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Abstract

A central criticism of standard theoretical approaches to constructing stable, recurrent model networks is that the synaptic
connection weights need to be finely-tuned. This criticism is severe because proposed rules for learning these weights have
been shown to have various limitations to their biological plausibility. Hence it is unlikely that such rules are used to
continuously fine-tune the network in vivo. We describe a learning rule that is able to tune synaptic weights in a biologically
plausible manner. We demonstrate and test this rule in the context of the oculomotor integrator, showing that only known
neural signals are needed to tune the weights. We demonstrate that the rule appropriately accounts for a wide variety of
experimental results, and is robust under several kinds of perturbation. Furthermore, we show that the rule is able to
achieve stability as good as or better than that provided by the linearly optimal weights often used in recurrent models of
the integrator. Finally, we discuss how this rule can be generalized to tune a wide variety of recurrent attractor networks,
such as those found in head direction and path integration systems, suggesting that it may be used to tune a wide variety
of stable neural systems.
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Introduction

Persistent neural activity is typically characterized as a sustained

increase in neural firing, sometimes lasting up to several seconds, and

usually following a brief stimulus. It has been thought to underlie a

wide variety of neural computations, including the integration of

velocity commands [1,2], the reduction of noise [3], tracking head

direction [4,5], maximizing probabilities [6], and storing working

memories [7,8,9]. The most common theoretical solution for

realizing persistent activity is to introduce recurrent connections

into a network model [10,11,12] [13]. Recently, methods have been

proposed which generalize this kind of solution to any neural

representation with countable degrees of freedom [14].

However, as demonstrated by [15], precise tuning of recurrent

connection weights is required to achieve appropriate persistent

activity in this class of simple recurrent networks. A similar

observation was made earlier in numerical simulations by [16].

Specifically, in the oculomotor integrator, which has long been a

central experimental target for characterizing persistent activity in

a biological setting [1,2,17,18], it is known that the precision of the

recurrent weights required to induce drifts slow enough to match

the observed behavior is quite high [19]. It has been shown that

the stability of the oculomotor integrator can only be achieved by

tuning the weights to within 1% of the theoretical ideal. The 1%

accuracy refers to the accuracy of tuning the unity eigenvalue of

the recurrent weight matrix. It can also be expressed as the ratio of

the physical connection time constant, tsyn, to system time

constant [2]. As a result of this small 1% margin, it has been

suggested that the physiological processes necessary to support

such fine-tuning might not be available [20]. To achieve the

observed stability, various alternative mechanisms have been

explored. For instance, [21] provide evidence for a single cell

mechanism that relies on cholinergic modulation. However, it is

unclear if this is plausible outside of the entorhinal cortex. As well,

bistability [21,18], and multiple layers of feed-forward connections

[13] have been proposed as possible mechanisms. However, the

evidence supporting these more exotic possibilities in the relevant

neural systems is quite weak [13].

Consequently, it is an open problem as to how real

neurobiological systems produce the observed stability. The most

direct answer to this question – that there are learning mechanisms

for fine-tuning – has also seemed implausible. Several models that

have adopted such an approach require a retinal slip signal in

order to tune the integrator [22,23,24]. A retinal slip signal is

generated by comparing the movement of the eyes to the

movement of an image on the retina. If the retinal image is

moving, but the eyes (and the rest of the body) are not, an error

signal is generated by the oculomotor system. However, this signal

is not explicitly available to the neural integrator with known

connectivity, and cannot account for development of the

integrator in the dark [25,26], or the role of proprioceptive

feedback [27]. Other models require an entirely non-physiological

algorithm [28], or are not able to appropriately adapt to

distortions in the visual feedback [29,30]. Other accounts, that

address neural stability more generally [31,32], have not yet been

shown to apply to the oculomotor integrator, and may not have

the resources to do so (see Discussion).

Here we propose a learning rule that is able to account for

available plasticity results, while being biologically plausible.
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Specifically, we demonstrate that our proposed rule: 1) fine-tunes

the connection weights to values able to reproduce experimentally

observed behavior; 2) explains the mis-tuning of the neural

integrator under various conditions; and 3) relies only on known

inputs to the system. We also suggest a generalization of this rule

that may be exploited by a wide variety of neural systems to induce

stability in higher-dimensional spaces, like those possibly used in

the head-direction and path integration systems in the rat

[33,5,34,14].

Materials and Methods

The optimal neural integrator
To understand the results and genesis of the proposed learning

rule, it is useful to begin with a standard theoretical characteriza-

tion of an attractor network. The ‘‘optimal’’ neural integrator

model used in this study is constructed using the Neural

Engineering Framework (NEF) methods described in [28]. We

refer to the network model as ‘‘optimal’’ because the NEF relies on

the linear optimization to determine the connection weights (as

described below). The resulting connection weights are similar to

those derived by other methods [2,15,35], such that all such

methods generate stable integrators. However, the learning rule is

derived using the NEF formulation.

For simplicity, each neuron in the integrator is modeled as a

spiking leaky integrate-and-fire (LIF) neuron, though little depends

on this choice of neuron model [28]. The sub-threshold evolution

of the LIF neuron voltage is described by

_VV (t)~{
1

tRC

(V(t){JR) ð1Þ

where V is the voltage across the membrane, J is the input

current, R is the passive membrane resistance, and tRC is the

membrane time constant. When the membrane voltage crosses a

threshold Vthresh, a spike is emitted, and the cell is reset to its

resting state for a time period equal to the refractory time constant

tref . The output activity of the cell is thus represented as a train of

delta functions, placed at the times of spikes tm as

s~
P

m d(t{tm). The spiking response of the cell is thus a

nonlinear function of the input current J, that is

X
m

d(t{tm)~G½J(t)�,

where G indicates the neuron model response function.

The interactions between neurons are captured by allowing

spikes generated by neurons to elicit post-synaptic currents (PSCs)

in the dendrites of neurons to which they project. The PSCs are

modeled as exponentially decaying with a time constant of tPSC :

h(t)~e{t=tPSC : ð2Þ

For the models presented here, we assume a tPSC of 100 ms,

which accounts for the decay of NMDA receptor PSCs, as is

typical in oculomotor models [15,20]. Notably, we have not

included saturation in our model of the synapses. It has been

suggested that even with long NMDA receptor time constants,

there are plausible synaptic models that do not suffer significantly

from saturation effects [36]. At high firing rates, small effects from

saturation are evident in such models in the form of a slight roll-off

of the tuning curve. This roll-off is similar to that observed when

the membrane time constant of the cells is decreased. We have

found our rule to provide similar results for these kinds of tuning

curves (results not shown). Nevertheless, the effects of saturation,

and other cellular dynamics are not captured directly by our single

cell and synaptic model.

The total current flowing into the soma of a receiving cell from

the dendrites, J(t), is thus determined by the input spike trains si

coming from connected neurons, that are filtered by the PSCs

elicited by those spikes, and weighted by a connection weight

between the receiving neuron and the input neurons vi:

J(t)~
XN,M

i,m

vih(t) � d(t{ti,m)

~
XN,M

i,m

vih(t{ti,m)

ð3Þ

where M is the number of spikes from each of the N neurons

connected to the receiving neuron. The somatic current then

causes the receiving neuron to spike, as determined by the LIF

model, and the resulting spikes are passed to connected

downstream neurons. This process is depicted in Figure 1a.

To use this cellular model to perform integration it is essential to

determine the appropriate recurrent connection weights vij .

However, it is necessary to do so in light of the particular

distribution of cellular responses found in the biological integrator.

Here, we focus on the neurons involved in controlling horizontal

eye movements, to make the problem 1-dimensional. In mammals,

the horizontal oculomotor integrator is found in the nuclei

prepositus hypoglossi (NPH). While it is possible to find

characterizations of the cellular responses of these neurons [37],

the very similar, but much simpler, oculomotor system of the

goldfish is our focus of study, as it is one of the best studied

oculomotor systems and has thus been more fully characterized.

The cells controlling horizontal eye position in the goldfish are

found in the reticular column. It is generally agreed that the

goldfish integrator is a good model for the mammalian integrator

despite the difference in size of the corresponding networks

[15,19].

In both mammals and fish, the relevant network of cells receives

projections from earlier parts of the brain that provide a velocity

command to update eye position. In addition, many of the cells in

the network are connected to one another, making it naturally

modeled as a recurrent network. This network turns the velocity

command into an eye position command, and projects the result to

the motor neurons which directly affect the relevant muscles.

Thus, our model circuit consists of one population of recurrently

connected neurons, which receives a velocity input signal v(t) and

generates a signal representing the eye position x(t).

To construct the model, we begin with an ensemble of 40

neurons (approximately the number found in the goldfish

integrator), which have firing curves randomly distributed to

reflect known tuning in the goldfish [15]. This neural population is

taken to represent x, the actual position of the eye. This variable is

encoded by the neural population using an encoding weight e, to

account for directional sensitivity of the neurons. Neurons in this

area have monotonically increasing firing either leftwards (e~{1)

or rightwards (e~z1). To fit the observed heterogeneity of

neuron tuning in this area, we use a gain factor a. We account for

the observed background firing rates of the neurons by introducing

a bias current Jbias. As a result of these considerations, for any

neuron i in the population, the activity produced by the neuron is

given by

Fine-Tuning Recurrent Neural Networks
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X
m

d(t{ti,m)~G aieix(t)zJbias
i

� �
ð4Þ

where G is the LIF non-linearity described by Equation 1. In

essence, Equation 4 defines how eye position information is

encoded into the spike patterns of the neural population.

To determine what aspects of that information are available to

subsequent neurons from this activity (i.e., to determine what is

represented), we need to find a decoder di. For consistency with

the standard cellular model described earlier (Figure 1a), we take

these decoders to be linear. This assumption, which is equivalent

to having linear dendrites, is shared with most integrator models.

Optimal linear decoders can be found by minimizing the

difference between the represented eye position x̂x and the actual

eye position x over the relevant range (see the next section):

E~
1

2

ð500

{500
x{x̂xð Þ2dx ð5Þ

where

x̂x~
X

i

ai(x)di: ð6Þ

The activities, ai(x) in this equation are the time-average of the

filtered activity
P

h(t{tim) (from Equation 3) for a constant input.

For the population in Figure 1b, the optimization range is +50
degrees and the resulting root-mean-square (RMS) error of this

decoding over that range is 0.134 degrees over the 100 degrees of

movement. Identifying both the encoding (Equation 4) and

decoding (Equation 6) of interest provides a characterization of

the time-varying representation of eye position for the population

of neurons.

For the neural integrator model, it is also essential to determine

how to recurrently connect the population to result in stable

dynamics. [14] has shown how to determine these connection

weights for arbitrary attractors. We adopt that method here, for

the simple 1D case. Consider the activity of the population of

neurons at a future moment in time, atz1
i . To avoid confusion, let

us index that activity by j; i.e., aj~atz1
i . The encoding, from

Equation 4, for aj is thus

X
m

d(t{tj,m)~G ajejx(tz1)zJbias
j

h i
: ð7Þ

At the present moment, the representation of eye position x̂x(t),
given by the decoding of the neuron activities is

x̂x(t)~
X

i

ai(x(t))di: ð8Þ

Since the system should be stationary without any input, it should

be the case that x(tz1)~x(t)&x̂x(t) at all positions. To enforce

this constraint, we substitute Equation 8 into Equation 7, giving

X
m

d(t{tj,m)~G ajej

X
i

ai(x(t))dizJbias
j

" #

~G
X

i

vijai(x(t))zJbias
j

" # ð9Þ

where vij~ajejdi. We refer to the model with these weights as the

‘‘linear optimal’’ model, since the weights are determined by a

linear least squares optimization of Equation 5.

A network with these recurrent weights will attempt to hold the

present representation of eye position as long as there is no

additional input. However, even given optimal weights there are

many reasons that the eye position will drift. These include

representational error introduced by the nonlinearities in the

encoding, fluctuations in the representation of eye position, due to

the non-steady nature of filtered spike trains, and the many sources

of noise attributed to neural systems [38,39,40]. Nevertheless, a

Figure 1. Model neurons used in the network. a) The dynamics of a model neuron coupled to a PSC model provides the complete model of a
single cell. Spikes arrive, are filtered by a weighted post-synaptic current and then drive a spiking nonlinearity. b) Tuning curves for 40 simulated
goldfish neurons with a cellular membrane time constant, tRC , of 200 ms and a refractory period of 2 ms. Maximum firing rates were picked from an
even distribution ranging from 20 to 100 Hz. Direction intercepts were picked from an even distribution between 250 and 50 degrees. The neurons
were evenly split between positive and negative gains, determined by a randomly assigned encoding weight e~+1.
doi:10.1371/journal.pone.0022885.g001
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circuit with these weights can do an excellent job as an integrator,

and its performance matches well to the known properties of

biological integrators [28].

Note also that this network will mathematically integrate its

input. If we inject additional current into the neural population, it

acts as an extra change in the eye position, and will be added to

the representation of eye position. Additional input will thus be

summed over time (i.e., integrated) until it stops, at which point the

system will attempt to hold the new representation of eye position.

In short, an input proportional to eye velocity will be integrated to

drive the circuit to a new eye position. The stable representation of

eye position by this circuit for different velocity inputs is discussed

in the Results section.

Derivation of optimal decoders
To complete our discussion of the optimal neural integrator, in

this section we describe the methods used to compute optimal

linear decoders di in equation 6. For generality we follow the NEF

methods to determination optimal decoders under noise [28].

Specifically, we assume that the noise gi is drawn from a Gaussian,

independent, identically distributed, zero mean distribution. The

noise is added to the neuron activity ai resulting in a decoding of

x̂x~
XN

i~1

ai(x)zgið Þdi: ð10Þ

To find the least squares optimal di, we construct and minimize

the mean square error, averaging over the expected noise and x:

E~
1

2
x{

XN

i~1

ai(x)zgið Þdi

" #2

x,g

~
1

2
x{

XN

i~1

ai(x)di

 !
{
XN

i~1

gidi

" #2

x,g

ð11Þ

where S:Tx indicates integration over the range of x. This can be

thought of as multiple linear regression. Because the noise is

independent on each neuron, the noise averages out except when

i~j. So, the average of the gigj noise is equal to the variance s2dij

of the noise on the neurons. Thus, the error with noise becomes

E~
1

2
x{

XN

i~1

ai(x)di

" #2

x

z
1

2
s2
XN

i~1

d2
i : ð12Þ

Taking the derivative of the error gives

dE

ddi

~{
1

2
2 x{

XN

j

aj(x)dj

" #
ai(x)

x

zs2dj

~{Sai(x)xTxz
XN

j

ai(x)aj(x)dj

x

zs2dj :

ð13Þ

Setting the derivative to zero gives

Sai(x)xTx~
XN

j

Sai(x)aj(x)Txzs2dij

� �
dj ð14Þ

or, in matrix form,

~Cd:

The decoding weights di are given by

d~C{1

where

Cij~Sai(x)aj(x)Txzs2dij

i~Sxai(x)Tx:

Notice that the C matrix is guaranteed to be non-singular, hence

invertible, because of the noise term on the diagonal. In all

simulations presented here the noise was taken to have a

normalized variance of 0.1.

Derivation of the learning rule
Plasticity in the neural integrator is evident across a wide variety

of species, and there is strong evidence that modification of retinal

slip information is able to cause the oculomotor integrator to

become unstable or damped [19,30]. Additional support for the

role of tuning in the oculomotor neural integrator in humans

comes from evidence of tuning within two months of birth [41],

mis-tuning in subjects with developed blindness [42], and induced

drift after training [43]. While evidence from experiments with

dark-reared animals has shown some development of the

integrator without visual feedback [25,26], ocular stability

improves when animals are provided visual feedback. Conse-

quently, there is good evidence that some form of adaptation is

active in the oculomotor integrator, and it is plausible that such

adaptation would be able to support fine-tuning.

The goal of this study is to determine a biologically plausible

learning rule that is able to perform integration as well as the linear

optimal network described above. The learning rule derived here is

based on the idea that integrators should be able to exploit the

corrective input signals they receive. Empirical evidence indicates

that all input at the integrator itself is in the form of velocity

commands [44]. While the nucleus of the optic tract has retinal slip

information, it encodes this into a velocity signal when it projects to

the neural integrator [45]. Consequently, there is no explicit retinal

slip signal, as assumed by past learning rules [24,23].

In the oculomotor integrator, there is evidence of two classes of

input: intentional and corrective saccades [46,47]. [48] have argued

that corrective saccades, and not an explicit retinal slip error, cause

adaption in saccade magnitude. There are several characteristics

of saccadic commands that can be used to distinguish between

corrective and intentional saccades, including magnitude of

velocity or change in position (see Figure 2). Because the eye is

generally in the neighborhood of its target for corrective saccades,

corrective saccade velocities tend to be smaller. And, since saccade

magnitude is proportional to maximum saccade velocity [49], it is

possible to filter saccadic velocity commands based on magnitude

to identify corrective saccades. The algorithm used to filter saccade

velocity vs to give corrective saccades vc in this model is

vc~vs
:(jvsjv2000=s): ð15Þ

Fine-Tuning Recurrent Neural Networks
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That is, the corrective saccade signal consist of all velocities less

than 200 degrees per second.

Furthermore [27], explains that retinal slip alone cannot

account for learning in the dark and cannot incorporate

proprioceptive feedback, which has some role in the long term

adaption of ocular control [50]. An algorithm based on a

corrective velocity signal has the potential to work with retinal

slip, efferent feedback, and proprioceptive feedback, since any of

these may drive a corrective eye movement. Small corrective

saccades are known to occur in the dark [51].

Nevertheless, retinal slip plays an important role in the overall

system. In most models of the oculomotor system, including the

one we adopt below, corrective saccades are generated on the basis

of retinal slip information. If the retinal image is moving, but there

have been no self-generated movements (i.e., the retinal image is

‘‘slipping’’), the system will generate corrective velocity commands

to eliminate the slip. Consequently, the integrator itself has only

indirect access to retinal slip information. Below, we show that this

is sufficient to drive an appropriate learning rule.

Before turning to the rule itself, it is useful to first consider what

is entailed by the claim that the system must be finely tuned. An

integrator is able to maintain persistent activity when the sum of

current from feedback connections is equal to the amount of

current required to exactly represent the eye position in an open

loop system. If the eye position representation determined by the

feedback current and the actual eye position are plotted on

normalized axes, the mapping for a perfect integrator would define

a line of slope 1 though the origin (see Figure 3). This line is called

the system transfer function, since it describes how the current

state is transferred to future states (through feedback). A slope of 1

in the neural integrator thus indicates that the recurrent input

generates exactly enough current at any given eye position to make

up for the normal leak of current through the neuron membrane.

In short, it means that a perfect line attractor has been achieved by

the network.

However, if the magnitude of the feedback is less than what is

needed, the represented eye position will drift towards zero. This is

indicated by the slope of the system transfer function being less

than 1. Such systems are said to be dynamically damped.

Conversely, if the feedback is greater than needed, the slope of

the transfer function is greater than 1 and the system output will

drift away from zero. Such systems are said to be dynamically

unstable (see Figure 3).

As described earlier, the representation of eye position given by

equation 8 has a definite error (for the neurons depicted in

Figure 1, the RMSE is 0.134 degrees). Consequently, a perfect

attractor (with slope 1) will not be achievable at all eye positions.

Nevertheless, it is clear from the derivation of the linear optimal

integrator that changing the decoding weights di (and hence the

connection weights vij~ajejdi) is equivalent to changing the

represented value of the eye position in the network. Hence,

changing these weights will allow us to more or less accurately

approximate an exact integrator.

Given this background, it is possible to derive a learning rule

that minimizes the difference between the neural representation of

eye position x̂x and the actual position x. Importantly, the available

corrective saccade vc provides information about the direction in

which minimization should proceed. Specifically, if vc is positive

the estimate must be increased so as to move towards x; if vc is

negative the estimate must be decreased. More formally, we can

express the error we would like to minimize as

E~
1

2

ð
x{x̂xð Þ2dx:

Substituting the neural representation from Equation 8 into this

expression, and then minimizing it by differentiating with respect

to the decoding weights di gives

E~
1

2

ð
x{

X
i

aidi

 !2

dx

dE

ddi

~{ x{
X

j

ajdj

 !
ai,

where the subscript j indexes the whole population and i indexes

the neuron currently being optimized. Note, however, that in a

recurrent network i and j are indexing the same neurons. In

addition, the connection weight dependent on i is in the

postsynpatic neuron j. So, despite the fact that the equation is

written as an optimization of i, the resulting learning rule is used to

tune weights in neurons j to which i projects.

Importantly, it is now possible to substitute for the bracketed term

using the negative of the corrective saccade. This substitution can be

made because vc is generated by the oculomotor system so as to be

proportional to, but in the opposite direction of, the difference

expressed by this term (i.e., the difference between the actual and

represented eye positions). Performing this substitution gives

dE

ddi

~vcai:

Converting this into standard delta rule form, and including the

learning rate parameter k, gives

Figure 2. Two methods for filtering saccade commands. a) Eye
position for a series of saccades. b) The saccade velocity, based on a). c)
Filtering based on magnitude. This method uses Equation 15 to filter
the velocity profile. This is the method adopted for all subsequent
experiments. d) Filtering based on a change in position, where a change
in position greater than 5 degree allows the subsequent velocity
commands to pass through at a magnitude inversely proportional to
the time elapsed after a movement.
doi:10.1371/journal.pone.0022885.g002
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Ddi~kvcai: ð16Þ

This rule indicates how the decoders themselves should change in

order to minimize the error.

Unfortunately, this rule is neither in terms of the connection

weights of the circuit, nor local. These two concerns can be

alleviated by multiplying both sides of the expression by the

encoder and gain of neurons j, which receive projections from

neuron i

Ddiejaj~kajejvcai

Dvij~kajejvcai: ð17Þ

The final learning rule in Equation 17 addresses both concerns.

First, the NEF characterization of connection weights guarantees

that the substitution of diejaj by vij is appropriate given the

definitions of the terms (as derived in Equation 9).

Second, the right-hand side of Equation 17 is in a pseudo-

Hebbian form: there is a learning rate k, pre-synaptic activity ai,

and post-synaptic activity ajejvc. This last term is the effect of the

corrective saccade on the somatic current of post-synaptic neuron

j, as described by Equation 7. Notably, this term is not the firing of

a receiving neuron, but rather the subthreshold current that drives

such firing (hence ‘‘pseudo’’ Hebbian). In other words, the same

current used to drive the spiking activity of the neuron is used to

update the connection weights. Consistent with this rule, it has

been suggested in experimental work that post-synaptic potentials

are not necessary for plasticity [52].

However, the current and the activity are highly correlated, as

the vc inputs must drive the neurons over threshold in order to

cause the corrective saccades. Consequently, the appropriate

correlations between pre- and post-synaptic firing are observed,

but the postsynpatic firing does not strictly cause weight changes.

As well, the rule only applies when the error term vc is non-zero.

Hence, the corrective-saccade acts as a kind of ‘‘gate’’ for the

connection weight changes. As a result, most accurately, the rule

can be considered as a gated pseudo-Hebbian rule.

Finally, it should be noted that the integrator subject to this rule

is driven by all velocity inputs as usual. Both corrective and

intentional saccades determine the firing of the neurons in the

integrator, and are integrated by the circuit. The mechanism that

distinguishes these two kinds of saccades (figure 2), only acts to gate

the learning itself, not the neural responses.

Overall, the resulting rule is biologically plausible, using only

information available to neuron j. This is because neuron j: 1)

receives a projection from neuron i; 2) is able to update the weight

vij ; and 3) responds to input velocities, including vc, via its tuning

(Equation 7). More importantly, there is no use of non-saccadic

inputs (such as retinal slip). The conjunction of these properties

distinguishes this rule from past proposals. We demonstrate a

detailed application of this rule to the tuning of the neural

integrator in the Results section.

Generalization of the learning rule
There have been similar learning rules proposed in the

literature. For example [24], propose a learning rule that uses

retinal slip in place of the corrective saccades, but has essentially

the same mathematical form. They also demonstrate convergence

of their rule with a Lyapunov function. In an earlier cerebellar

model [53], propose a learning rule in which an error provided by

climbing fibers is used to tune the weight between incoming

parallel fibers and Purkinje cells. This rule, too, has a similar

mathematical form. So, we take the novelty of the proposed rule to

lie more in its biological mapping than its mathematical form. In

both previous models, there is an error signal provided on a

different channel than the processed input. We have avoided this

assumption, which is empirically more consistent with the circuitry

of the oculomotor circuit, as described earlier.

More generally, there has been a wide variety of work

examining Hebbian-like reinforcement learning (also called

reward modulated Hebbian learning) that propose rules with a

Figure 3. Transfer functions of actual versus represented eye position for tuned, damped and unstable networks. Eye position is
normalized to lie on a range of +1. An exact integrator has a slope of 1, a damped integrator has a slope less than 1, and an unstable integrator has a
slope greater than 1. Compare to Figure 9b.
doi:10.1371/journal.pone.0022885.g003
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similar mathematical form to Equation 17 [54,55,56]. They are

similar in the sense that the weight change is a product of an error

signal, presynaptic activity and post-synaptic activity. These rules

all rely on a scalar error signal that is used to drive learning.

Typically this error is taken to be the reinforcement learning

prediction error. But other signals are used as well. For example

[24], considers the scalar retinal slip as error, and [53] assume

each parallel fibre carries a single scalar value and gets an

indication of the motor error. The rule we present in Equation 17

is also only applied to scalars.

However, we can extend past work by taking advantage of the

NEF decomposition used in the derivation of the previous rule. In

particular, the decomposition makes it clear how we can

generalize the simple rule we have derived from learning scalar

functions to learning arbitrary vector functions. Consider a

derivation analogous to that above, which directly replaces

encoding and decoding weights (d and e) with encoding and

decoding vectors (d and e), and replaces corrective saccades (vc)

with a generalized error signal (E). This results in a general

learning rule that can be expressed as

Dvij~kajejEai ð18Þ

where E is a generalized error term (in place of vc, which is

generated by the saccadic system).

The encoding vector e can be thought of as a generalization of

the ‘‘preferred direction’’ vector characterized by [57]. Past work

has shown how this generalization of the representation can

capture many forms of neural representation throughout cortical

and subcortical regions [28]. Thus, for such representations,

Equation 18 suggests that the projection of an error vector onto

the encoding vector can be exploited to affect weight changes of

the relevant neuron. Intuitively, this suggests that the error in a

vector space that can be accounted for by a given neuron, gated by

its input activity, influences the relevant connection weight. This is

a natural mechanism for ensuring that the neuron reduces the

error that its activity affects. We demonstrate the application of

this generalized learning rule to higher dimensional vector spaces

after considering the oculomotor case in detail.

The oculomotor system model
Previous learning models of the oculomotor integrator [22,23,24]

require a retinal slip signal to drive the learning algorithm. While

this signal is available to higher centers in the brain, it does not

project directly to the neural integrator. Therefore, to develop a

plausible learning algorithm, it is crucial to accurately model the

input to each neuron. The main component of this input is the

velocity signal projected to the neural integrator. Because the

generation of these velocity commands is complex in itself, it is

beyond the focus of the current study. As a result, we adopt the

model of the oculomotor system (OMS) developed by Dell’Osso’s

group [58,59,60] to provide realistic velocity input signals. The

OMS model, along with a complete description, is available for

download at http://omlab.org/software/software.html.

The OMS model contains saccadic, smooth pursuit, and

fixation subsystems controlled by an internal monitor. The model

uses retinal signals and an efferent copy of the motor output signals

to generate motor control commands. It includes the simulation of

plant dynamics, and has parameters to simulate normal ocular

behavior as well as several disorders. For this study, all parameters

were set for normal, healthy ocular behavior.

To test our learning algorithm, we replaced the neural

integrator of the OMS model with the spiking integrator model

described above. To compare the tuning of our network to the

experimental results of [30], it was necessary to modify the retinal

feedback path of the OMS model to allow for the simulation of

moving surroundings (see Results). Input to the OMS model was a

target position randomly selected to lie between {50 and 50
degrees. A new position was selected once every 4 s.

Simulations
The neural integrator in this study was constructed in Simulink

and embedded into the OMS model. The OMS model is available

at http://omlab.org/software/software.html, and the model used

in this study is available at http://compneuro.uwaterloo.ca/

cnrglab/f/NIdemo.zip. A time step of 0:1 ms was used along

with the first order ODE solver provided by Simulink. All

simulations were run on networks of 40 neurons for 1200 s

(20 minutes) of simulated time. All inputs to the model were eye

position targets chosen at random from an interval of +50
degrees, once every 4 s. At the input and output of the integrator,

the signals were normalized to a range of 21 to 1 corresponding to

eye position of {50 to 50 degrees. All results were collected after

the 1200 s run, at which point network weights were frozen (i.e.,

there was no learning after 1200 s and during data collection).

The learning rule used a value of k~4|10{11 to update the

weights at every time step. The value of k was selected by

iteratively testing the model with different values of k and selecting

one which allowed the connection weights to converge quickly

without inducing large fluctuations in the representational error.

The learning rate was kept constant across all simulations.

To appropriately characterize the behavior of the model, each

simulation experiment consisted of running 30 trials each with a

different, randomly generated network, allowing the collection of

appropriate statistics. For each trial, a new set of tuning curves for

the neurons, and a new set of input functions, were randomly

generated. The parameters of the tuning curves were determined

based on an even distribution of x-intercepts over +50 degrees,

maximum firing rates picked from an even distribution ranging

from 20 to 100 Hz, and a random assignment of half of the

neurons to positive and negative encoding weights e~+1. All

neurons had a cellular membrane time constant, tRC , of 200 ms

and a refractory period of 2 ms. All recurrent connections had a

post-synaptic current time constant of 100 ms, and were modelled

with a decaying exponential.

Ten different experiments were run in this manner. The first

was the linear optimal integrator described above. The connec-

tions between the neurons in the linear optimal network are

defined by Equation 9. All subsequent experiments start from

these weights unless otherwise specified.

Several experiments add noise to the connection weights of the

linear optimal integrator over time. Noise was added to the

connection weight matrix v as

vnoise~v:(1zg) ð19Þ

at each time step for a duration of 1200 s. The noise matrix g is

equal to a matrix R randomly selected from a normal distribution

N(0,1) and scaled by an appropriate standard deviation s and

number of time steps N : i.e., g~s=
ffiffiffiffiffi
N
p

R. Thus, the noise is added

as a standard Wiener process (i.e., Brownian motion).

In experiment 2, g was a noise matrix with s~0:3, adding 30%

noise over the 1200 s. Consequently, at the end of the 1200 s run

using noise accumulated according to equation 19, the weights

were perturbed by about 30% of their original value.

The third experiment consisted of allowing the learning rule to

operate on the connection weights of the integrator networks from
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experiment 2. That is, after being run with the above noise and no

learning for 1200 s (resulting in 30% noise), the learning rule (and

no additional noise) was run for 1200 s. The fourth experiment

allowed the integrator to learn while noise was continuously added

to the original optimal network weights. Noise was added in the

same manner as equation 19, but concurrently with learning. In

this case s~0:1 (i.e., 10% noise) was added over 1200 s. The fifth

experiment allowed the integrator to learn with a combination of

an initial disturbance of 30% noise (after a 1200 s run) to the

optimal weights and another 5% of continuously added noise

while the rule was being used. The sixth experiment examined the

effects of learning starting from the linear optimal integrator, but

with no noise added to the weights at all.

Experiments seven and eight were run to reproduce the results

of [30]. In this study, goldfish were fixed in an aquarium where the

background was controlled by a servo mechanism. The servo

mechanism was programmed to rotate the background at a speed

equal to eye position multiplied by a predefined gain. If the gain

was in the positive direction, the network became unstable. If gain

was in the negative direction, the network became damped. In our

study, we directly manipulated the retinal slip feedback to simulate

a moving background. Because rotation of the background in the

positive direction would give the illusion of slip in the negative

direction, the retinal slip in our study was modified by a gain with

the opposite sign to the experimental study. We used gains of

z0:30 (damped) and {0:10 (unstable), which compare with

+0:5 to +5 in with original study. The gains were selected to be

lower than a point where they caused erratic behavior which

inhibited learning (also noted by [30]). We suspect larger gains

were possible in the experiments because the gain operated on an

external background rather than retinal slip directly. This retinal

slip signal is provided directly to the OMS model, which generates

the appropriate oculomotor responses that drive the integrator.

The ninth and tenth experiments demonstrate that the rule is

able to account for recovery from lesions [29]. Specifically,

experiment nine shows the effect of removing a randomly chosen

neuron from the network. The resulting network thus has 39

neurons. Experiment ten examines the stability of the response

after applying the learning rule to the lesioned network while

introducing continuous 5% noise.

Measuring drift
Two benchmarks were used to quantify the performance of the

neural integrator in these experiments. The first was root-mean-

square error (RMSE) between the plot of actual feedback and the

exact integrator (i.e., a line of slope 1 through the origin). This is

determined by comparing the represented eye position for each

possible input to the actual position given that input, and taking

the difference. This provides an estimate of the representational

error caused by one forward pass through the neural integrator. As

a result, this error is measured in degrees. The lower this error, the

slower the integrator will drift over time on average.

The second measure was the time constant, tsys, based on the

average tsys calculated from a best fit of an exponential to the

response of the integrator after input pulses with a width of 0:5 s,

and heights of 22, 21, 1, and 2. This provides four evenly

distributed sample drift points for each network, which are

averaged to provide the final estimate.

Data was collected for 30 randomly generated networks (i.e.,

neuron parameters are randomly chosen as described above) and

used to calculate a mean and 95% confidence interval (using

bootstrapping with 10,000 samples) for both RMSE and tsys. For

the calculation of tsys, the absolute value was used to calculate the

mean and confidence interval, and the sign was later found by

summing tsys over the 30 trials.

Results

Application of the learning rule to the oculomotor
integrator

To demonstrate the effectiveness of the proposed learning rule

(equation 17), we present the results of the ten experiments in

order to benchmark the system and reproduce a variety of

plasticity observations in the oculomotor system.

The summary results of the ten experiments are shown in

Table 1. The time course of various example networks are

described subsequently. All results in the table are averaged over

30 network models with randomly chosen neuron properties (see

Materials and Methods). Figure 4 reproduces these results as a bar

graph, for visual comparison. In each case, the mean and 95%

confidence intervals are presented.

The root-mean-squared error (RMSE), measured in degrees,

quantifies the average difference between the exact integrator

transfer function (a straight line) and the estimated transfer

function of the model circuit (as described in Materials and

Methods). Typically, higher RMSE means more rapid drifting

(between stable points) since error accumulates more quickly.

However, the transfer function is estimated using rate model

approximations to the simulated spiking neurons, so this

relationship is not guaranteed to hold. Consequently, we also

report the absolute value of the system time constant, which is

indicative of the speed at which the system drifts (see Materials and

Methods). The sign, shown in brackets, indicates the direction of

drift. A negative sign indicates a drift away from midline (zero),

and a positive sign indicates a drift towards midline. All time

constants are in seconds.

The four experiments in which the system learns under a variety

of noise profiles demonstrate the robustness of the rule. As is

evident from Table 1, the addition of 30% noise to the connection

weights (Noisy) increased the RMSE by over an order of

magnitude. Consequently, the mean time constant was reduced

from 41.4 s to 10.6 s. The time traces of the eye position for

example linear Optimal, Noisy, and Learned+Perturb1 networks

are shown in figure 5. As well, a comparison of the transfer

functions of the exact, Optimal, and Noisy integrators is shown in

Figure 6. Together, these graphs demonstrate that after the initial

perturbation, the network no longer performs integration

properly. However, with the introduction of the learning rule,

the integrator is able to overcome the noise.

In fact, as shown in Figure 4 the tuned network can be more

stable than the linear Optimal case (compare Learned+Noise1 or

Learned+NoNoise4 to Optimal). There is no overlap in confidence

intervals, making it clear this is a strong effect. In other words,

using the learning rule can tune the network better than ‘‘optimal’’

(see Discussion). In both cases, this improvement beyond the

Optimal case occurs when there is no noise during the learning

period.

Consequently we consider the rule under continuous noise.

With the continuous addition of 10% noise (Learned+Noise2), the

integrator is also able to retain a similar time constant to the linear

Optimal case, though there is a slight increase in the variability of

the drift over the 30 test networks. This demonstrates that the

system is robust to continuous noise, but does not show that it can

retune after an initial disturbance and with continuous noise.

In the case of combined initial and continuous noise

(Learned+Perturb+Noise3), the learning rule maintains the same

mean as the linear Optimal case, though again with a slight
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increase in variability. We found that the continuous noise in this

case had to be reduced (to 5%) to allow retuning from the initial

perturbation.

Taken together, these results suggest that the learning rule is as

good as the optimization at generating and fine-tuning a stable

neural integrator. In fact, with no noise (Learned+NoNoise4), the

learning rule can tune the integrator to have a much longer time

constant than the linear Optimal case. This is because the model

that is optimized has various assumptions about neural properties

which are violated in the model (e.g., rate versus spiking neurons).

In short, the learning tunes the network better than the standard

optimization – we return to this point in the discussion.

The results can also be compared to the goldfish integrator,

which has empirically measured time constants that range between

29 s and 95 s, with a mean of 66 s [19, fig. 6]. As shown in

Table 1, this compares well with experiment 5, in which the

simulation has been tuned after an initial disturbance, and

constant ongoing noise of 5% (mean 41.4 s, CI: 18.9–78.8). To

get a better understanding of the temporal behavior of the

simulations as compared to the biological system, Figure 7 shows a

6 s run with several saccades in both systems. The simulation

effectively reproduces the kinds of responses seen in integrator

neurons, and the related eye movements.

The results from the unstable and damped experiments

reproduce the major trends observed in the experimental results,

as shown in Table 2 and Figure 8. For the Unstable case, the

learning rule demonstrates a large difference between the tuned

and untuned networks, going from 41.4 s to an average value of

215.5 s (drift is away from zero, see Figure 8). The 95%

confidence interval is also well outside that for the any of the linear

Optimal or Learned cases. This compares well to the experimental

change reported. The animals in [30] were trained between

20 min and 16.5 h, with averages only reported for animals after

1 h or more of training. Simulations of that length were not

feasible, and so all simulations were run for 20 min of training.

Hence, slightly smaller changes are expected. However, for both

the simulations and the experimental system, longer detuning

resulted in faster time constants. A similarly sized change is evident

in the damped case, which shows an average reduction to a time

constant of 10.9 s (drift towards zero) for the simulation and 7.7 s

for the experiment (see Figure 8).

Figure 9 compares the transfer functions for the Unstable,

Damped, and Learned+Perturb+Noise3 networks. Notably, a

small deviation from the transfer function of the exact integrator

causes reasonably rapid unstable or damped performance. The

zoomed in sections of this figure make the differences between pre

and post-tuning more evident. It is crucial to show the entire

transfer function, however, as it demonstrates that the time

constant change is smooth across all eye positions (the transfer

functions are approximately straight lines). The same is observed

experimentally [30].

One noticeable difference between the experiments and

simulations is the variability in the system after training. While

the standard deviations for the experimental results are not

available, the range of one correctly tuned experiment is reported

as being from 231 s to 15 s [30], which is a much greater spread

than observed in the simulations. There are several possible

Figure 4. Bar graphs for the experiments described in the main text. a) RMSE and b) the magnitude of tsys for each experiment. The error
bars indicate the 95% confidence intervals as reported in Table 1.
doi:10.1371/journal.pone.0022885.g004

Table 1. RMSE and system time constant (tsys) for the
experiments described in the main text.

RMSE
(degrees) tsys (s)

Experiment Mean CI Mean CI

1 Optimal 0.129 0.115–0.138 (+) 41.4 31.2–55.6

2 Noisy 2.156 1.693–2.699 (+) 10.6 5.85–18.2

3 Learned+Perturb1 0.671 0.312–1.178 (+) 98.7 58.5–153

4 Learned+Noise2 0.712 0.595–0.854 (2) 31.6 13.5–60.1

5 Learned+Perturb+Noise3 1.120 0.606–1.838 (+) 41.4 18.9–78.8

6 Learned+NoNoise4 0.183 0.170–0.193 (+) 122 88.1–165

7 Unstable 0.382 0.364–0.395 (2) 15.5 13.8–17.1

8 Damped 0.313 0.294–0.329 (+) 10.9 9.19–13

9 Lesion 0.824 0.561–1.142 (+) 30.8 20.2–46.2

10 Recovery 0.513 0.359–0.716 (2) 51.3 25.4–88.1

1After an initial disturbance (30%) to connection weights.
2With continuous noise (10%) added to connection weights.
3After an initial disturbance (30%) and continuous noise (5%).
4No noise.
CI is the 95% confidence interval. Positive and negative signs indicate the
direction of drift; towards and away from zero respectively.
doi:10.1371/journal.pone.0022885.t001
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reasons for this much wider variance. While we have attempted to

match the variability of the tuning curves, there are several other

parameters kept constant across simulations that are likely varying

in the biological system, such as synaptic time constants, and

learning rates. These are fixed in the simulations, as we do not

have experimental estimates of the distributions of these

parameters. Nevertheless, the important features of detuning,

including the direction and extent of the detuning are reproduced

in the simulations.

To simulate the lesion of a single neuron, the network was tuned

to the linear optimal weights before a single neuron was removed.

Lesioning a neuron resulted in an increase in RMSE from 0.129 to

0.824 and a decrease in time constant to about 10 s. To

demonstrate the recovery process documented by [29], the

learning rule was then run on the lesioned network under 5%

continuous noise. The system was able to recover to a system time

constant of 51.3 s on average. The temporal properties of the

network are shown before and after lesioning in Figure 10.

Application of the generalized learning rule
In other work, we have shown how this characterization of the

oculomotor integrator as a line attractor network can be

generalized to the family of attractor networks including ring,

plane, cyclic, and chaotic attractors [14]. These attractors have

been implicated in a wide variety of biological behaviors including

rat head-direction control (ring), working memory and path

integration (plane), swimming and other repetitive movements

(cyclic), and olfaction (chaotic). The generalized learning rule

described above applies in a straightforward manner to these other

cases.

For example, the ring attractor is naturally characterized as a

stable function attractor (where the stabilized function is typically a

‘‘bump’’), as opposed to the scalar attractor of the oculomotor

system. Similarly, a 2D bump attractor, which has been used by

several groups to model path integration in rat subiculum [61,34],

can also be characterized as a function attractor in a higher

dimensional space. A function space can be represented as a vector

space, and so we can apply the generalized learning rule to tune

this network. Example tuning curves in these function spaces are

showing in figure 11.

Analogous simulations to the oculomotor Learned+Perturb1

case were constructed in the Nengo neural simulation package to

Figure 5. Generated eye movements of example networks. The linear Optimal, Noisy (30% perturbation to connection weights), and
Learned+Perturb1 (after 1200 s of learning from the Noisy state) networks are shown for 30 s with the same saccade regime.
doi:10.1371/journal.pone.0022885.g005

Figure 6. A comparison of the exact integrator, linear Optimal
and Noisy transfer functions over a normalized range. The linear
Optimal network is closer to the exact integrator over the range of eye
positions. Although deviations of the Noisy network from the exact
integrator are small, the effects on stability are highly significant (see
Table 1 and Figure 5). Magnified regions are to aid visual comparison.
doi:10.1371/journal.pone.0022885.g006
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characterize tuning of head direction and path integrators

networks (Nengo was used as it executes these simulations more

quickly than Matlab. They are available at http://compneuro.

uwaterloo.ca/cnrglab/f/NINengoDemos.zip). Specifically, for the

head direction system, neurons were randomly assigned unit

encoding vectors ei in a 7D vector space, to define encodings as in

equation 8. Initial optimal weights were calculated as defined in

equation 9, using encoding and decoding vectors rather than

weights (i.e. vij~ajejdi). Both the represented vector space is

mapped to the 1D function space using a cyclic orthonormal basis

Wi(n): e.g., to get the encoding functions we compute

e(n)~
PD

i~1 eiWi(n), where n is the 1D spatial variable and

D~7. The same process is followed for the path integrator using a

14D vector space and 2D function space.

Figure 12 shows example results from these simulations, using

the generalized learning rule. The models are very similar since

both can be realized by different stable structures in a vector space

[14]. Hence, the simulation setups are identical, except the head

direction network has 7 dimensions and 700 neurons, and the path

integration network has 14 dimensions and 1400 neurons.

Neurons have the same parameters as in the oculomotor

simulation, except that encoding vectors are chosen to tile the

appropriate spaces (analogous to choosing encoding weights of +1
in the oculomotor network).

As shown in Figure 12, the same trend of improving the time

constant over a 1200 s run is evident in the other networks. For

the ring attractor, the time constant improved from 7.69e{4s to

2.9 s. The increase in time constant is evident in the decrease in

the amount of drift in Figure 12 between the beginning and the

end of the simulation. In this figure, we have also shown the

difference in drift in the function space. A similar trend, with lower

time constants, was evident in the head direction network over

1200 s of training (from 7.69e{4s to 1.1e{3s). This small change

in the time constant is not visually evident in plots like those for the

ring attractor. Instead we have shown the representation of a

stable 2D bump at the end of training. It is clear from these

simulations that the number of neurons per dimension is not

sufficient to achieve a similar level of stability as seen in the

oculomotor integrator in the higher dimensional spaces. This is

not surprising, as the number of neurons required to achieve a

similar RMSE goes to the power of the number of dimensions of

the space. This means that stable representations in higher-

dimensional spaces are much more difficult to achieve for a given

number of cells. Exploring the relationship between the number of

neurons, the dimensionality of the space, and stability properties,

and properly quantifying the behaviour of the learning rule in

detail in these spaces remains future work.

These simulations are intended only as a proof-in-principle that

the learning rule generalizes, and are clearly inaccurate regarding

the biological details of both systems (e.g., neuron parameters

should not be the same as the oculomotor integrator). More

importantly, the generalized error needed in each simulation E
needs to be identified in each case. Our assumption that there is

Figure 7. Comparison of goldfish integrator neurons from electrophysiological recordings and the simulation after tuning with the
learning rule. A single raw recording is shown on the left, along with the corresponding eye trace. Arrows indicate times of saccade (black right,
grey left; adapted from [30]). The right shows 14 neurons randomly selected from the model population after tuning with the learning rule. Neurons
in the model have similar kinds of responses as the example neuron. One is highlighted in grey.
doi:10.1371/journal.pone.0022885.g007

Table 2. A comparison of the time constants observed in our
model to experimental results.

Simulation Empirical Data

Experiment
(20 min
training)

(1 h or more
training)

6 Learned+Perturb1/Control 41.4 66.0 [19]

7 Unstable 15.1 4.3 [30]

8 Damped 10.9 7.7 [30]

All values are the reported tsys in seconds.
doi:10.1371/journal.pone.0022885.t002
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drift information analogous to the oculomotor integrator may or

may not be biologically plausible. Consequently, in each case there

remains important questions regarding the existence and source of

the required error signals. These questions go well beyond the

scope of the current paper. However, these simulations do

demonstrate that the same kind of learning rule can be used to

tune a wide variety of attractor networks in higher-dimensional

spaces.

Discussion

The simulations described in this paper demonstrate one

possible solution to the problem of fine-tuning in neural

integrators. The oculomotor model was able to achieve and

maintain finely-tuned connection weights through a biologically

plausible learning algorithm. Specifically, the learning rule allowed

recovery from large perturbations of connection weights, contin-

uous perturbation of connection weights, and the lesioning of cells.

Not surprisingly, these results are in agreement with other

experimental findings that suggest that feedback plays an

important role in the behavior of the oculomotor integrator

[42,43,41].

Consideration of the learning rule suggested here demonstrates

that on-line fine-tuning is a viable in vivo mechanism for explaining

the stability of the neural integrator. Specifically, this rule

improves upon existing oculomotor learning models [29,22,23,

24] by expressing the modification of synaptic weights in terms of

information that is known to be available to each neuron.

Furthermore, this rule is able to explain not only robustness to

random connection weight noise, but also several experimental

findings related to other forms of perturbation. For instance, unlike

rules that strictly enforce stability [32], this model is able to

replicate the de-tuning observations described by [30]. The

Figure 9. A comparison of the Learned+Perturb+Noise3,
Unstable and Damped transfer functions. The slope of the
Unstable network is greater than 1 and that of the Damped network is
less than 1. The re-tuned networks demonstrate the expected drifting
behavior (see Figure 8 and Table 1).
doi:10.1371/journal.pone.0022885.g009

Figure 8. A comparison of the simulated detuning experiments with experimental data [30]. The top trace is for the control situation,
which for the model is tuning after a 30% perturbation and 5% continuous noise. The middle trace shows the unstable integrator, and the bottom
trace shows the damped integrator. The goldfish traces are from animals that had longer training times (6 h and 16.5 h respectively), than the model
(20 min). Both the model and experiment demonstrate increased detuning with longer training times (not shown), and both show the expected
detuning (drift away from midline for the unstable case, and drift towards midline in the damped case).
doi:10.1371/journal.pone.0022885.g008
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learning rule is able to tune the integrator in response to distorted

visual feedback in a way comparable in terms of both required

training time and degree of instability/damping observed [30]. As

well, the system is able to tune the integrator after cell death,

which has been observed empirically [29]. Consequently, this rule

provides a plausible mechanism for solving the fine-tuning

problem, without relying on less well-established mechanisms

(e.g., [20,13]).

Optimality of linear methods
Using feedback to tune the integrator results in learned

connection weights that produce the same or even longer time

constants than the theoretically derived linear optimal connection

weights, despite a significantly larger RMSE (compare experi-

ments one, three, four, five, and ten). This is likely because the

calculation of linear optimal weights does not account for

dynamics of the eye or the spiking non-linearities in the neurons

(see Materials and Methods).

In contrast, the learning algorithm is employed alongside the

simulation of the oculomotor plant and single cell dynamics, so the

learned weights are calculated for a more complete model rather

than an approximation to that model. The effect of these

approximations is most directly demonstrated by experiment six,

in which the learning rule tunes the system with no noise. In this case,

the average learned time constant is three times longer than that of

the linear optimal network, even though the RMSE is higher as well.

This is true regardless of how much noise is assumed during the

optimization process (results not shown). This suggests that typical

theoretical methods for tuning connection weights are not generally

‘‘optimal’’ in fully spiking network models.

Figure 10. Performance of the integrator before and after lesioning the network. Severe drift is evident after randomly removing one of
the 40 neurons. After 1200 s of recovery with the learning rule under 5% noise, the time constant improves back to pre-lesioning levels.
doi:10.1371/journal.pone.0022885.g010

Figure 11. Tuning curves in two function spaces. a) Gaussian-like tuning curves of 20 example neurons in a one-dimensional function space (7-
dimensional vector space). These are tunings representative of neurons in a head-direction ring attractor network. b) Multi-dimensional Gaussian-like
tuning curves of four example neurons in a two-dimensional function space (14-dimensional vector space). These are tunings representative of
neurons in a subicular path integration network.
doi:10.1371/journal.pone.0022885.g011
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Empirical consequences
Despite the limitations of these theoretical optimization

methods, they are important for allowing the network to be in a

neighbourhood where it can be fine-tuned. This rule will not tune

a completely random network with large amounts of continuous

noise, for instance. As a result, one empirically testable

consequence of this model is a characterization of the maximum

amount of noise such a mechanism can tolerate. In particular, the

system is robust under 10% continuous noise, or under 30% initial

and 5% continuous noise. This makes it reasonable to expect that

the amount of continuous noise of this type in the system would be

on the order of 5–10% (over twenty minutes). While this degree of

robustness is significant, it remains to be seen how robust the

biological integrator is to these same kinds of perturbation, and

how severe intrinsic perturbations in the system are. Given our

model, we suggest that the magnitude of intrinsic perturbations

could be determined by examining the extent and speed of

detuning when corrective saccades are inhibited or removed. For

instance, under the same 10% continuous noise for 200 minutes

with no corrective saccades, the average system time constant

becomes 7.68 s (confidence interval: 4.67 s–11.8 s) in the model.

We leave for future consideration careful characterization of the

relationship between continuous noise, one-shot noise, learning

rates, and the absence of corrective saccades.

It can also be noted that the speed with which the model

converges to stability is a function of the learning rate, k.

Increasing this learning rate may help overcome larger amounts of

noise, but there is also the potential for introducing learning

instabilities with larger learning rates. The model as presented is

tuned approximately at the same speed as the goldfish (see, e.g.,

figure 8). The empirical consequences of varying learning rate

could be predicted, if methods for manipulating such rates in the

biological system could be established.

A related empirical question that arises given this model is: How

are corrective and intentional saccades distinguished? In the

model, that distinction is made by filtering based on the magnitude

of the velocity command. However, it remains an open question

what the biological mechanism underlying this filtering might be.

This issue is left largely unaddressed here because there are several

potential means of identifying corrective saccades. For example,

the learning process may require a kind of ‘‘activation energy’’ to

initiate learning, in which case large saccades would reduce this

energy and act as inhibitors for learning. It is also possible that the

(amplitude independent) frequency content of saccades is used to

trigger the learning process, such that intentional saccades do not

cause modification of the synaptic weights. As well, the duration of

the saccades can be used as a means of distinguishing intentional

from corrective saccades. In the end, the magnitude filtering

implemented in this study was chosen because of simplicity and

lack of experimental evidence for any one of these potential

mechanisms.

Notably, our particular choice of filtering method does not seem

crucial. We have run single simulations with other filtering

methods with similar results. For example, using the filtering by

change in position (see Figure 2), the time constant of the network

improved from 5.7 s to 69.5 s, similar to our chosen method.

More importantly, however, the learning rule itself is independent

of the method of distinguishing corrective from intentional

Figure 12. Simulations of tuning attractor networks in higher dimensional spaces. a) The input (dashed line) along with the final position
of the representation after 500 ms of drift for pre-training (thick line) and post-training (thin line). b) The pre-training drift in the vector space over
500 ms at the beginning of the simulation for the bump (thick line in a). d) The drift in the vector space over 500 ms after 1200 s of training in the
simulation (thin line in a). Comparing similar vector dimensions between b) and c) demonstrates a slowing of the drift. d) A 2D bump in the function
space for the simulated time shown in e), after training. e) The vector drift in the 14-dimensional space over 500 ms after training.
doi:10.1371/journal.pone.0022885.g012
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saccades, although it assumes there is some mechanism that

provides this distinction.

The generalized learning rule
Consideration of the generalized learning rule raises interesting

possibilities that could be tested experimentally. Perhaps most

speculatively, the rule suggests that intrinsic neuron properties play

a central role in a how a particular neuron is exploited by a system.

The encoding vector ej and gain aj determine how the error signal

is ‘‘interpreted’’ by a given neuron. The mapping of input currents

onto neural activity are a function of intrinsic neuron properties,

like the membrane resistance and capacitance, channel density,

dendritic morphology and so on. This suggests it may be possible

to experimentally determine relationships between such properties

and how cells are exploited in a given learning circuit.

Much less speculatively, the general structure of the rule

suggests simple behavioral experiments. For example, if an error

signal analogous to retinal slip is available to head-direction, path

integration systems, or working memory systems, it should be

possible to similarly mis-tune those systems with careful manip-

ulation of the stimulus. If such mis-tuning is achievable, it would

suggest that this kind of plasticity is broadly important for the

neural control of behavior.

Returning to the saccadic system specifically, it is evident that

the error signal is generated by elements of the oculomotor system

external to the integrator itself. However, it is clearly the case that

such a signal is self-generated by the neurobiological system as a

whole (as captured by the OMS model). This signal allows for a

kind of ‘‘self-directed organization’’ of the system. The general-

ization suggests that any other error signal that can be self-

generated can also be exploited by this rule for tuning a network to

perform other kinds of computations. Preliminary results show

that this generalized rule is able to learn arbitrary non-linear

vector transformations [62]. Notably, the generalization of the

error signal and the neural representation does not change the

basic gated pseudo-Hebbian nature of the rule.

In addition, clear differences in the consequences of different

kinds of learning arise in the case of stability. A supervised rule,

such as backpropagation through time [63], requires enforcing the

desired output on the state of the system (i.e., eye position), which

is biologically implausible in this case as the correcty eye position is

not immediately available to the integrator. An unsupervised

stability rule [32] will enforce stability over the range of

experienced input. Thus the dynamics of the system (i.e., whether

it is stable, unstable, or damped) are determined by the rule itself.

In contrast, a self-directed rule, like that presented here,

determines the stability of the system in an environmentally

dependent way. As demonstrated by the mis-tuning experiments,

the stability of the integrator is not intrinsic, but rather tied to

environmental stability. Or, more accurately, tied to the system’s

ability to generate corrective stability signals based on environ-

mental cues. Uncertainties regarding environmental dynamics

may make it evolutionarily advantageous to prefer rules that rely

on self-directed organization in many circumstances.
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