively (Table 3).
Cohen’s kappa coefficient value, which is used to assess the chance-corrected agreement between
two classifications [75], for each band was 0.77, 0.56, 0.76, 0.71, 0.54, and 0.41, respectively.
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(A) (B)

©) e (E)

I o 27

() T @

Figure 7. Shadow masks applied to an RGB composition for a drip-irrigated vineyard: (A) canopy
and internal shadow mask; (B) RGB composition; (C) 490 nm; (D) 550 nm; (E) 680 nm; (F) 720 nm;
(G) 800 nm; and (H) 900 nm.

Table 3. Confusion matrix for the predicted and observed shadow information. C1: Shadow;
C2: No shadow; %: Percentage of correctly classified shadow pixels; Ck: Cohen’s Kappa Coefficient.

Predicted
c1 C2 % Ck
g 8921200 111?25(5)0 %0 0.77 B1
@ oo s B 0% g
Observed g; 61%28 111?530 89 0.76 B3
@ w0 sew 7o g
@ s a0 6 0n g
g 2358 55(210 58 041 B6

Based on this information, the 490-nm image, which showed the highest percentage of accuracy
and Cohen’s kappa coefficient value, was selected to be coregistered with the thermal image and for
thermal shadow deletion.

3.3. Effect of Shadow Removal on the Relationship between CWSI and SWP

To assess the impact of shadow removal on the prediction of the SWP using CWSI, UAV-borne
TIR images with and without removal of shadow canopy pixels were compared.
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Figure 8 shows the thermal image after automatic coregistration and shadow canopy removal.
The colored regions correspond to the filtered temperature information, while the background image
represents the initial vineyard information without filtered canopy shadow pixels. The mean values
of canopy temperature for the cases with and without shadow canopy were 28.84 + 1.8 °C and
29.95 £+ 2.05 °C, respectively. In addition, the relationship between CWSI and SWP is shown in
Figure 9. The mean values of CWSI for the non-filtered information were 0.45 £ 0.14, while those
for the filtered information were 0.52 £ 0.17. Finally, the results indicated that the relationship
between the CWSI and SWP improved after using the automatic coregistration algorithm. In particular,
the coefficient of determination (R?) increased from 0.64 to 0.77. In addition, the values of RMSE and
SE decreased from 0.2 to 0.1 MPa and 0.24 to 0.16 MPa, respectively.

Figure 8. Final resulting thermal image of the drip-irrigated vineyard after automatic coregistration
with the 490-nm image and filtered using the proposed shadow removal algorithm.

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

y=-1.2263x - 0.385

04 R?=0.6437
RMSE=0.2 -
SE=0.24 £ .04

(A) (B)

Figure 9. Relationships between CWSI and SWP for the vineyard: (A) center of the row temperature;
and (B) temperature after coregistration with the 490-nm image and application of the proposed
shadow removal algorithm.

4. Discussion

The selection of B1 (490 nm) as the better multispectral band for classifying shadow canopy
pixels was consistent with the previous study by Unsalan et al. [76], who used the k-means and blue
information derived from the RGB spectrum to segment information avoiding shadow pixels to extract
street networks and detect houses. This band selection was also proposed by Sirmacek et al. [77],
who used the blue wavelength spectrum to detect shadows for building detection, suggesting
that this region was dominantly better even compared with green and red for shadow pixels
identification [78,79]. The selection of 490 nm image was also preferred when compared with upper
wavelengths, in which blue spectrum showed better results for shadow detection increasing the
performance for near infrared and shortwave infrared [80]. This validates the previous assumption
that internal canopy shadow cannot be identified by TIR imagery. Considering this, the importance
of coregister thermal and visible images for detecting shadow pixels was also highlighted by
Leinonen et al. [42] who using ground cameras with a non-automatic methodology concluded that
one of the principal steps is to correct overlapping VIS and TIR images to assess vine water status.
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In the present study, the SWP values between the stressed and well-watered vines [81] can be
easily identified. The relationship between the CWSI and SWP improved when the shadow pixels
were removed from the vine canopy using the suggested automatic algorithms. For the vineyard, the
fractional cover was 19%, while the percentage of canopy shaded pixels was 43%. This indicates that
only 8.2% of final vegetation pixels were used to develop the relationship between CWSI and SWP.
Although the relationship between CWSI and SWP improved, the impact of the shadow was significant
in those vines with more water stress [51]. In contrast, because no reduction of the transpiration rate
occurred in well-watered vines [82], the difference between leaf temperature and air temperature was
not representative [83]. These results are consistent with those of Van Zyl [49], who suggested that
the impact of shadow for SWP relationships in stressed vines was considerably higher compared
with sunlit leaves. In addition, Pou et al. [50] suggested that shaded canopy information negatively
affects the relationship of the vine water status and CSWI because the leaf temperature decreases.
Furthermore, Jones et al. [82] suggested that a greater sensitivity with respect to leaf temperature with
water status measurements might be better when sunlit canopy information is considered. The effect
of shadow deletion on the relationship between CWSI and SWP for stressed and well-watered vines is
shown in Figure 10. Considering the results of Figure 9, in stressed vines, the shadow deletion process
significantly improved the CWSI-SWP relationship with values of R?, increasing from 0.05 to 0.35.
However, no differences were observed for well-watered vines.

Deficit-irrigated Well-watered 1
0.9

0.8
R2=0.35

0.7

0.6

T I R2=0.52
¢ 0.5

CwslI

® o®»

03
R>=0.5

. 0.1
No filtered  Filtered

[«»]

-1.4 -1.2 -1 -0.8 -0.6 -0.4
Stem water potential

Figure 10. Comparison of the effect of shadow deletion on the CWSI-SWP relationship for a Cabernet

Sauvignon vineyard.

5. Conclusions

Using a modified SIFT computer vision algorithm and Kmeans++ clustering, we performed
automatic coregister UAV-TIR and UAV-VIS imagery to detect canopy shadow pixels information in
thermal images. The deletion of the canopy shadow information in TIR images positively affects the
relationship between the CWSI and SWP, showing an increment in R? from 0.64 to 0.77. In addition,
the relationship showed a decrease in RMSE from 0.2 to 0.1 MPa and in SE from 0.24 to 0.16 MPa.
As future work, our methodology should be applied for validation in different cultivars, seasons,
and field conditions. In addition, the impact of automatic removal of shadow canopy pixels should be
assessed for evapotranspiration modeling using UAV-TIR images of vineyards.
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