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Abstract
Apple is the most widely planted fruit in the world and is popular in consumers be-
cause of its rich nutritional value. In this study, the portable near-infrared (NIR) trans-
mittance spectroscopy coupled with temperature compensation and chemometric 
algorithms was applied to detect the storage quality of apples. The postharvest qual-
ity of apples including soluble solids content (SSC), vitamin C (VC), titratable acid (TA), 
and firmness was evaluated, and the portable spectrometer was used to obtain near-
infrared transmittance spectra of apples in the wavelength range of 590–1,200 nm. 
Mixed temperature compensation method (MTC) was used to reduce the influence 
of temperature on the models and to improve the adaptability of the models. Then, 
variable selection methods, such as uninformative variable elimination (UVE), com-
petitive adaptive reweighted sampling (CARS), and successive projections algorithm 
(SPA), were developed to improve the performance of the models by determining 
characteristic variables and reducing redundancy. Comparing the full spectral mod-
els with the models established on variables selected by different variable selection 
methods, the CARS combined with partial least squares (PLS) showed the best per-
formance with prediction correlation coefficient (Rp) and residual predictive deviation 
(RPD) values of 0.9236, 2.604 for SSC; 0.8684, 2.002 for TA; 0.8922, 2.087 for VC; 
and 0.8207, 1.992 for firmness, respectively. Results showed that NIR transmittance 
spectroscopy was feasible to detect postharvest quality of apples during storage.
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1  | INTRODUC TION

Apple is one of the most popular fruits in the world, and it has a va-
riety of bioactive ingredients, which are beneficial to human health, 
such as cellulose, vitamins, and minerals (Escribano, Biasi, Lerud, 
Slaughter, & Mitcham, 2017). Among them, soluble solids content 
(SSC), firmness, titratable acid (TA), and vitamin C (VC) are four im-
portant quality indicators of apples (Cortés, Blasco, Aleixos, Cubero, 
& Talens, 2019). SSC can reflect the sweetness of apples, firmness is 
related to apple tissue structure, and TA and VC are associated with 
the composition of the apple cells. These quality indicators have di-
rect impacts on consumers' preferences and purchasing behavior 
(Cortés, Cubero, Blasco, Aleixos, & Talens, 2019). Therefore, the de-
termination of above apple quality indexes is of great significance for 
meeting the needs of consumers.

Traditional apple quality detection methods are visual obser-
vation, chemical titration, and instrumental measurements such as 
acidity meter and sugar meter. These methods are time-consum-
ing, laborious, and destructive, and they cannot be used to detect 
batch samples (Porep, Kammerer, & Carle, 2015). Due to these 
limitations, researchers pay more attention to discover nonde-
structive, easy and reliable detection methods based on optics, elec-
tromagnetics, acoustics, etc. (JiYong et al., 2012; Xu et al., 2017). 
Near-infrared (NIR) spectroscopy is an emerging nondestructive 
technology to obtain the spectral information of the samples based 
on interactions between samples and light energy (Hu, Sun, Pu, & 
Pan, 2016). Compared with traditional methods, the NIR spectros-
copy has the advantages of fast detection speed, no damage to the 
samples and high efficiency. As a matter of fact, NIR spectroscopy 
has been widely studied to test the quality of fruits and vegetables 
(Theanjumpol et al., 2019). NIR spectroscopy mainly includes two 
optical alternatives: “reflectance” and “transmittance.” Most of the 
current researches used the NIR reflectance spectra to establish 
prediction models for fruits and vegetables quality. Even though the 
reflection spectra can be used to establish a closely related predic-
tion model, it was only reflected the local component content, not 
the quality indicators of the whole samples. However, the spectral 
information of the whole sample can be obtained using full transmit-
tance near-infrared spectroscopy, which can be used for the evalua-
tion of quality of the whole sample.

Even though NIR spectroscopy has been proved to be feasible 
to detect the quality of fruits and vegetables, its practical appli-
cation still has limitations. The spectra developed for analysis are 
sensitive to variations in temperature, and calibration transfer prob-
lems still existed in practical applications of NIR (Sheng, Cheng, Li, 
Ali, Agyekum, & Chen, 2019; Xu, Mo, Xie, & Ying, 2019). Most of 
the previous studies were conducted under laboratory conditions, 
and the temperature were kept constant (Suchanek, Kordulska, 
Olejniczak, Figiel, & Turek, 2017). However, in practical application, 
the temperature of refrigerated fruits and vegetables differs greatly 
from detection temperature. Fruits and vegetables have good light 
transmittance due to high moisture content. In the photoelectric 
signal acquisition, temperature as an important disturbance factor 

changes the optical properties of fruits and vegetables and signifi-
cantly affects the signal intensity, leading to wavelength shifts in 
absorbance response (Arendse, Fawole, Magwaza, & Opara, 2018). 
The detection of wines using NIR spectroscopy especially at the 
spectra region of 970–1,400 nm has been proved to be affected by 
the temperature, and the optimal temperature for testing was found 
to be 30–35°C (Cozzolino et al., 2007). In order to compensate for 
the influence of temperature on modeling, the mixed tempera-
ture correction method and partial least squares regression (PLSR) 
models for prediction of sugar content of molasses have been de-
veloped by combining spectral data at different temperature condi-
tions (Chapanya, Ritthiruangdej, Mueangmontri, Pattamasuwan, & 
Vanichsriratana, 2018). For apple fruit, long-term storage is required 
to meet the demands of annual supply. And the storage temperature 
is generally lower than 4°C, while the detection of apple quality is 
conducted under the room temperature, the significant temperature 
difference will lead to unstable detection results. Therefore, it is 
necessary to take measures to correct the temperature, reduce the 
influence of temperature on modeling, and improve the applicability 
of the model.

In addition to being influenced by external environment, NIR 
spectroscopy consists of overtones and combinations of infra-
red spectroscopy region, leading to overlapping of spectra (Saeys, 
Nguyen Do Trong, Van Beers, & Nicolaï, 2019). Moreover, a large 
number of spectral variables including irrelevant information need 
long data processing time and reduce the prediction accuracy, as a 
result, limiting its online applications. Recently, some variable se-
lection methods, including synergy interval (SI) (Zhang, Xu, Wang, 
Tian, & Li, 2018), competitive adaptive reweighted sampling (CARS) 
(Guo, Wang, et al., 2019), ant colony optimization (ACO) (Yang 
et al., 2017), and uninformative variable elimination (UVE) (Li, Sun, 
& Cheng, 2016), have been studied to improve the stability and ac-
curacy of modeling. CARS and SPA methods have been selected to 
determine the optimal wavelengths for prediction of apple SSC, and 
the prediction correlation coefficient (Rp) up to .919 with prediction 
root mean square (RMSEP) of 0.592 (Fan et al., 2019). Hyperspectral 
imaging (HSI) coupled with wavelength selection algorithms such 
as CARS, SPA, and RF has also been developed to select effective 
wavelength and establish partial least squares (PLS) models for apple 
SSC prediction, and the obtained best results were Rp, RMSEP val-
ues of 0.917, 0.453 °Brix (Zhang et al., 2019). Compared with full 
spectra models, variable selection method can effectively simplify 
the model and provide the basis for the practical application.

In this study, a new strategy was developed for detection 
storage quality of apples. Apple samples were stored at 4, 18, 
and 25°C, and NIR spectra were collected using portable NIR 
(590–1,250 nm) spectrometer. We established and compared the 
performance of quantitative detection models of apple SSC, VC, 
TA, and firmness under different temperatures and analyzed the 
effects of temperature on the models. The effects of tempera-
ture were compensated by using the mixed temperature correc-
tion (MTC) method and improved the performance of models. The 
optimal variables were determined by using variables selection 
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methods such as UVE, CARS, UVE combined with SPA, and CARS 
combined with SPA, and the prediction performance of models 
was further improved based on the temperature compensation 
models. Consequently, NIR transmittance spectroscopy-based 
feasible and reliable strategy was developed to detect postharvest 
quality of apples during storage.

2  | MATERIAL S AND METHODS

2.1 | Apple samples

A total of 396 “Fuji” apples without any damage and with uniform 
shape, size, and maturity were purchased from local markets and 
rapidly delivered to the laboratory. In order to detect quality of apple 
samples at storage conditions with different temperatures. The ap-
ples were divided into three groups, and each of the group included 
132 samples. Then, they were stored at three temperature condi-
tions (4, 18, and 25°C), and the relative humidity was set as 80%, 
respectively.

2.2 | Acquisition of NIR spectra

The NIR spectra were collected in transmittance mode by a port-
able NIR spectrometer USB 2000+ (Ocean Optics) in the region of 
590–1,250 nm with the spectral resolution of 3 nm. This is a proto-
type inspection device, with a film-coated flat convex lens, which 
has high transmittance to the detection band and low transmittance 
to the infrared band, thus avoiding the thermal damage of fruits. 
Every 2 days, five samples were taken out from each group to collect 
NIR spectra. For each sample, the NIR spectra were collected at the 
equatorial position with 120° rotation angle, resulted in three meas-
ured spectra, and the average value of the three spectra was taken 
as the final spectral data.

2.3 | Reference data measurement

After the NIR measurement, the reference data of each apple sam-
ple including firmness, SSC, TA, and VC were obtained using stand-
ard methods (Feng, Zhang, Adhikari, & Guo, 2019). The detection 
steps are as follows: First, the firmness of each apple was recorded 
through physical property analyzer (Stable Micro Systems), the P/5 
probe was selected, and the distance of puncture was 8 mm with the 
test speed of 1.5 mm/s (PérezMarín et al., 2019). Then, apple juice 
was taken to measure SSC, TA, and VC. The apple SSC was meas-
ured using digital refractometer (ATAGO). TA was measured accord-
ing to acid–base titration method and calculated by the amount of 
sodium hydroxide consumed and expressed as mass percentage of 
citric acid. VC was evaluated using spectrophotometer (METASH) at 
245 nm and calculated using standard curve. In order to reduce the 
influence of random errors, three tissue blocks from the equatorial 

position with 120° rotation angle of each sample were measured, 
and the average value was taken as the final quality parameter value.

2.4 | Processing the spectral and reference data

2.4.1 | Spectra preprocessing

The original spectral data were converted into relative absorptivity 
(A) via equation: A = log (1/T) (Zhang, Wu, Zhang, Cheng, & Tan, 2017), 
in which T referred to transmissivity. Then, the spectral pretreat-
ment methods including Savitzky–Golay (SG) (Guo, Li, et al., 2019) 
smoothing, standard normal variate (SNV) (Ma, Li, Inagaki, Yang, & 
Tsuchikawa, 2018), and multiplicative scatter correction (MSC) were 
used to remove the noise and baseline interference in spectral sig-
nals. The preprocessed spectra were used for further processing and 
establishing prediction models of apple quality (Wang & Xie, 2014).

2.4.2 | Temperature calibration

Considering the influence of temperature on the models, the mixed 
temperature correction (MTC) method was proposed to process 
the spectra. MTC method combined the spectral data of samples 
under different temperature conditions to establish a model, and 
the temperature information was involved in the model and analysis 
(Chapanya et al., 2018). In the processing of MTC, the accuracy of 
the prediction model depends on the number of representative sam-
ples of the calibration dataset, which needs to cover samples with 
a wide range of temperature changes. Therefore, the established 
model based on MTC contained the variation information of sample 
temperature, which enhanced the adaptability of the model to tem-
perature changes.

2.5 | Spectral variables selection

Near-infrared spectroscopy contains a large number of spectral vari-
ables, some of which are irrelevant, redundant, and collinear infor-
mation, hence causing the increase of data processing time and also 
interfering with the establishment of the model and affecting the 
stability and prediction accuracy of the model (Ouyang, Zhao, Pan, & 
Chen, 2016). Therefore, it is of great significance to select the effec-
tive variables using variable selection methods. The common vari-
able selection methods include UVE, CARS, and SPA. Among them, 
the UVE and CARS could eliminate the variables with irrelevant in-
formation but the number of the retained variables is still very large. 
Therefore, SPA was usually necessary to further eliminate collinear-
ity variables retained and reduce the number of modeling variables.

Uninformative variable elimination algorithm is based on the 
PLS regression coefficients, and it eliminates the wavelength vari-
ables without information and retains the effective variables by 
adding random noise variables to sample variables and interactive 
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verification (Porep et al., 2015). CARS is an emerging variable se-
lection method (Kutsanedzie et al., 2018; Wang et al., 2019). In the 
process of CARS, each wavelength is regarded as an independent 
individual, and the wavelength variables with larger absolute re-
gression coefficients in PLS models are selected by adaptive re-
weighted sampling technology. At the same time, the wavelength 
variables with smaller absolute regression coefficients are removed. 
Finally, the key individuals of important information are to be re-
tained, while the unimportant is removed. SPA is a forward variable 
selection algorithm, which minimizes the collinearity of vector space 
by extracting several characteristic wavelengths in the whole band 
and eliminating redundant information in the original spectral matrix 
(Fan et al., 2019; Guo et al., 2016).

2.6 | Establishment and evaluation of models

Partial least squares is a quantitative analysis method frequently used 
for spectral analysis, which is insensitive to the spatial collinearity and 

large numbers of variables by projecting the predicted and observed 
variables into a new space (Huang, Lu, & Chen, 2018). In this study, PLS 
was first calibrated based on full spectra at different temperatures to 
evaluate the relationship between chemical and spectral data of apple 
such as SSC, TA, firmness and VC, and the effect of temperature on 
models. Then, spectra data processed by MTC were employed to es-
tablish PLS models and minimized the influences of temperature on 
model prediction. Finally, in order to further improve the prediction 
performance of the models, variable selection methods were used to 
determine efficient variables and establish PLS models.

To evaluate the prediction performance of the models, important 
parameters such as calibration correlation coefficient (Rc) and Rp were 
used to obtain the degree of close correlation between variables, 
root mean square error of calibration (RMSEC) and RMSEP were used 
to measure the deviation between the observed value and the true 
value, and RPD was used to evaluate models prediction ability. The 
larger Rc, Rp the lower RMSEC, RMSEP values showed the better 
models, and the RPD value is more than 2 shows that the model has 
potential practical application ability (He, Fu, Rao, & Fang, 2016).

F I G U R E  1   Schematic diagram of the experimental procedure. Near-infrared transmittance spectroscopy of apple samples at different 
temperatures were collected, and a variety of variables selection methods were used to establish prediction models of main quality 
properties based on the reference measurements

Sample

Calibration set Prediction set

Min Max Mean SD Min Max Mean SD

SSC 8.563 18.24 13.11 1.541 9.543 17.54 13.11 1.526

Firmness 0.557 1.934 1.415 0.243 0.668 1.910 1.441 0.204

VC 12.46 37.54 23.90 4.464 13.94 34.23 24.24 3.861

TA 1.557 3.055 2.131 0.2679 1.557 2.829 2.131 0.2663

TA B L E  1   Descriptive statistics of apple 
quality parameters including SSC (°Brix), 
firmness (kg), TA (%), and VC (mg/100 g)
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where yi is the practical value of apple quality indexes, while ŷi is 
predictive estimate value. n is the sample number of correction set, 

nval is the sample number of prediction set, and SD is the standard 
deviation.

3  | RESULTS

3.1 | Overview of spectra and statistics of reference 
data

Due to obvious edge noises in the front and the end of the 
spectral region, the wavelength range of 600–1,050 nm was se-
lected for spectral analyzing and modeling. Figure 1 showed the 

(1)RMSEC=

�

∑n

i=1
(ŷi−yi)

2

n

(2)RMSEP=

�

∑nval

i=1
(ŷi−yi)

2

nval

(3)RPD=

SD

RMSEP

F I G U R E  2    Scatter plots of calibration and prediction sets for apple SSC (a), firmness (b), TA (c) and VC (d), using mixed temperature 
compensation method during modeling 
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representative transmittance spectra with wavelength region of 
600–1,050 nm from all detected samples. It can be seen that NIR 
spectra were sensitive to apple tissue components, the spectra 
collected from all samples have shown similar trends, and some 
obvious spectra absorption peaks were at the wavelength of 
around 675, 760, and 945 nm. Among them, the absorption peak 
at around 675 nm might be related to chlorophyll and anthocya-
nins of apple peel (Sánchez, Entrenas, Torres, Vega, & PérezMarín, 
2018). The absorption peak at 760 nm might be associated with 
C–H fourth overtone band, and the absorption trend at around 
945 nm can be classified as O–H second overtone band of the 
internal components of apples tissue such as carbohydrates, min-
erals, and water content, which involved the molecular bonds C-H 
and O-H (Li et al., 2016).

Table 1 summarized the distribution of apple quality indica-
tors including SSC, firmness, VC, and TA. A total of 396 apples 
were used for establishing independent component models and 
MTC models, and the samples were first divided into calibration 
set and prediction set. In the development of MTC models, for 
the calibration set, the mean values of SSC, firmness, VC, and TA 
were 13.11°Brix, 1.415 kg, 23.9 mg/100 g, and 2.13%, and the 
standard deviations were 1.541°Brix, 0.243 kg, 4.464 mg/100 g, 
and 0.267%, respectively. For the prediction set, the mean val-
ues of SSC, firmness, VC, and TA were 13.11°Brix, 1.441 kg, 
23.9 mg/100 g, and 2.13%, and the standard deviations were 
1.526°Brix, 0.204 kg, 3.861 mg/100 g, and 0.2663%, respectively. 
The results of SD show that the statistical values of other three 
quality indexes have the lower dispersion and higher stability, 
while VC statistical values have higher discreteness, but their 
distribution of all conforms to the normal distribution, which can 

be used for modeling and analysis. And it is also noteworthy that 
there is no significant difference of mean values between the cal-
ibration sets and prediction sets, and all the parameters values of 
prediction set were within the range of the calibration set, which is 
of great significant to ensure the prediction accuracy.

3.2 | Spectral preprocessing based on PLS modeling

For improving the prediction accuracy of apple quality, the spectral 
data of 600–1,050 nm range were first pretreated by SG, SNV, and 
MSC, respectively, and the PLS models were established to evaluate 
the effectiveness of the pretreatment methods. The results showed 
that the stability of PLS models has not been improved after pre-
treatment. Therefore, the original spectrum was selected for further 
data processing and analyzing.

3.3 | Comparison of the independent models and 
MTC models

The PLS models for nondestructive detection of apple quality were 
established based on the different datasets at the wavelength 
range of 600–1,050 nm and in each apple quality index included 
three PLS-independent models (4, 18, and 25°C) and two MTC 
models. These models were used for the analysis of the effect of 
temperatures on apple quality prediction, respectively. Figure 2a–d 
shows the scatter plots of prediction results of apple quality by 
PLS models. Table 2 shows the results of all models, and there is 
a slight difference between the results of different temperatures 

Quality parameters Temperature(oC)

Calibration set Prediction set

RPDRc RMSEC RP RMSEP

SSC 4 0.8243 0.921 0.8536 0.892 1.711

18 0.8327 0.874 0.8678 0.765 1.995

25 0.8309 0.767 0.8238 0.802 1.903

MTC 0.9140 0.624 0.8871 0.706 2.161

Firmness 4 0.7861 0.152 0.7415 0.162 1.259

18 0.7246 0.104 0.7560 0.107 1.907

25 0.7208 0.148 0.7545 0.155 1.316

MTC 0.7637 0.159 0.7179 0.169 1.207

VC 4 0.7561 3.500 0.7995 3.140 1.230

18 0.7422 4.170 0.7714 3.730 1.035

25 0.8077 3.730 0.8089 3.770 1.024

MTC 0.8672 2.220 0.8114 2.510 1.538

TA 4 0.7726 0.130 0.7763 0.122 2.183

18 0.8139 0.118 0.7536 0.144 1.849

25 0.7317 0.134 0.7547 0.143 1.862

MTC 0.8436 0.144 0.7955 0.161 1.654

TA B L E  2   The prediction results of SSC, 
firmness, TA, and VC in apple samples 
by independent component models 
established at different temperatures and 
mixed temperature compensation models
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for the independent models, the optimal results of SSC, firmness, 
VC, and TA with RP = .8678, RMSEP = 0.765 at 18°C, RP = .7560, 
RMSEP = 0.107 at 18°C, RP = .8089, RMSEP = 3.770 at 25°C, and 
RP = .7763, RMSEP = 0.122 at 4°C, respectively. The prediction re-
sults of PLS models at 25 and 18°C were better than 4°C for SSC and 
firmness. Furthermore, the better prediction results were obtained 
when the temperature of the sample was consistent to that of the 
experimental environment. Compared the temperature compensa-
tion models with the independent models, the prediction accuracy 
of the models was significantly improved. In conclusion, the mixed 
temperature correction method significantly improved the predic-
tion results of SSC, VC, and TA, and can be used to compensate 
the influence of temperature on the models. In this study, the opti-
mal temperature compensation models for each quality index were 
further optimized using variable selection methods for effectively 
improving the prediction accuracy of models.

3.4 | Comparison of models established based on 
variables selection methods

3.4.1 | UVE-PLS

In the process of UVE, the maximum principal component number 
was set to 15, the random noise variables number was 1,344, and 
the stability value of random noise variables was 0.99, which was 
set as the threshold value. Figure 3a–d shows the stability of the 
UVE variable of apple quality detection. Due to the similar process 
of the UV selection algorithm of each quality index, this paper only 
describes the UVE variable screening process of SSC as an exam-
ple. In Figure 3a, a total of 1,344 variables of blue line in the left 
region were real variables, while 1,344 variables of red line in the 
right region were added random noise variables. The two horizontal 
dotted lines above and below were the upper and lower thresholds 

F I G U R E  3    Characteristic variables selected by UVE for SSC prediction (a), firmness prediction (b), TA prediction (c) and VC prediction (d)
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of the stability of UVE variables. The variables between the two 
horizontal dotted lines were irrelevant variables, which were elimi-
nated, while the variables outside the two horizontal dotted lines 
contained useful information and were retained. As a consequence, 
610, 387, 342, and 523 spectral variables were retained for SSC, 
TA, VC, and firmness, respectively. Then, PLS models were devel-
oped based on the selected variables, and the results are shown in 
Table 3. Compared with the models based on the full spectra, the 
number of variables has been reduced by more than half. And the 
performance of models has been improved with Rp being .8983, 
.8633, .8293, and .7038 for SSC, TA, VC, and Firmness, respec-
tively. The reason may be that some collinearity variable informa-
tion has been removed by UVE.

3.4.2 | CARS-PLS

In CARS algorithm processing, the sampling times of Monte Carlo 
were set to 50. Figure 4a–d shows the variable selection process 
for SSC, VC, TA, and firmness by CARS. It can be seen that, in 
the spectral range of 600–1,050 nm, the RMSEC values and the 
regression coefficient path of each wavelength changed with the 
increasing of sampling runs. In Figure 4a1, the selection speed 
of the wavelength variable changed from fast to slow, which re-
flected the process of selection from rough to fine. In Figure 4a2, 
RMSEC values descend first with the removal of uninformative 
variables, then gradually increased since some key variables 
were removed. And the optimum variable number was deter-
mined by minimum RMSEC value. Figure 4a3 shows the absolute 

coefficients at each sampling run for variables, and the variable of 
the lager absolute coefficient was more probable to be selected. 
As the result of the CARS calculation, 83 effective variables were 
selected for detection of SSC in apples. Similarly, 83, 108, and 
94 variables were identified by CARS for VC, TA and firmness, 
respectively.

As shown in Table 3, compared with the full spectral PLS models, 
the prediction performance of models was all improved when using 
the selected variables by CARS algorithm. Meanwhile, the number 
of variables was reduced more than 90%, which showed that the 
CARS variable selection method removed irrelevant information and 
enhanced the signal-to-noise ratio of the model. When the variable 
selection effect of UVE and CARS was compared, the UVE improved 
the prediction effect of the model to a certain extent, while the vari-
able selection ability of CARS was better than that of UVE, and the 
number of variables selected by CARS was lower than that selected 
by UVE. It might due to the variables retained by UVE still contained 
irrelevant information, which disturbed the prediction accuracy of 
the model.

3.4.3 | UVE-SPA-PLS and CARS-SPA-PLS

Through the above UVE variable selection method, the number of 
variables used for quantitative analysis of apple quality was reduced 
by more than half from 1,344. However, some irrelevant variables 
might exist, which affected the stability of the models. In order to 
further simplify the model, SPA was developed to select character-
istic variables based on the variables selected by UVE and CARS 

TA B L E  3   The prediction results of SSC, firmness, TA, and VC in apple samples by PLS models established using characteristic variables 
selected by different variable section methods

Quality parameters Variable selection Variable number

Calibration set Prediction set

RPDRc RMSEC Rp RMSEP

SSC UVE 610 0.9124 0.630 0.8983 0.669 2.281

CARS 83 0.9178 0.613 0.9236 0.586 2.604

UVE-SPA 49 0.8971 0.679 0.8902 0.696 2.193

CARS-SPA 32 0.9203 0.602 0.9007 0.668 2.284

TA UVE 387 0.8817 0.126 0.8633 0.132 2.017

CARS 108 0.8671 0.134 0.8684 0.133 2.002

UVE-SPA 108 0.8805 0.127 0.8579 0.133 2.002

CARS-SPA 54 0.8917 0.121 0.8606 0.136 1.958

VC UVE 342 0.8713 2.190 0.8293 2.390 1.615

CARS 83 0.8765 2.150 0.8922 1.850 2.087

UVE-SPA 31 0.8275 2.500 0.7832 2.580 1.497

CARS-SPA 40 0.8563 2.290 0.8288 2.330 1.657

Firmness UVE 523 0.7956 0.147 0.7038 0.173 1.405

CARS 94 0.8656 0.122 0.8207 0.117 1.992

UVE-SPA 77 0.7656 0.157 0.7325 0.162 1.548

CARS-SPA 59 0.8472 0.130 0.8179 0.115 1.869
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algorithms. Figure 4a–d showed the selected variables and corre-
sponding wavelength points based on variables selected by CARS-
SPA. After CARS-SPA processing, 32, 54, 40, and 59 characteristic 
variables were finally chosen for SSC, VC, TA, and firmness, respec-
tively. And after UVE-SPA processing, 49, 108, 31, and 77 charac-
teristic variables were finally chosen for SSC, VC, TA, and firmness, 
respectively (Figure 5). As shown in Figure 4a–d, the selected char-
acteristic wavelength points were mostly at the range of 600–700 
and 900–1,000 nm, and the selection of wavelength points was 
slightly different for the four quality indicators, which reflected dif-
ferences between response spectra of different quality indicators. 
Table 3 listed the calibration and prediction results of UVE-SPA-PLS 
and CARS-SPA-PLS models for SSC, VC, TA, and firmness of apples. 
Comparing the results of UVE-SPA-PLS and CARS-SPA-PLS models 
with UVE-PLS and CARS-PLS models, SPA greatly reduced the vari-
ables number and simplified the models . However, the prediction 

performances of models were slightly worse than that of UVE-PLS 
and CARS-PLS. The reason might be that the SPA removed some key 
variables and reduced the prediction accuracy.

3.5 | Comparison of models by different variables 
selection methods

The full spectra data and characteristic variables determined by 
different variable selection methods were respectively developed 
to establish PLS models such as UVE-PLS, CARS-PLS, UVE-SPA-
PLS, and CARS-SPA-PLS for quantitatively predicting quality 
indexes of apples. Table 3 listed the calibration and prediction re-
sults of all PLS models with full spectra and selected variables for 
SSC, VC, TA, and firmness of apples. And Figure 6a–d shows the 

F I G U R E  4    The process of CARS algorithm for SSC (a), firmness (b), TA (c) and VC (d)
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scatter plots of the optimal prediction results of apple quality by 
CARS-PLS models.

As a conclusion, the optimal results were obtained by 
CARS-PLS models with RP = 0.9236, RMSEP = 0.586 for SSC, 
RP = 0.8684, RMSEP = 0.133 for TA, RP = 0.8922, RMSEP = 1.850 
for VC, and RP = 0.8207, RMSEP = 0.117 for firmness, respec-
tively. The results showed good prediction accuracy with RPD 
of 2.604 for SSC, approximate prediction accuracy with RPD 
of 2.087 for VC and 2.002 for TA, meanwhile, a poor predic-
tion accuracy with RPD of 1.992 for firmness. Previous studies 
were mostly focused on the detection of apple SSC, and in this 
study, four quality indexes of apple were tested at the same 
time. For SSC and firmness, the result was slightly lower than 
previous studies (Fan et al., 2019; Ma et al., 2018; Ni, Zhu, Gu, 
& Hu, 2019), the reason may be that the distribution of SSC 
in apple was not uniform, other studies used the diffuse re-
flection method to obtain the accuracy SSC content of local 
apple, which cannot reflect the overall SSC content of apple, 
while the full transmittance spectrum can collect the spectral 
information of the whole apple SSC content in this study. For 
apple TA and VC, only few studies were existed, while this re-
search detected a large number of apple samples and provided 
a potential of using near-infrared transmittance spectroscopy 
to detect multiple quality indexes of apple. Furthermore, this 
study aimed at the quality detection of apple during storage, 
which shows the potential of NIR spectroscopy for apple stor-
age quality monitoring.

4  | CONCLUSION

This study revealed that the portable NIR spectroscopy system com-
bined with a mixed temperature compensation method, and an ap-
propriate variable selection method has the potential for the rapid 
detection of postharvest quality of apples. First, the NIR transmit-
tance spectral data of apple stored at different temperatures were 
collected and used to establish models of apple quality, and the 
effects of temperature on the performance of models were com-
pared. Then, the mixed temperature correction method was applied 
to reduce the effects of temperature on models. Based on which, 
the preprocessing methods such as SG, SNV, and MSC were used to 
improve signal-to-noise ratio of the models. Meanwhile, four vari-
able selection methods including UVE, CARS, UVE-SPA, and CARS-
SPA were employed to remove the variables, which were sensitive 
to temperature and improve the prediction performance of models. 
Results indicated that CARS-PLS showed the optimal results with 
RP = 0.9236, RMSEP = 0.586 for SSC, RP = 0.8684, RMSEP = 1.330 
for TA, RP = 0.8922, RMSEP = 2.390 for VC, and RP = 0.8207, 
RMSEP = 0.117 for firmness. These findings proved that NIR has the 
potential to be used in rapid detection of quality attributes of post-
harvest apple during storage.
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